1 contents introduction 2 fracking and unconventional shale gas production 3 assessing potential...

120
Produced by Medact, September 2016

Upload: others

Post on 11-Apr-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

ShaleGas:RiskandBenefittoHealth

Notesfromtheliterature

ProducedbyMedact,September2016

1

Contents

Introduction 2

FrackingandUnconventionalShaleGasProduction 3

Assessingpotentialharmsandbenefits 3

Hazards,RisksandHarms 7

Waterpollution 10

Wellintegrity 23

Wastewatermanagement 26

Airpollution 28

Healthimpactsofpollution 34

Hazardsandrisksassociatedwithtraffic,noise,lightandodour 42

Social,economicandlocalenvironmentaleffects 45

Fugitiveemissions 55

RegulationandRiskManagement 65

EconomicandCommercialViability 76

ClimateChangeandHealth 79

GlobalGHGemissionsandcarbonbudgets 85

TheUK:GHGemissionsandenergypolicy 92

CarbonCaptureandStorage 104

Energyefficiencyandconservation 104

BroaderDevelopmentPolicyandCo-BenefitsofCCMitigation 115

Acknowledgements

2

A. Introduction

1. InApril2015,Medactpublishedanassessmentofthepotentialhealththreatsassociatedwithshalegasproduction(SGP),includingtheprocessofhighvolume,hydraulicfracturing(‘fracking’)andreportedthat:• significanthazardsareunavoidablyassociatedwithfrackingandcouldimpactnegativelyon

thehealthandwellbeingoflocalcommunities;• the regulatory framework for fracking in theUKwasunclear, incomplete and inadequate,

andcompromisedfurtherbybudgetandstaffcutstoregulatoryagencies;and• shalegasisnotnecessarilya‘clean’sourceofenergyandmayhinderourtransitiontowards

adecarbonisedenergysystem.2. MedactconcludedthattherisksandthreatsassociatedwithSGPoutweigheditspotential

benefits,andrecommendedthatitshouldnotbeencouragedintheUK.

3. Sincepublishingthatreport,MedacthascontinuedtomonitorthescientificliteratureandpolicydebatesconcerningSGP.Inaddition,MedactstaffhaveparticipatedinpublicationofasystematicreviewofthescientificresearchonthehealtheffectsofSGP.

4. Thisdocumentconsistsofasetofsemi-structurednotesthathavebeenusedtoinformanewpublicationthatsetsoutMedact’spositiononSGP.Thisnewpublication(ShaleGasProductioninEngland:AnUpdatedPublicHealthAssessment)isfreelyavailablefromtheMedactwebsite.1

5. Thepurposeofthesenotesistopresentsomeofthewide-rangingissues,dataandanalysisthat

areneededforawell-informed,holisticandnuancedunderstandingofSGP.Wehopethenoteswillprovideausefulresourceforothersworkingonthisissueandforinterestedmembersofthegeneralpublic.

6. Thisdocumentisaworkinprogress,andwillbeupdatedonanongoingbasis.

7. HavingreviewedattheliteratureonSGPandatargumentsputforwardbyproponentsofshale

gaswhoarguethatSGPcanbeconductedsafely,andthatshalegasisarelativelyclean,beneficialandstrategically-importantsourceofenergy,wecontinuetoadviseagainstthedevelopmentofashalegasindustryintheUKonthegroundsthatitrepresentsasignificantthreattohumanhealthandwellbeingthatmaybeavoidable.

8. ManyoftheconcernsaboutthepotentialrisksassociatedwithSGPrelatetonaturalgasand

fossilfuelsmoregenerally.However,thisdocumentisfocusedspecificallyonthepolicytoencourageSGPintheUK.

1http://www.medact.org/wp/wp-content/uploads/2016/07/medact_shale-gas_WEB.pdf

3

B. FrackingandUnconventionalShaleGasProduction

9. Theterm‘fracking’iscommonlyusedtodescribeaprocessofshalegasextractionthatusesatechniqueknownas‘high-volume,hydraulicfracturing’(HVHF)inwhichhighvolumesoffluidareinjectedundergroundunderhighpressure.Thisisdesignedtofracturegas-bearingshaleformationsthatlieunderground,allowinggastobereleasedandtoflowuptothesurfacewhereitcanbecapturedforuse.

10. Frackingisalsoassociatedwiththeterm‘unconventionalnaturalgas’(UNG)whichislooselydefinedtomeangasthatiscapturedfromunconventionalreservoirsandincludesshalegasandcoalbedmethane.

11. ShalegasisaformofUNGbecauseitistrappedorlockedwithinthefine-grainedsedimentary

rocksofshaleformationsthatlieunderground,andcanonlybereleasedoncetheshaleisartificiallyfractured.Althoughhydraulicfracturinghasbeenusedtostimulateoilandgaswellsformanydecades,thehighvolumesandhighpressuresoffluidrequiredtofractureshalerockarerelativelynewdevelopments.

12. Shalegasproduction(SGP)isalsocharacterisedbyimprovementsinhorizontaldrilling

techniqueswhichallowhorizontalboreholestobedrilledforupto10kmatdepthsofmorethan1.5km.Thesedevelopmentsinengineeringhaveallowedtheoilandgasindustrytofracturegreateramountsofshalerockthatwerepreviouslyconsideredinaccessibleoruneconomic.2

13. ThisreportisnotlimitedtoanassessmentofthepotentialhealtheffectsofHVHF,butcovers

theentireprocessofSGPincludingtheconstructionofwellpads;thedrillingofboreholes;theextractionanduseofwater;thestorage,transportationofwasteproducts;andtheprocessing,storageandtransportationofnaturalgastoendusers.

C. Assessingpotentialharmsandbenefits

10. AnassessmentofthepotentialhealthimpactofSGPhastobebalanced,andmustconsiderboththepotentialharmsandbenefitsofSGP.

11. Wehaveusedaframeworkthatincorporatestwosetsofbenefits(Figure1).First,thoserelatedtoenergyitself,whichhasbeenacrucialingredienttotheremarkableimprovementsinhumanhealthwitnessedoverthepast250years.Second,thepotentialeconomicbenefitsintermsofrevenue,jobcreationandlocalinvestment.

12. Theframeworkalsodescribesfivesetsofpotentialharms:1)exposuretohazardousmaterialsandpollutants;2)exposuretoso-called‘nuisances’suchasnoise,lightpollution,odourandtrafficcongestion;3)socialandeconomiceffectsthatmayhaveanadverseimpactonhealthand

2Adgateetal(2014)hasnotedthattherapidincreaseinthetechnology’sdevelopmentintheUShasbroughtwellsandrelatedinfrastructureclosertopopulationcentres

4

wellbeing;4)seismic(earthquake)activity;and5)thereleaseofgreenhousegases(GHGs)andtheeffectsofglobalwarmingandclimatechange.

Figure1:AframeworkdescribingthepotentialbenefitsandharmsofSGP

13. Thetypeofnegativehealtheffectsthatmayarisefromthesefivesetsofpotentialharmsare

many,andconsistofbothacuteandchronicdiseasesandillnesses,includingthosemediatedbypsychologicalandemotionalpathways.Negativehealtheffectsmayarisefromperceptionsofriskwhichcanresultinanxiety,stressandfear.3Someeffectsmaybeexperiencedimmediately,whilstothers(suchasexposuretocarcinogenictoxins)maytakemanyyears.

14. Theframeworkaboveexcludesoccupationalhealthrisksrelatedtoaccidentsorequipment

malfunctionsonandaroundthewellpad.AlthoughtherearefewdataspecifictoSGP,oilandgasproductionisrelativelydangerouscomparedtomanyotherformsofindustrialactivity.45

15. Blowoutscancausedrillpipe,mud,cement,frackingfluids,andflowbacktobeejectedfromthe

boreandexpelledathighpressure;andcansetoffanexplosion.Firescaninvolveotherequipmentonthewellpad.Historicaldatafromtheoilandgasindustryindicatethatblowout

3Luria,ParkinsandLyons(2009)‘HealthRiskPerceptionandEnvironmentalProblems:FindingsfromtencasestudiesintheNorthWestofEngland’.LiverpoolJMUCentreforPublic4AdgateJL,GoldsteinBDandMcKenzieLM,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol48(15),pp8307–83205WitterRZ,TenneyL,ClarkSandNewmanL.Occupationalexposuresintheoilandgasextractionindustry:stateofthescienceandresearchrecommendations.Am.J.Ind.Med.2014,inpress.

5

frequencyisapproximately1per10,000wells.6PublisheddatafromtheMarcellusShaleindicatesablowoutriskof0.17%fortheyears2005–2013.7

16. Thepotentialharmsassociatedwithclimatechangerelatetothefactthatnaturalgasisbothafossilfuelandagreenhousegasinitsownright.Becauseofitspotentialtocontributetoglobalwarming,ahealthimpactassessmentofSGPintheUKneedstoconsiderthepotentialimpactsofclimatechangeonglobalhealthmoregenerally.

17. InassessingthepotentialharmsandbenefitsofSGP,ithastoberecognisedthattheeffectsand

outcomesofSGParedependentonarangeofmodulatingfactorsthatarecontext-specific(asillustratedinFigure1).

18. Clearly,thescaleandintensityofSGP,andthesize,compositionandproximityoflocal

communities,willhaveaconsiderablebearingonthelevelofriskandimpactonhealth.Similarly,localdemographicfeaturesandthenatureofpre-existingeconomicactivitieswillinfluencetheextenttowhichanysocial,culturalandeconomicdisruptioncausedbySGPimpactsnegativelyonlocalcommunities.

19. Thespecificgeologicalfeaturesoftheshaleformationsandtheiroverlyingstrata,geographic

variablessuchasthelocalclimateandtopography,andthenatureofthelocalecosystemandroadnetwork,arealsoimportantvariablesthatinfluencethetypeanddegreeofriskassociatedwithSGP.

20. Theadequacyandeffectivenessofregulationandtheethicalstandardsandoperatingpracticesofshalegasoperators(includingtheadoptionofnewengineeringtechnologiesandsafetyimprovements)aresimilarlyimportantindetermininglevelsofsafety.

21. TheeconomicbenefitsofSGPandtheirdistributionacrosssocietyaredependentonvariousfactorsincludingfuturegasprices;thetaxandsubsidyregimeappliedtotheshalegasindustry;theemploymentpracticesofshalegasoperators;andtheadequacyandeffectivenessofasanctionsregimeintheeventofaccidents,malpracticeornegligence.

22. Forthesereasons,thereisnosuchthingasastandardfrackingoperationandonecannotderiveageneralisablemeasureoftheharmsandbenefitsassociatedwithSGP.WhileitisimportanttolearnfromexperiencesofSGPinothersettings,especiallytheUnitedStates,lessonsmustbeappliedcarefullytotheUK.Differencesinthegeology,geography,regulatoryenvironmentandenergyeconomyoftheUSandUKcanbeconsiderable.

23. EvenwithintheUSA,conditionsandpracticesdifferfromstatetostate.Accordingtothe

CaliforniaCouncilonScienceandTechnology,“hydraulicfracturingpracticeandgeologicconditionsinCaliforniadifferfromthoseinotherstates,andassuch,recentexperienceswith

6InternationalAssociationofOil&GasProducers,2010.Blowoutfrequencies.http://www.ogp.org.uk/pubs/434-02.pdf7ConsidineTJ,WatsonRW,ConsidineNB,MartinJP,2013.EnvironmentalregulationandcomplianceofMarcellusshalegasdrilling.Environ.Geosci.20,1e16.

6

hydraulicfracturinginotherstatesdonotnecessarilyapplytocurrenthydraulicfracturinginCalifornia”8

24. Anothergeneralpointisthatthereisadistributionaldimensiontoconsider.Boththenegative

andpositiveeffectsofSGPwillbeunevenlydistributedacrosspopulationsalonggeographic,temporalandsocialdimensions.ThebalanceofbenefitandharmwillvarywithinandbetweenlocalcommunitiesdirectlyaffectedbySGP,aswellasacrossnationalandglobalpopulations.Eventheimpactofexposuretochemicalhazardswillvarywithinacommunityduetotheunevendistributionofriskfactorssuchasdeprivation,poordietandpre-existinghealthconditionsthatinfluencevulnerabilitytotheeffectsofpotentialhazards.

25. Theunequaldistributionofharmsandbenefitsacrosssociety(includingbetweencurrentandfuturegenerations),aswellastheneedtoconsiderthetrade-offbetweenharmsandbenefits,involvesethicalconsiderationsandtheaccommodationofdifferentsocialvaluesandpreferences.9

26. TheapproachtakeninthisreporttoassessthehealtheffectsofSGPisthereforebroadand

involvesawiderangeoffactors.Itstandsincontrasttothe2014PublicHealthEngland(PHE)reportonshalegaswhichonlyaddressedtherisksassociatedwithchemicalandradioactivepollutants,andexcluded“otherconsiderations,suchaswatersustainability,noise,traffic(apartfromvehicleexhaustemissions),odour,visualimpact,occupationalexposureandwiderpublichealthissues,havenotbeenaddressed”,aswellastheimpactsofonclimatechange.

27. Intermsofthescientificliterature,SGPisarelativelynewandevolvingactivity.Research

examiningtherelationshipbetweenSGPandhealthislimitedbothintermsofthequantityandqualityofstudies.Althoughthescientificliteratureisexpanding,asummationmadebyAdgateetalin2014stillholdstrue:“TodateobservationalstudiesexploringtheassociationbetweenhumanhealthandUNGdevelopmenthavehadanumberofscientificlimitations,includingself-selectedpopulations,smallsamplesizes,relativelyshortfollow-uptimesandunclearlosstofollow-uprates,limitedexposuremeasurementsand/orlackofaccesstorelevantexposuredata,andlackofconsistentlycollectedhealthdata,particularlyfornon-cancerhealtheffects”.10

28. Additionally,becauserigorousandindependentexposureandhealthimpactstudiesmaybe

expensive,atendencytorelyondatacollectedbytheindustryitself,resultsinbiaswithintheexistingscientificliterature.11Incompleteregulationandtheapplicationofnon-disclosure

8CaliforniaCouncilonScienceandTechnology,2015.AnIndependentScientificAssessmentofWellStimulationinCalifornia:SummaryReport.AnExaminationofHydraulicFracturingandAcidStimulationsintheOilandGasIndustry.9SeeEvensen,D.(2016),Ethicsand‘fracking’:areviewof(thelimited)moralthoughtonshalegasdevelopment.WIREsWater,3:575–586.doi:10.1002/wat2.115210AdgateJL,GoldsteinBDandMcKenzieLM,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol48(15),pp8307–8320.11WattersonandDinan,2015.HealthImpactAssessments,Regulation,andtheUnconventionalGasIndustryintheUK:ExploitingResources,Ideology,andExpertise.JournalofEnvironmentalandOccupationalHealthPolicy0(0)1–33.

7

agreementshavealsohindereddatacollectionandpublicinterestmonitoringandevaluationofthegasindustryintheUS.121314

29. Anumberofauthorshavenotedthecommonmethodologicalchallengesinvolvedinconducting

riskassessmentsassociatedwithengineeringandindustrialprocessessuchasSGP,including:a)inherentuncertaintiesinassigningprobabilitiesandappropriatevaluesforestimations;b)thedifficultyindistinguishingbetweenobjectiveknowledgeandsubjectivejudgments;c)thechallengesofworkingwithintangiblesandtemporaldata;d)thefrequentuseofnon-disclosureagreementsthatallowcompaniestoholdbackdatarequiredformakingriskassessments;ande)thefactthatpsychological,social,institutionalandculturalfactorsaffectperceptionsofrisksandinfluenceriskbehaviours.15

30. BecauseadegreeofjudgementisinevitableintheformationofanypositiononSGP,itis

importantthatconflictsofinterest(financialandotherwise)aredeclared.

31. ItisworthnotingthatintheUS,therehavebeenanumberofcontroversiesassociatedwithresearchandcommentarypiecesaboutshalegasthathavebeenproducedbyuniversityscientistssponsoredbytheoilandgasindustry.16HereintheUK,therehasbeenlittleindependentshalegas-relatedresearch,research.AreviewofshalegasextractionconductedbytheRoyalSocietyandtheRoyalAcademyofEngineeringin2012recommendedthatacross-councilresearchprogrammebeestablishedintheUK,butthishasnothappened.17

D. Hazards,RisksandHarms

HazardousMaterialsandPollutants

32. SGPisaninherentlyriskyactivity.AccordingtoaUnitedNationalEnvironmentalProgramme(UNEP)briefingnote,“hydrologicfrackingmayresultinunavoidableenvironmentalimpactsevenifunconventionalgasisextractedproperly,andmoresoifdoneinadequately”.18Furthermore,evenifriskcanbereducedtheoretically,“inpracticemanyaccidentsfromleakyormalfunctioningequipment,aswellasfrompoorpractices,regularlyoccur”.

12MauleA,MakeyC,BensonE,BurrowsIandScammelM,2013.Disclosureofhydraulicfracturingfluidchemicaladditives:analysisofregulations.NewSolut.23(1):167–87.PM.23552653.13https://www.guernicamag.com/daily/naveena-sadasivam-in-fracking-fight-a-worry-about-how-best-to-measure-health-threats/14http://www.businessweek.com/news/2013-06-06/drillers-silence-u-dot-s-dot-water-complaints-with-sealed-settlements15See:Rennetal.,1992).Aven(2012),AvenandKristensen(2005)Pidgeon(1998)16NelsonC.Frackingresearch:playingwithfire.TimesHigherEducationSupplement,https://www.timeshighereducation.co.uk/features/fracking-research-playing-withfire/2007351.article17TheRoyalSocietyandTheRoyalAcademyofEngineering,2012.ShalegasextractionintheUK:areviewofhydraulicfracturing.https://royalsociety.org/~/media/policy/projects/shale-gas-extraction/2012-06-28-shale-gas.pdf18UNEP.Gasfracking:canwesafelysqueezetherocks?UNEPGlobalEnvironmentalAlertService,http://www.unep.org/pdf/UNEP-GEAS_NOV_2012.pdf(accessed23May2013).

8

33. Eventheindustry-fundedTaskForceonShaleGasnotesthat“clearlythereisarangeofhazardspotentiallyassociatedwithshalegasoperations”.19

34. Amongthehealthrisksisexposuretohazardouspollutants,whicharetypicallyeitherairborneorwaterborne;andwhichcanaffecthumanseitherdirectlyorindirectly.

35. Pollutants,withsubsequentriskstoboththeenvironmentandpeople,areproducedacrossall

stagesofSGPincludingwellpadconstruction;drilling;hydraulicfracturing;gasextraction,treatment,storageandtransportation;themanagementofwasteproducts;andevenafterwellshavebeensealedandabandoned.

36. Amongthepotentiallyhazardouschemicalsandcompoundsare:particulatematter(PM);oxides

ofnitrogen(NOx);volatileorganiccompounds(VOCs),includingformaldehyde,benzene,toluene,ethylbenzene,xyleneandpoly-aromatichydrocarbons(PAHs);hydrogensulphide;ozone20;silica;heavymetalssuchaslead,selenium,chromiumandcadmium;andnormally-occurringradioactivematerial(NORM).

37. Elliott21systematicallyreviewedthepotentialreproductiveanddevelopmentaltoxicityofover

1000chemicalsidentifiedinfracturingfluidsand/orwastewater.Datawereavailableforonly24%ofthesechemicals;65%ofwhichsuggestedpotentialtoxicity.Webbetal’s2014literaturereviewalsoconcludedthatchemicalsusedandproducedinunconventionaloilandgasoperationswereknowndevelopmentalandreproductivetoxins.22

38. Colborn23reviewedthetoxicityof352chemicalsusedinUSnaturalgasoperationsincluding

UNGdevelopmentandfoundthat25%werepotentiallymutagenicorcarcinogenic.Inaddition,over75%hadthepotentialtocauseeffectsontheskin,eyes,respiratoryandgastro-intestinal(GI)systems;40-50%onthenervous,immune,cardiovascularandrenalsystems;and37%onendocrinesystem.Inevitably,thisisnotacomprehensivereview.InformationonthefullcompositionoftheproductsusedintheUSislimited,partlybycommercialconfidentiality,andsomeofthechemicalsdisclosedhavenotbeensubjectedtoafulltoxicologicalassessment.

39. WhenitcomestoNORM,astudypublishedinJune2014byDurhamUniversityonthelikely

radioactivityofflowbackfluid,concludedthat“levelsofNORMmeasuredinflowbackwateraremanytimeshigherthanfoundingroundwater,butalongwaybelowthepermittedUKexposure

19TaskForceonShaleGas.Firstreport:Planning,RegulationandLocalEngagement.20Troposphericozoneisasecondaryairpollutantproducedphotochemicallythroughcomplexreactionsinvolvingvolatileorganiccompounds(VOCs)andnitrogenoxides21Elliott,EG,Ettinger,AS,Leaderer,BP,Bracken,MB,Deziel,NC(2016)Asystematicevaluationofchemicalsinhydraulic-fracturingfluidsandwastewaterforreproductiveanddevelopmentaltoxicity, JournalofExposureScienceandEnvironmentalEpidemiologyadvanceonlinepublication,6January2016;doi:10.1038/jes.2015.81.22Webbetal,2014.Developmentalandreproductiveeffectsofchemicalsassociatedwithunconventionaloilandnaturalgasoperations.RevEnvironHealth.29(4):307-18.doi:10.1515/reveh-2014-0057.23ColbornT,KwiatkowskiC,SchultzK,BachranM(2011)NaturalGasOperationsfromaPublicHealthPerspective,HumanandEcologicalRiskAssessment:AnInternationalJournal,Vol.17,Iss.5

9

limits.Theirradioactivityisalsolowerthanthatoffluidsproducedbyconventionaloilorgasproduction,ornuclearpower.Intermsoffluxperunitofenergyproduced,shalegasflowbackfluidsarealsomuchlessradioactivethantheburnproductsofcoal-firedpowerstations”.ThestudyconcludesthatalthoughSGPwillbringNORMtothesurfaceandthatflowbackfluidsmustbetreated,theirradioactivityremainslowandunlikelytoposeathreattohumanhealth.24

40. Thehealthriskposedbythedifferentpotentialhazardsvaries.Somesuchasbenzeneareknown

carcinogens;someincreasetheriskofbirthdefects;whileotherscauserespiratoryandcardiovasculardisease.Theinhalationofbenzenesandxylenescanirritateeyesandtherespiratorysystemandcausedifficultyinbreathingandimpairedlungfunction.Inhalationofxylenes,benzene,andaliphatichydrocarbonscanadverselyaffectthenervoussystemwitheffectsrangingmildandtemporarydizziness,headaches,fatigue,andnumbnesstoseriouseffectsifthereisacuteandseverepoisoning.

41. Itisworthnotingthatthereisincompletescientificknowledgeabouttheriskofexposuretomanychemicalandradioactivehazards.ManyofthepotentialhazardsassociatedwithHVHFlackafulltoxicitycharacterization,andthereisevenlessknowledgeaboutthepotentialrisksassociatedwiththe‘cocktail’effectsofbeingexposedtomultiplehazardssimultaneously.25

42. Anxietyandfearaboutexposurecanalsoresultinharmstostress,anxietyandotherimpactson

emotionalwellbeing.

43. IntermsoftheoveralltoxicpotentialofSGPforelectricitygenerationintheUK,Stamfordetalestimatedittobe3-4timesworsethanconventionalgas,althoughanorderofmagnitudebetterthannuclear,solarorcoalpower.26

Riskofpollutionandexposuretohazardouspollutants

44. Theriskofpollutiondependsonmanyvariablesincluding:a)thetypeandcompositionoftheshaleformations;b)thenearbypresenceofaquifers;c)thenumberofwellsandboreholes;d)theoperatingpracticesoffrackingcompanies,includingthetypeofequipmentandtechnologyusedandthespecificconstituentsofthedrillingandhydraulicfracturingfluids;e)thesystemofregulationinplacetoensuresafety,includingthemonitoringandsurveillanceofpollution;f)leakageratesandthefrequencyofventingandflaring;andg)theadequacyoffacilitiesforthetreatmentandmanagementofflowbackfluidandotherwastematerials.

24Thefluxofradionuclidesinflowbackfluidfromshalegasexploration,DurhamUniversity,EnvironmentalScience&PollutionResearch,June201425AccordingtotheCaliforniaCouncilonScienceandTechnology(2015),astudyofalistofchemicalsthatweredisclosedbyindustryrevealedthatknowledgeofthehazardsandriskswasincompleteforalmosttwo-thirdsofthechemicals.TheCouncilnotedthatthetoxicityandbiodegradabilityofmorethanhalfthechemicalsusedinhydraulicfracturingwereun-investigated,unmeasuredandunknown.Additionally,basicinformationabouthowthesechemicalswouldmovethroughtheenvironmentwassaidtonotexist.26StamfordLandAzapagicA(2014)LifecycleenvironmentalimpactsofUKshalegas,AppliedEnergyVol134,1December2014,Pages506–518

10

45. Healthrisksonlyariseifthereishumanexposuretopollutants.Themagnitudeofriskalsodependsonmanyvariablesincluding:(1)thetypeofpollutantthathumansareexposedto;(2)theamountofpollutionandlengthoftimeofexposure;(3)theageandhealthprofileofexposedpersons;(4)topographicalfeaturesandmeteorologicalconditionsthatinfluencethedispersionofpollutants;and(5)theextenttowhichhouseholdssourcetheirdrinkingwaterdirectlyfromgroundwatersources(negligibleintheUK).

E. Waterpollution

46. SGPcancausebothgroundandsurfacewaterpollution.Thesourceofpollutantsinclude:a)hydraulicfracturingfluid;b)runofffromcuttingsandotherprocessresiduesgeneratedbythedrillingofwells;c)‘flowbackfluid’,includingformationandproductionwaters;andd)naturalgasitself.

47. Waterpollutionmaymanifestindifferentways:straygascontaminationofaquifers;surface

watercontaminationfromspills,leaks,and/orthedisposalofinadequatelytreatedwastewater;andtheaccumulationoftoxicandradioactiveelementsinsoilorstreamsedimentsneardisposalsites.27

48. Accordingtoonereview,accidentsandmalfunctions,suchaswellblowouts,leakingcasings,and

spillsofdrillingfluidsorwastewater,aremorelikelytocontaminatesurfaceandgroundwatersuppliesthantheprocessofHVHFitself.28

49. AnotherreviewnotedthatevidencefromtheUSpointstothefailureofwellcementandcasing

barriersbeingthemostcommoncauseofwaterpollution;followedbysurfacespills(duetoleaks,overflowingpitsandfailuresofpitlinings)andtheaccidentalreleaseoffrackingfluidorflowback.29

50. RahmandRiha’s(2014)reviewreportedthatspillsatthesurfacewerethecauseofmost

incidentsofenvironmentalconcernincludingsomeeventswithconfirmedandsignificantimpactsonlocalwaterresources.30Theyalsoconcludedthatwhilegoodpolicyandpracticescanreducesomeriskssubstantially,significantuncertaintyremainsandthatthereisaneedformoreandlongertermwaterqualitymonitoring.

27Vengoshetal,2014.ACriticalReviewoftheRiskstoWaterResourcesfromUnconventionalShaleGasDevelopmentandHydraulicFracturingintheUnitedStates.Environ.Sci.Technol.2014,48,8334−834828AdgateJL,GoldsteinBDandMcKenzieLM,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol48(15),pp8307–8320.29MassachusettsInstituteofTechnology,2011.StudyontheFutureofNaturalGas.MITEnergyInitiative.Availableat:http://mitei.mit.edu/system/files/NaturalGas_Report.pdf30RahmBandRihaS,2014.Evolvingshalegasmanagement:waterresourcerisks,impacts,andlessonslearned.Environ.Sci.:ProcessesImpacts,2014,16,1400

11

51. FollowingconcernsaboutcontaminationofgroundwaterinNEPennsylvania,Reillyetal(2015)analysedsamplesfrom21drinkingwaterwellssuspectedofhavingbeencontaminated.31Samplesweretakenin2012and2013andcomparedagainstdataongroundwaterwellchemistryfromthePennsylvaniaGeologicalSurveyandtheUSGeologicalSurveyreportsfor1979–2006.Theresultsrevealedevidenceofcontaminationbyanimalwaste,septiceffluentorroadsalt,butnoindicationofcontaminationbyMarcellusshaleflowback.

52. Vidicetal(2013)describedthepotentialforleakages,blowoutsandspillstoaffectwaterquality

andreportedonlyasinglecaseoffrackingfluiddirectlycontaminatinggroundwater,butreferredtoproblemswithcommercialconfidentialityandalackofbaselinedataandresearch.32

53. Vengoshetal’sreviewofpublisheddata(throughJanuary2014)foundthatwhiledirect

contaminationofwaterresourcesbyfracturingfluidsorthefracturingprocesswasuncertain,therewassomeevidenceforstraygascontaminationofshallowaquifersandsurfacewatersinareasofintensiveshalegasdevelopment,andtheaccumulationofradiumisotopesinsomedisposalandspillsites.33Thepaperdescribedvariousinterventionsthatcouldmitigatetheserisksincludingenforcingsafezones(1km)betweenshalegassitesanddrinkingwaterwells,mandatorybaselinemonitoring,transparencyanddatasharing,azerodischargepolicyforuntreatedwastewater,establishingeffectiveremediationtechnologiesforadequatetreatmentandsafedisposalofwastewater,andlimitingtheuseoffreshwaterresourcesforshalegasdevelopmentthroughsubstitutionoralternativefluidsforhydraulicfracturing.

54. Grossetal(2013)usedindustry-reporteddatatoassessthepotentialimpactof77reported

surfacespillsongroundwatercontaminationoverayearinWeldCounty,Colorado.34Analysesforbenzene,toluene,ethylbenzeneandxyleneshowedanexceedanceoftheMaximumContaminantLevel(MCL)in90%ofcasesforbenzene,30%fortoluene,12%forethylbenzeneand8%forxylene.Giventhedelaybetweennotificationofthespillandthetakingofsamples,theauthorspostulatethatsomelevelsmayhavebeenhigheratthetimeoftheincident.Theoverallnumberofincidentsissmallincomparisontothe18,000activewells,althoughtheself-reportednatureofthedataindicatesapotentialforunder-reporting.

55. Laueretal’sstudy(2016)ofsurfacewaters(n=29)inareasimpactedbyoilandgaswastewater

spillsintheBakkenregionofNorthDakotaidentifiedelevatedconcentrationsofdissolvedsalts(Na,Cl,Br)andothercontaminants(Se,V,Pb,NH4)relativetobackgroundlevels.35Theyalso

31ReillyD,SingerD,JeffersonA,EcksteinY.2015.IdentificationoflocalgroundwaterpollutioninnortheasternPennsylvania:Marcellusflowbackornot?Environ.EarthSci.73(12):8097–810932VidicRD,BrantleySL,VandenbosscheJM,YoxtheimerD,AbadJD(2013)Impactofshalegasdevelopmentonregionalwaterquality.Science340(6134):1235009.33Vengoshetal,2014.ACriticalReviewoftheRiskstoWaterResourcesfromUnconventionalShaleGasDevelopmentandHydraulicFracturingintheUnitedStates.Environ.Sci.Technol.2014,48,8334−834834GrossSA,AvensHJ,BanducciAM,SahmelJ,PankoJM,TvermoesBE.2013.AnalysisofBTEXgroundwaterconcentrationsfromsurfacespillsassociatedwithhydraulicfracturingoperations.RJAirWasteManageAssoc63(4):424-432,doi:10.1080/10962247.2012.759166.35Laueretal,2016.BrineSpillsAssociatedwithUnconventionalOilDevelopmentinNorthDakota.Environ.Sci.Technol

12

observedthatinorganiccontaminationassociatedwithbrinespillswerepersistent,withelevatedlevelsofcontaminantsobservedinspillssitesupto4yearsfollowingthespillevents.

56. Olmsteadetal(2013)assessedtheimpactofdischargedwastewateronsurfacewaterin

Pennsylvania.36ThisstudydevelopedaGeographicInformationSystems(GIS)databasefromseveralpubliclyavailablesourcesincludingtheresultsofover20,000waterqualitysamples(2000–2011),UNGlocations,consignmentsofwastetotreatmentplants,anddataonthequalityofthereceivingwaterbodies.ThesedatawereusedtomodelaverageimpactofUNGdevelopment,controllingforotherfactors.Relationshipsbetweenincreasingupstreamdensityofwastewatertreatmentplantsreleasingtreatedwastetosurfacewaterandincreaseddownstreamchlorideconcentrationswereidentified.Relationshipsbetweentheupstreamdensityofwellpadsandincreaseddownstreamtotalsuspendedsolidconcentrationswerealsoidentified.However,therewasnosignificantrelationshipbetweenwellsanddownstreamchlorideconcentrationsorbetweenwastetreatmentanddownstreamTSSconcentrations.Theresultssuggestthatupstreamshalegaswellsdonotincreasechlorideconcentrationsbutthetreatmentandreleaseofwastewaterdoes,andthatincreasesinTSSassociatedwithUNGdevelopmentmaybeduetolandclearanceforinfrastructuredevelopment.

57. Warneretal(2013b)examinedtheimpactonsurfacewaterqualityfollowingdischargeoftreatedMarcellusliquidwastes(includingUNG-derived)during2010-2012.37Samplesweretakenfromthetreatmentplanteffluentanddownstreamandupstreamwaterandsediments.Thelatter,togetherwithdatafromotherstreams,wereusedascomparators.SampleswereanalysedforarangeofparametersincludingCl,Br,Ca,Na,Sr,alkalinity,andNORMs.Levelsvariedduringthesamplingperiodwithsomeconcentrationsupto6,700timeshigherthantheconcentrationsmeasuredintheupstreamriversites.Thetotalradium(Ra)activityintheeffluentwaswellbelowtheindustrialdischargelimitalthoughsedimentlevelsadjacenttothetreatmentdischargesitewereover200timesgreaterthanbackgroundsedimentsamples.Chlorideconcentrationsaroundamiledownstreamwere2-10timeshigherthanbackground.Theauthorsconcludedthatwhiletreatmentreducesthelevelsofcontaminants,wastewatereffluentdischargetosurfacewaterhasa‘discernibleimpact’.

58. Nelsonetal’s(2015)smallstudyfoundnoevidenceofelevatedlevelsofnaturaluranium,lead-

210andpolonium-210inprivatedrinkingwellswithin2kmofalargehydraulicfracturingoperationinColoradobeforeandapproximatelyoneyearafterthestartofdrilling.38Groundwatersamplesfromthreeresidencesandsinglesamplesfromsurfacewaterandamunicipalwatersupplywereanalysed.

36OlmsteadSM,MuehlenbachsLA,ShihJ-S,ChuZ,KrupnickAJ.2013.ShalegasdevelopmentimpactsonsurfacewaterqualityinPennsylvania.PNAS110(13):4962-4967,doi:10.1073/pnas.1213871110.37WarnerNR,ChristieCA,JacksonRB,VengoshA.2013.ImpactsofshalegaswastewaterdisposalonwaterqualityinwesternPennsylvania.EnvironSciTechnol47(20):11849-11857,doi:10.1021/es402165b.38Nelsonetal,2015.Monitoringradionuclidesinsubsurfacedrinkingwatersourcesnearunconventionaldrillingoperations:ApilotstudyJournalofEnvironmentalRadioactivityDOI:10.1016/j.jenvrad.2015.01.004

13

59. Drolletteetal(2015)examinedhealthandsafetycontraventionreportsandsampledprivateresidentialgroundwaterwellsinNEPennsylvania(n=62)andsouthernNewYork(n=2)between2012and2014.39Fifty-ninesampleswereanalysedforVOCsandgasolinerangehydrocarbons,and41sampleswereanalysedfordieselrangehydrocarbons.Organicandinorganicgeochemicalfingerprinting,groundwaterresidencetimesanddissolvedmethaneconcentrationswereusedtoidentifypotentialsourcesofanycontamination.Theyfoundtracelevelsofhydrocarboncontaminationinuptoaquarterofgroundwatersampleswithsignificantlyhigherlevelsinvariablyinsamplesfromwithin1kmofactiveUNGoperations.TracelevelsofVOCsincludingBTEXcompounds,wellbelowMCLs,werealsodetectedin10%ofsamples.Analysisofregulatorydatarevealedthatalmost5,800contraventionshadbeenreportedat1,729sitesinPennsylvaniabetween2007andJune2014.However,geochemicalfingerprintingdatafoundnoevidenceofupwardmigrationandwereconsistentwithcontaminationfromasurfacesource.

60. Alawattegamaetal(2015)assessedtheimpactofUNGactivityonwellwaterservingasmallPennsylvaniacommunityof190householdsbyanalysingthechemicalandmicrobiologicalqualityofwaterandcommunityperceptions.40Thestudywasconductedfollowingamajorincreaseinshalegasactivityin2011.143householdswerequestionedand57samplesfrom33wellswereanalysedforarangeofinorganicchemicals,18wellsweretestedforsixlighthydrocarbons,andbacteriatestedforin26wells.35%ofthesurveyedhouseholdsreportedperceivedchangesinthequality,tasteand/orsmellofwater.Elevatedlevelsofchloride,ironandmanganese(withthelatterexceedingtheMCLin25households)werefound.Additionally.methane(oflikelythermogenicorigin)wasidentifiedin78%ofsamplesalthoughthelevelswerelowinthemajorityofanalyses.Thefindingsarehighlysuggestiveofcontaminationfromshalegasactivity,andthestudyalsoidentifiedseveralcontraventionsincludingcompromisedwellcasingsandinadequateplugging.However,thelackofpre-drillingbaselinedatapreventsadefinitiveconclusion.

61. Heilweiletal(2015)sampledandanalysed15streamsintheMarcellusshaleplayforthepresenceofhydrocarbonsandnoble-gas.Highconcentrationsofmethaneconsistentwithanon-atmosphericsourcewerefoundinfourofthe15streams.Theisotopiccharacteristicsofdissolvedgasinonestreamwerealsosuggestiveofalocalshalesource.Modellingindicatedathermogenicmethanefluxdischargingintothisstreamwhichwasconsistentwithareportedstraygasmigrationfromanearbywell.41

39DrolletteBD,HoelzerK,WarnerNR,DarrahTH,etal.2015.ElevatedlevelsofdieselrangeorganiccompoundsingroundwaternearMarcellusgasoperationsarederivedfromsurfaceactivities.ProcNatlAcadSci,doi:10.1073/pnas.1511474112.40AlawattegamaSK,KondratyukT,KrynockR,BrickerM,RutterJK,BainDJ,StolzJF.2015.WellwatercontaminationinaruralcommunityinsouthwesternPennsylvanianearunconventionalshalegasextraction.JournalofenvironmentalscienceandhealthPartA,Toxic/hazardoussubstances&environmentalengineering50(5):516-528,doi:10.1080/10934529.2015.992684.41VictorM.Heilweil,PaulL.Grieve,ScottA.Hynek,SusanL.Brantley,D.KipSolomon,DennisW.Risser.StreamMeasurementsLocateThermogenicMethaneFluxesinGroundwaterDischargeinanAreaofShale-GasDevelopment.EnvironmentalScience&Technology,2015;150330072215005DOI:10.1021/es503882b

14

62. Sharmaetal(2015)monitoredthegeochemistryofgassamplesfromsevenverticalUpperDevonian/LowerMississippiangaswells,twoverticalMarcellusShalegaswellsandsixhorizontalMarcellusShalewellstwomonthsbefore,duringand14monthsafterthefracturingofthelatter.42Theresultswereusedtoassessgasmigrationpathwaysbetweenthehydraulicallyfracturedformationandprotectedshallowundergroundsourcesofdrinkingwater.Theanalysisindicatedthatnodetectablegasmigrationhadoccurredalthoughtheauthorswerecautious,giventhelimitedsizeofthestudy,aboutgeneralisingthesefindings.

63. PelakandSharma(2014)sampled50streamsinariverbasininWestVirginiawheretherehadbeenpastcoalminingandcurrentUNGdevelopment.43GeochemicalandisotopicparametersandsamplingzonesbasedontheintensityofshaleproductionwereusedtoidentifysourcesofsalinityandtheeffectsoftheminingandUNGdevelopment.Thestudyfoundnoevidenceofsignificantcontaminationfromdeepformationbrinesthroughnaturalfaults/fractures,conventionaloilandgaswells,noranypathwayscreatedbyshalegasdrillingintheregion.Asthestudywasa‘one-timesnapshot’ofwaterquality,theauthorsrecommendedroutinemonitoringtomoreeffectivelyassessanyimpactofshalegasdrillingonwaterquality.

64. Darrahetal(2014)usednoblegasandhydrocarbontracerstodistinguishbetweennaturaland

anthropogenicsourcesofmethaneinananalysisofwatersamplesfrom113wellsintheMarcellusShaleand20wellsintheBarnettShaleduring2012/13.44Eightclustersoffugitivegascontaminationwereidentifiedwithachemicalsignaturethatsuggestedthecausetobefailuresofwellintegrity.

65. Warner(2013a)sampled127drinkingwaterwellsandcomparedthemagainstthecomposition

offlowbacksamplesfromFayettevilleShalegaswellstoassesspotentialcontaminationbystraygasorfluidmigration.45Methanewasdetectedin63%ofthedrinking-waterwellsbutisotopiccharacterisationfoundnospatialrelationshipwithsalinityoccurrencesandproximitytoshale-gasdrillingsites.

66. Fontenotetal(2013)analysedwatersamplesfrom100privatedrinkingwaterwells(95inareas

ofactivegasextractionintheBarnettShaleandfivefromareaswithnowellswithin60km).46Levelsofseveralinorganicsubstanceswerehigherinsamplestakenwithin3kmofactivegaswellscomparedtothosemoredistantfromwellsandthereferencesamples.Anumberofthe

42SharmaSetal,2015.Assessingchangesingasmigrationpathwaysatahydraulicfracturingsite:ExamplefromGreeneCounty,Pennsylvania,USA.AppliedGeochemistryVolume60:51–5843PelakandSharma,2014.SurfacewatergeochemicalandisotopicvariationsinanareaofacceleratingMarcellusShalegasdevelopment.EnvironmentalPollutionVolume195:91–10044DarrahTH,VengoshA,JacksonRB,WarnerNR,PoredaRJ.2014.Noblegasesidentifythemechanismsoffugitivegascontaminationindrinking-waterwellsoverlyingtheMarcellusandBarnettShales.PNAS111(39):14076-14081,doi:10.1073/pnas.1322107111.45WarnerNR,ChristieCA,JacksonRB,VengoshA.2013.ImpactsofshalegaswastewaterdisposalonwaterqualityinwesternPennsylvania.EnvironSciTechnol47(20):11849-11857,doi:10.1021/es402165b.46FontenotBE,HuntLR,HildebrandZL,CarltonDD,OkaH,WaltonJL,HopkinsD,OsorioA,BjorndalB,HuQH,SchugKA.2013.AnevaluationofwaterqualityinprivatedrinkingwaterwellsnearnaturalgasextractionsitesintheBarnettShaleformation.EnvironSciTechnol:doi:10.1021/es4011724.

15

elevatedresultsexceededtheEPADrinkingWaterMCLincludingarsenicin32%ofsamples.TheseMCLbreacheswererandomlydistributedwithintheactivegasextractionzonesuggestingavarietyofcontributoryfactorsincludingchangesinthewatertable,activationofnaturalsources,andindustrialaccidents.Comparingtheresultswithhistoricaldatapriortogasactivitiesshowedsignificantincreasesinthemeanconcentrationandmaximumdetectedconcentrationforarsenic,seleniumandstrontium.

67. Kassotisetal(2013)reportedthatmostwatersamplesfromsiteswithconfirmeddrilling-related

incidentsexhibitedmoreoestrogenic,antioestrogenic,and/orantiandrogenicactivitythanreferencesamples.47Thirty-ninewatersamplesfromfivesiteswithareportedspillorincidentintheprevioussixyearstogetherwithfivesurfacewatersamplesfromtheColoradoRiverweretaken.Groundwaterreferencesampleswerecollectedfromanareawithnodrillingactivityandfromtwozoneswithlowactivity(≤2wellswithin1mile).Surfacewaterreferencesweretakenfromtwolocationswithnoactivity.Theyfoundthatoestrogenorandrogenreceptoractivityincreasedfromverylowindrillingsparsereferencewatersamples,tomoderateinsamplesfromtheColoradoRiver,tomoderatetohighinsamplesfromspillsites.Theauthorsrecognisedthatsucheffectscouldbeduetosourcesotherthandrilling(e.g.agriculture,animalcareandwastewatercontamination)butconsideredthesetobeextremelyunlikely.Theauthorsconcludedthattheresultssupportedanassociationbetweengasdrillingandendocrinedisruptingchemical(EDC)activityinsurfaceandgroundwaters.

68. Anindustry-supportedstudybyMolofskyetal(2013)assessedtheisotopicandmolecularcharacteristicsofhydrocarbonsinwellsinNEPennsylvaniaandconcludedthatthemethaneconcentrationswerenotnecessarilyduetomigrationofMarcellusshalegasthroughfractures.48Siegeletal(2015)alsoshowednoassociationbetweengroundwaterpollutionandshalegasactivitiesafteranalysinggroundwatersamplesfromlocationsneargaswellsandfindingnoevidenceofsystematicincreasedmethaneconcentration.49

69. TheCaliforniaCouncilonScienceandTechnology(CCST)alsofoundnorecordedincidentsofgroundwatercontaminationduetostimulation,norreleasesofhazardoushydraulicfracturingchemicalstosurfacewatersinCalifornia.ButtheCCSTalsonotedthattherehavebeenfewattemptstodetectsuchcontaminationwithtargetedmonitoring,norstudiestodeterminetheextentofcompromisedwellboreintegrity,andthatwellstimulationchemicalsmaypotentiallycontaminategroundwaterthroughavarietyofmechanisms.

70. LiandCarlson(2014)alsousedisotopiccharacterisationofproducedgasanddissolvedmethanetoexaminegroundwaterwellsintheNorthColoradoWattenbergOilandGasfieldandfoundlittlerelationship.95%ofthemethanewasofmicrobialoriginandtherewasnoassociation

47Kassotisetal,2013.EstrogenandAndrogenReceptorActivitiesofHydraulicFracturingChemicalsandSurfaceandGroundWaterinaDrilling-DenseRegion.48Molofskyetal,2013.EvaluationofMethaneSourcesinGroundwaterinNortheasternPennsylvania.GroundWater.2013May;51(3):333–349.49Siegeletal,2015.MethaneConcentrationsinWaterWellsUnrelatedtoProximitytoExistingOilandGasWellsinNortheasternPennsylvania.Environ.Sci.Technol.2015,49,4106−4112.

16

betweenmethaneconcentrationsandtheproximityofoil/gaswells.50Thermogenicmethanewasdetectedintwoaquiferwellsindicatingapotentialcontaminationpathwayfromtheproducingformation,butmicrobial-origingaswasbyfarthepredominantsourceofdissolvedmethane.

71. Jacksonetal(2013)foundthat82%of141drinkingwellwatersamplesfromsitesinNE

Pennsylvaniacontainedmethaneofthermogenicorigin.Levelsofmethanewerestronglycorrelatedwithdistancetogaswells(averagemethaneconcentrationssixtimeshigherforhomes<1kmfromnaturalgaswells).51Theysuggestthatthemethanereachesshallowwellwaterthroughcasingfailuresorimperfectionsincementannulusofthegaswells.

72. Hildebrandetal(2015)assessedwhetherUnconventionalOilandGas(UOG)activityhadan

impactongroundwaterqualitybymeasuringthelevelofnaturalconstituentsandcontaminantsfroma550groundwatersamplesoverlyingtheBarnettshaleandadjacentareasofnorth-centralTexas.52Collectively,thesedataconstituteoneofthelargeststudiesofgroundwaterqualityinashaleformationassociatedwithUOGactivities.Thestudyfoundelevatedlevelsof10differentmetalsandthepresenceof19differentchemicalcompounds,includingbenzene,toluene,ethylbenzene,andxylene(BTEX)inanumberofsamples.AlthoughthefindingsdonotproveunconventionalUOGextractionasthesourceofcontamination,theydemonstratetheneedforfurthermonitoringandanalysisofgroundwaterquality.

73. In2007,awellthathadbeendrilledalmost1200mintoatightsandformationinBainbridge,

Ohiowasnotproperlysealedwithcement,allowinggasfromashalelayerabovethetargettightsandformationtotravelthroughtheannulusintoanundergroundsourceofdrinkingwater.Themethaneeventuallybuiltupuntilanexplosioninaresident‘sbasementalertedstateofficialstotheproblem.53

74. Osbornetal(2011),foundevidenceofmethanecontaminationofdrinkingwaterassociated

withshalegasextractioninnorth-easternPennsylvania.Theaverageandmaximummethaneconcentrationsincreasedwithproximitytothenearestgaswellandwerehighenoughtobeapotentialexplosionhazard.54Chemicalanalysisconfirmedthemethaneasbeingthermogenic

50LiH,CarlsonKH.2014.DistributionandoriginofgroundwatermethaneintheWattenbergoilandgasfieldinnorthernColorado.EnvironSciTechnol48(3):1484-1491,doi:10.1021/es404668b.51JacksonRBetal,2013.IncreasedstraygasabundanceinasubsetofdrinkingwaterwellsnearMarcellusshalegasextraction52HildebrandZL,etal,2015.AComprehensiveAnalysisofGroundwaterQualityinTheBarnettShaleRegion.Environ.Sci.Technol.2015,49,8254−826253OhioDeptofNaturalResources2008.ReportontheinvestigationofthenaturalgasinvasionofaquifersinBainbridgeTownshipofGeaugaCounty,Ohio.54OsbornSG,VengoshA,WarnerNRandJacksonRB,2011.Methanecontaminationofdrinkingwateraccompanyinggas-welldrillingandhydraulicfracturing.PNAS,8172–8176,doi:10.1073/pnas.1100682108

17

andcomingfromtheshaleextractionsites.Thestudyfoundnoevidenceofcontaminationwithdeepsalinebrinesorfracturingfluids.

75. Siegelel(2015)respondedtotheOsbornetal’sresultswithananalysisofadatasetof11,300pre-drillingsamplesofdomesticwellwaterinthevicinityof661oilandgaswells(92%unconventionallydrilled)takenbetween2009and2011.55Theyfoundnostatisticallysignificantassociationbetweenmethanelevelsinwellwaterandproximitytopre-existingoilorgaswells.

76. Kohletal(2014)assessedsamplesofproducedwatersfromsixwellsintheMarcellusShaleplay

andanearbyspringoveraperiodfourmonthspriorto,and14monthsafter,hydraulicfracturingandfoundnoevidenceofmigrationofproducedwatersorcontaminationofgroundwater.56

Groundwatercontamination

77. Thefearofgroundwaterpollutionisaprominentfeatureofpublicconcernsoverfracking.IntheUK,thespatialcorrespondencebetweenpotentialshalereservoirsandproductiveaquifershasheightenedsuchconcern.

78. Theindustry-fundedTaskForceonShaleGasalsorecognisesthatthereisariskofaquifer

contaminationandrecommendsthatriskassessmentsofaquifercontaminationarecarriedoutwheneverappropriate,andthatthedetailofthisassessmentincreasesastheseparationdistancebetweenthefrackzoneandtheaquiferdecreases.Italsorecommendsthatoperatorsbe“requiredtomonitorthesizeoffracturesinUKwellssothatovertimeamorecompletestatisticalpictureisbuiltup,toassisttheongoingassessmentofaquifercontamination”.57

79. Understandingthescientificliteratureontherisksofgroundwatercontaminationishelpedbymakingafewcleardistinctions.First,thepotentialsourcesofcontaminationincludedifferentprocesses:a)hydraulicfracturingwhichtakesplacemorethanathousandmetresbelowtheground;b)drillingandinjectingfluiddownthewell;andc)producinggas(accompaniedbyproductionandformationwaters)upthewell.Second,groundwatermaybepollutedbybothgas(e.g.methane)andliquid(i.e.frackingfluid,andproductionorformationwaters).Finally,thepathwayforthepollutionofshallowgroundwatermayinclude:a)directpathwaysfromthetargetformation(viafracturesorfaults);b)pathwaysfromthewellcausedbyafailureofwellintegrity;andc)spillsandleakagesofwastewateratthesurfacewhichseepintotheground.

55Siegeletal,2015.MethaneConcentrationsinWaterWellsUnrelatedtoProximitytoExistingOilandGasWellsinNortheasternPennsylvania.Environ.Sci.Technol.,2015,49(7),pp4106–411256Kohletal,2014,StrontiumIsotopeTestLongTermZonalIsolationofInjectedandMarcellusFormationWaterafterHydraulicFracturing,EnvironSciTechnol2014,48:9867-987357TaskForceonShaleGas.Secondreport:Assessingtheimpactofshalegasonthelocalenvironmentandhealth.

18

80. AccordingtoAdgateetal(2014),“theevidenceforcontaminationofgroundwaterwellswithmethane,fracturingchemicals,orotherprocesswastesismixed”.58WhereassociationshavebeenfoundbetweenUNGanddrinkingwatercontamination,alackofbaselinedataonwaterqualitypriortoUNGdevelopmenthavepreventedfirmconclusionsfrombeingdrawn.

81. Thereishoweversomeevidencethatshalegasextractionresultingingroundwaterpollution,

includingsourcesusedtosupplydrinkingwater.Inparticular,thereisstrongevidenceofcaseswherebothfluidandgashaveleakedasaresultoffailureofwellintegrityandpermeablepathwaysbetweenthewellandaquifersallowingforthecontaminationofgroundwater.

82. Osbornetal(2011)discussthreepossiblemechanismsforfluidmigrationintotheshallow

drinking-wateraquifers:a)upwardmigrationfromthetargetformation;b)leakygas-wellcasings,withmethanepassinglaterallyandverticallythroughfracturesystems;andc)theprocessofhydraulicfracturingitselfgeneratingnewfracturesorenlargingexistingonesabovethetargetformation,increasingtheconnectivityofthefracturesystemandallowingmethanetopotentiallymigrateupwardthroughthefracturesystem.59Theauthorsthinkthefirstisunlikely,butthattheothertwopathwaysarepossible.Theyalsonotethatseveralmodelshavebeendevelopedtoexplainhowgascanberapidlytransportverticallyfromdepthtothesurface,includingpressure-drivencontinuousgas-phaseflowthroughdryorwater-saturatedfracturesanddensity-drivenbuoyancyofgasmicrobubblesinaquifersandwater-filledfractures,butthatmoreresearchisneededtodeterminethemechanism(s)underlyingthehighermethaneconcentrationsobserved.

83. Ingeneral,theriskofcontaminantsfromthefrackingzonedirectlyreachingaquifersis

consideredbygeoscientiststoberemotebecauseofthedepthatwhichfrackingoccurs,thedistancebetweentheshalegasproductionzoneanddrinkingwatersources,thepresenceofimpermeablelayersofrockbetweentheshalegasproductionzoneanddrinkingwatersourcesandbecausefracturepropagationcausedbyHVHFrarelyextendsbeyond600m(andoftenmuchless60)abovewellperforations.6162636465

58AdgateJL,GoldsteinBDandMcKenzieLM,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol48(15),pp8307–832059Osborn,Vengosh,WarnerandJackson,2011.Methanecontaminationofdrinkingwateraccompanyinggas-welldrillingandhydraulicfracturing.PNAS108(20):8172–817660Verdon(inSolidEarthDiscussionsdebate):hydraulicfracturesrarelyextendmorethanabout50mabovetheinjectionzones,andinthemostextremecaseshaveonlypropagatedafewhundredmetresabovetheinjectionzone,evenwheretheyhaveintersectedpre-existingfaults.61AEATechnology,SupporttotheidentificationofpotentialrisksfortheenvironmentandhumanhealtharisingfromhydrocarbonsoperationsinvolvinghydraulicfracturinginEurope.ReportfortheEuropeanCommissionDGEnvironment2012.62Daviesetal,2014.Oilandgaswellsandtheirintegrity:Implicationsforshaleandunconventionalresourceexploitation.MarineandPetroleumGeology56(2014)239e25463Vengoshetal,2014.ACriticalReviewoftheRiskstoWaterResourcesfromUnconventionalShaleGasDevelopmentandHydraulicFracturingintheUnitedStates.Environ.Sci.Technol.2014,48,8334−834864FlewellingSA;TymchakMP;WarpinskiN.Hydraulicfractureheightlimitsandfaultinteractionsintightoilandgasformations.Geophys.Res.Lett.2013,40(14),3602−3606.

19

84. Evenifapathwayexists,subsurfacedrivingforcesarelikelytobeinsufficienttodirecttheflow

ofgasandfluidsupwardsandcontaminateaquifers.FlewellingandSharma(2014)notethathavingbothstrongupwardgradientsandsignificantlypermeablepathwaystodriveupwardmigrationisunlikely.66Engelderetal(2014)alsodescribethatvariousgeo-physicalforces(e.g.capillaryandosmoticforces)aremorelikelytoresultinfracturingfluidandformationwaterbeingsequesteredintheshaleformationratherthanbeingtransportedupward.67

85. However,somescientistsremainconcernedaboutthepossibilityofcontaminationvia

permeablepathwaysbetweenthefrackingzoneandaquifers.68Suchpathwaysmaybenatural(permeablefracturesorfaults)orartificial(abandoned,degraded,poorlyconstructed,orfailingwells).69

86. Smythe(2016)hasarguedintheonlinejournalSolidEarthDiscussionsthatthepresenceof

naturalfaults(asopposedtotheartificialfracturescausedbyfracking)andthepossibilityofupwardflowfromthetargetzonemakethecontaminationofgroundwateragreaterriskthaniscommonlyaccepted.70

87. AccordingtoSmythe,modellingstudiesconfirmthatfluidfromthefrackedshalemayusefaults

asanupwardmigrationroutetoaquifers.Theestimatedtransittimesforreachingthenear-surfacevaryconsiderably,rangingfromtentoathousandyearsinthecaseofliquid;butintheorderofhourstohundredsofdaysinthecaseofgas.Smythequotesliteraturethatheclaimshelpstosubstantiatehisargument.7172737475

65WarnerNR,JacksonRB,DarrahTH,OsbornSG,etal.GeochemicalevidenceforpossiblenaturalmigrationofMarcellusFormationbrinetoshallowaquifersinPennsylvania.Proc.Natl.Acad.Sci.U.S.A.2012,109(30),11961−11966.66FlewellingSAandSharmaM.Constraintsonupwardmigrationofhydraulicfracturingfluidandbrine.GroundWater2013,52(1),9-19.67Engelderetal,2014.Thefateofresidualtreatmentwateringasshale.JournalofUnconventionalOilandGasResources7(2014)33–4868SeeRozellandReavenquotingreferences44,45,46,47,48,49and50.69Reagan,Moridis,KeenandJohnson(2015),Numericalsimulationoftheenvironmentalimpactofhydraulicfracturingoftight/shalegasreservoirsonnear-surfacegroundwater:Background,basecases,shallowreservoirs,short-termgas,andwatertransport,WaterResour.Res.,51,doi:10.1002/2014WR016086.70SmytheD,2016.Hydraulicfracturinginthickshalebasins:problemsinidentifyingfaultsintheBowlandandWealdBasins,UK.SolidEarthDiscuss.,doi:10.5194/se-2015-134,ManuscriptunderreviewforjournalSolidEarth71MyersT.Potentialcontaminantpathwaysfromhydraulicallyfracturedshalestoaquifers.GroundWater50,no.6:872–882.DOI:10.1111/j.1745-6584.2012.00933.x,2012.72NorthrupJL.Potentialleaksfromhighpressurehydrofrackingofshale,September8,201073BicalhoCC,Batiot-GuilheC,SeidelJL,VanExterS,andJourdeH.Geochemicalevidenceofwatersourcecharacterizationandhydrodynamicresponsesinakarstaquifer,http://www.sciencedirect.com/science/article/pii/S0022169412003733,201274Gassiat,C.,Gleeson,T.,Lefebvre,R.,andMcKenzie,J.:Hydraulicfracturinginfaultedsedimentarybasins:Numericalsimulationofpotentiallongtermcontaminationofshallowaquifers,WaterResour.Res.,49(12),8310-8327,doi:10.1002/2013WR014287,2013.

20

88. Inhispaper,SmythearguesthatacaseofgroundwatercontaminationinBradfordCounty,

Pennsylvaniasupportshisconcernthatfaultsareanimportantriskfactor.Hearguesthatthecontaminationofdrinkingwaterwascausedbypassageoffrackfluidand/orproducedwaterinpartthroughthegeology.

89. ThecaseconcernsthedrillingoffivewellsinBradfordCountyin2009and2010byChesapeakeEnergy.Contaminationofprivatewaterwellswithstraygasinthevicinity(1200maway)startedalmostimmediately,andwasfollowedbythePennsylvaniaDepartmentofEnvironmentalProtectionfiningthecompany$900,000.Thecompanydrilledthreenewwaterwellstoreplacethreeexistingwells,butthecontaminationcontinued,whichincludedwhitefoaminthewaterwells,vapourintrusioninthebasementofahouse,andbubblingofgasintheSusquehannaRiver.InJune2012thehomeownerswonacivilcaseagainstthecompany,whichhadtobuythepropertiesandcompensatetheowners.

90. SmythealsoarguesthatEnglishshalebasinsareconsiderablythickerthantheirUScounterparts,

andcharacterisedbypervasiveandcomplexfaults,someofwhichextendupwardsfromtheshaletooutcrop.AccordingtoSmythe,UKshalebasinsarecharacterisedbyhavingmajor‘through-penetratingfaults’andthatthepresenceofpermeablecoverrocksinsomeareasmeanthatthereisaninadequatesealforpreventionofupwardmigrationofwastewatersandgasfromanyfutureunconventionalshalegassite.76Incontrast,hearguesthatitisextremelyrareforfaultstoextenduptooutcropinUSshalebasins.HealsocriticisesthejointreviewoffrackingforshalegasbytheRoyalSocietyandRoyalAcademyofEngineering(2012)fornotaddressingthepotentialproblemofthrough-penetratingfaultsinUKshalebasins.

91. TheviewsofSmythehavebeenchallengedbymanyexpertsincludingauthorsofpapersthathe

hasusedtosupporthiscase,leadingtoalivelyandheatedonlinedebateinSolidEarthDiscussions.

92. AccordingtoYounger,faultsare‘hydro-geologicallyambiguous’andwhilesomemaypresent

permeablezones(mostnotablywheretheycutrelativelyhardrockssuchassandstone,limestoneorigneous/metamorphiclithologies);manyserveasbarrierstoflow.Furthermore,evenwhereoptimumconditionsexistforfaultstodisplaypermeability,itisrareforthistobecontinuousoverlargeverticalintervals.

93. Youngerarguesthatevenifoneweretobelievethatfaultscuttingthickshalesequences(contrarytocommonexperience)arepermeablethroughouttheverticalextent,theriskofactualgroundwatercontaminationislowbecauseahydraulicgradientthatfavourstheupflow

75Lefebvre,R.,Gleeson,T.,McKenzie,,J.M.,andGassiat,C.:ReplytocommentbyFlewellingandSharmaon‘‘Hydraulicfracturinginfaultedsedimentarybasins:Numericalsimulationofpotentialcontaminationofshallowaquifersoverlongtimescales,’’WaterResour.Res.51,1877–1882,doi:10.1002/2014WR016698.76VerdonandananonymousreviewerinSolidEarthDiscussionsarguethatSmythe’sclaimsaboutcomplexandpervasivefaultingintheUKrelativetotheUSisnotsubstantiated.

21

ofwater(andanypollutants)toshallowaquifersinthecontextoffrackingisunlikely.Ifanything,thedepressurisationofwellstoallowgastoenterthemduringtheproductionphaseresultsindownwardgradientsoverperiodsofyearstodecades.Evenafterthecessationofproduction(whenactivedepressurisationhasbeensuspended),there-establishmentofanupwardgradientisunlikelytoresultinsignificantupflowoveranythinglessthangeologicaltime.Andeveniffaultsarepermeablethroughouttheirverticalextentandsubjectedtosustainedupwardhydraulicgradients,Youngerarguesthattheloadingofpollutantswouldbeinsufficienttomakeadetectabledifferencetotheoverlyingaquifergroundwater.

94. Llewellynetal’sstudyoftheBradfordCountrycaseconcludedthatthemostlikelycausesourceofthecontaminationofdrinkingwellswasstraynaturalgasanddrillingorHVHFcompoundsbeingdriven1–3kmalongshallowtointermediatedepthfracturestotheaquifer.77Theynotedthatcontaminationduetofluidsreturningupwardfromdeepstratawouldbesurprisinggiventhatthetimerequiredtotravel2kmupfromtheshalewouldlikelybethousandstomillionsofyears,andbecausethechemicalcompositionofthedrinkingwatersshowedanabsenceofsaltsthatwouldbediagnosticoffluidscomingfromtheshale.Thedataimplicatefluidsflowingverticallyalonggaswellboreholesandthenthroughintersectingshallowtointermediateflowpathsviabedrockfractures.SuchflowislikelywhenfluidsaredrivenbyhighannulargaspressureorpossiblybyhighpressuresduringHVHFinjection.

95. Verdonalsoarguesthatiffluidshavepropagatedupwardsfromdepth,themigrationpathway

wouldbethepoorly-cementedwellbore,andthatfaultsand/orfracturesonlyprovideapathwayforfluidmigrationintheupper300morsoofthesubsurfacewherecompressivestressesarelow.Verdonalsostateswhileitispossible(evencommon)thatahydraulicfracturewillintersectafault,ifandwhenitdoesso,theeasiestflowpathwayintermsofpermeabilitywillbealongtheproppedfracturesandintotheproductionwell.

96. AnotherstudywhichconsistedofanexperimentwhereafaultedsectionofMarcellusShalewasfrackedusingfluidscontainingchemicaltracers(whichallowedthetrackingofsubsurfacefluidmovement),foundnoevidenceofupwardfluidmigrationorhydraulicconnectionfromtheshaletooverlyinglayers,despitetheinteractionbetweenhydraulicfracturesandfaults.78However,Smythearguesthatthestudydidnotexamineageologicalsituationwith‘through-penetratingfaults’andthereforehasnodirectrelevancetohisargument.

97. AfurtherpointofdebateraisedbySmytheconcernstheimportanceofidentifyingfaultsbefore

andduringdrilling.Hearguesthatbeforeanyfrackingtakesplace,faultsshouldbethoroughlymappedanda'setback'distancebeestablishedbetweenthefrackzoneandthenearestfaults.

77LlewellynGTetal,2015.EvaluatingagroundwatersupplycontaminationincidentattributedtoMarcellusShalegasdevelopmentPNAS|May19,2015|vol.112|no.20|6325–633078HammackR,HarbertW,SharmaSetal,2014.AnEvaluationofFractureGrowthandGas/FluidMigrationasHorizontalMarcellusShaleGasWellsareHydraulicallyFracturedinGreeneCounty,Pennsylvania;NETL-TRS-3-2014;EPActTechnicalReportSeries;U.S.DepartmentofEnergy,NationalEnergyTechnologyLaboratory.

22

However,accordingtohim,identificationoffaultswithinathickshalesequencesuchastheBowland-HodderUnitisdifficult,andcannotalwaysbeguaranteed.

98. TheissueoffaultsintheUKisunderlinedbytheexperienceoftheonlyshalewelltohavebeen

frackedintheUK:PreeseHallinLancashirewhichwasfrackedin2011byCuadrillatotesttheshaleandwhichtriggeredearthquakes.AccordingtoSmythe,analysesoftwoindependentdatasets–a3Dseismicsurveyandwellboredeformation–demonstratethatthefaultonwhichtheearthquakesweretriggered,wastransectedbythewellbore.Furthermore,hepointsoutthatthesedatacontradicttheinitialconclusionoftheoperatorwhichclaimedthatthetriggeredfaultlayhundredsofmetresawayfromthewellbore.

99. Smythealsodescribeshowin2014intheWealdBasininSussex(Balcombe-2),Cuadrilladrilleda

horizontalwellalonga40mthicklimestonesandwichedbetweentwooil-proneshalelayersandintersectedtwonormalfaultswhichhadnotbeenforeseenbytheoperator.

100. SmythearguesthatitisunacceptablethatcurrentUKregulationspermitthedrillingoffaults

(iftheyareidentified)eitherverticallyorhorizontallybecausecementbondingofthecasing,eitherinthedeviationzoneorinthehorizontalsectionofthewell,wouldbedifficulttoachieve.79AsshownatPreeseHall,awellthatpenetratesafaultcanbedeformedbyseismicactivitytriggeredbyHVHFandincreasethechanceoftheintegrityofthewellborebeingdegraded.

101. Haszeldineconcludesthatfaults(andfractures)mayactasaconduitforbothfluidsandgas

toaquifersathighersubsurfacelevelsfromthewellboreinthecaseofconcurrentwellintegrityfailureandagreesthatthepotentialforfaultstoactasleakageconduitsismorelikelyinintenselyfaultedbasins.Healsostatesthatgeoscientificinvestigationsmayhavefailedtorecognisethesepotentialhazardsaheadofdrillingandafterfrackingandthattherearelegitimatequestionstobeaskedaboutsubsurfaceevaluationcompetenceandtheabilitytorecognisefaultsbeforeorafterdrilling;theadequacyofcurrentlegacyinformationtopositionfrackingboreholes;andthestateofknowledgeoffluidandgasflowalongfaultspenetratingtowardsthelandsurface.

102. HeagreesthatregulatoryoversightofdrillingapplicationsandindustrialactivityappearstobeinadequateandthatsomeofinformationandinsightscontainedinSmythe’scasestudiesare“remarkableandevenshockingasexamplesofhowcurrentpracticehasnotproducedanythingliketechnicallyadequateassuranceofhighqualityforUKcitizens”.Inhisview,“theobservationsmade,ofpressureleakageatPreeseHall,andofbasicsubsurfaceignoranceandtechnicallybadseismicprocessingatFernhurstandWisboroughGreenareshocking,andcouldbeinvestigatedformandatorycleanup”.

79Theeccentricityofthedrillcasingwithrespecttotheboreholemeansthatitishardtoflushoutdrillingmud,andasubsequentcementjobmaythenfailbecausetheresultingcement-mudslurrydoesnotmakenotasoundbond.

23

103. Westaway,oneofSmythe’sstrongestcritics,arguesthatwhathappenedatPreeseHallwouldnotbepermittedintheUKinthefutureasall‘stakeholders’accepttheneedtodothingsdifferently.80However,heagreesthattheactionsofCuadrillaatPreeseHallwerefarfromideal,81andthattherewerealsoproblemsaboutthereleaseofdataabouttheincident.Accordingtohim,‘somethingisclearlyfundamentallywrongwiththepresentarrangementsforimplementingtheUKgovernment’spublicallystatedcommitmenttoopendisclosureanddiscussionofdatapertainingtoshalegasdevelopment’.

104. AlthoughHaszeldinedoesnotthinkthatthereisacompellingcasefordeepwatersbeing

broughtuptothesurfacealongsteeplydippingfaults,heagreesthatthisisworthyofgreaterinvestigation,especiallyastheconsequencesmaybeseriousfordrinkingwatersupplies.Healsostatesthatwhiletheupwardmigrationoffluidsfromthefrackingzonetoaquifersisunlikely,gasascentthroughpathwaysalongorparalleltofaultplanesispossible.Inshort,faultscouldactasconduitsforfugitivegasemissionsfromfrackedbasins.

I.Wellintegrity

105. Asnotedabove,pollutioncanoccurthroughleakywells,duringdrillingandcasing,andevenafterwellshavebeensealedandabandoned.8283Thelossofwellintegritycanpotentiallyleadtodirectemissionsofgastotheatmosphereand/orsubsurfacemigrationofgasand/orliquidtogroundwater,surfacewatersortheatmosphere.8485Undercertainconditions,leaksthatcontinueundetectedorareinadequatelyremediedmayalsoleadtotheaccumulationofexplosivegases.

106. Drillersusesteelcasing(pipes),cementbetweennestedcasingsandbetweentheoutside

casingandrockwall,aswellasmechanicaldevicestokeepfluidsandgasinsidethewell.

107. Thecausesoflossofwellintegrityincludefailureofthecementorcasingsurroundingthewellboreandanimproperlysealedannulus.Cementbarriersmayfailatanytimeoverthelifeof

80Westaway2016a.Interactivecommenton:Hydraulicfracturinginthickshalebasins:problemsinidentifyingfaultsintheBowlandandWealdBasins,UK"bySmytheDK.SolidEarthDiscussions,se-2015-134,SC281Forexample,Westawaystatesthattheinducedseismicityshouldhavebeendetectedearlier(byapplyingaseriesofstandardtests)sothatfrackingcouldhavebeenstoppedratherthancontinuingforalmosttwomonthsuntilbeing‘voluntarily’terminatedjustbeforetheUKgovernmentimposedamoratorium.Inaddition,thein-situstressdatasetcollectedduringdrillingshouldhavebeenanalysedbeforethefrackingbegan,ratherthanafterwards,asthiswouldhaveshownthatfaultsinthevicinitywerealreadystressedandthatfrackingmightinduceseismicity.82KissingerA,HelmigR,EbigboA,ClassH,etal.Hydraulicfracturinginunconventionalgasreservoirs:risksinthegeologicalsystem,part2.Environ.EarthSci.2013,70,3855−387383Vengoshetal,2014.AcriticalreviewoftheriskstowaterresourcesfromunconventionalshalegasdevelopmentandhydraulicfracturingintheUnitedStates.Environmentalscience&technology48.15:8334-48.84Ingraffeaetal2014.AssessmentandriskanalysisofcasingandcementimpairmentinoilandgaswellsinPennsylvania,2000–2012.PNAS111(30):10955–1096085StuartME,2011.PotentialgroundwaterimpactfromexploitationofshalegasintheUK.BritishGeologicalSurveyOpenReport,OR/12/001.

24

awellforvariousreasonsincludinginappropriatecementdensity,inadequatelycleanedboreholes,prematuregelationofthecement,excessivefluidlossinthecement,highpermeabilityinthecementslurry,cementshrinkage,radialcrackingduetopressurefluctuationsinthecasings,poorinterfacialbonding,andnormaldeteriorationwithage.86Casingmayfailduetofailedcasingjoints,casingcollapseandcorrosion.87

108. Theriskoflossofwellintegrityincreaseswithageassteelcorrodes,andascementshrinks,

cracksordisbondsfromthecasingandrock.Factorsthatincreasetheriskoflossofwellintegrityinclude:unconventionalandhorizontalwells;wellsbeinglongerandcurvinglaterally;wellsbeingexposedtomoreintensehydraulicpressuresandlargerwatervolumes;theadoptionofpoorpracticesbycompanies(wellsbeingdrilledduringboomperiodsintheUShaveledtooperatorscuttingcornersinanattempttomaximisethenumberofwellsdrilled).8889Drillingthroughstratawithpervasiveandcomplexfaultsalsoincreasestheriskofwelldamageandintegrityfailure.

109. Thestructuralintegrityfailurerateofoilandgaswellbarriersisasubjectofdebate.

110. AccordingtoDaviesetal,datafromaroundtheworldindicatethatmorethanfourmillion

onshorehydrocarbonwellshavebeendrilledglobally.Intheirassessmentofallreliabledatasetsonwellbarrierandintegrityfailure(includingproduction,injection,idleandabandonedwells,aswellasbothonshoreandoffshorewells,exploitingbothconventionalandunconventionalreservoirs),theyfounddatasetsthatvariedconsiderablyintermsofthenumberofwellsexamined,theirageandtheirdesigns.Theyfoundthatthepercentageofwellswithsomeformofwellbarrierorintegrityfailurewashighlyvariable,rangingfrom1.9%to75%.90

111. IntheUS,becauseofthelackofpubliclyavailablestructuralintegritymonitoringrecordsfor

onshorewellsfromindustry,studieshavereliedondatafromstatewellinspectionrecordstoestimatetheproportionofunconventionalwellsthatdevelopcementand/orcasingstructuralintegrityissues.

112. Davies’ownassessmentofunconventionalwellsinPennsylvaniaindicatedthat6.26%had

wellbarrierorintegrityfailure,and1.27%leakedtothesurface.

113. Ingraffeaetal’sanalysisof75,505compliancereportsfor41,381conventionalandunconventionaloilandgas(O&G)wellsinPennsylvaniadrilledfromJanuary2000andDecember2012foundasixfoldhigherincidenceofcementand/orcasingissuesforshalegaswellsrelative

86BonnettA,PafitisD(1996)Gettingtotherootofgasmigration.OilfieldReview8(1):36–49.87Ingraffeaetal2014.AssessmentandriskanalysisofcasingandcementimpairmentinoilandgaswellsinPennsylvania,2000–2012.PNAS111(30):10955–1096088Daviesetal,2014.Oilandgaswellsandtheirintegrity:Implicationsforshaleandunconventionalresourceexploitation.MarineandPetroleumGeology56(2014)239e25489Jackson2014.Theintegrityofoilandgaswells.PNAS111(30):10902–1090390DaviesRJ,AlmondS,WardRS,JacksonRBetal,2014.Oilandgaswellsandtheirintegrity:Implicationsforshaleandunconventionalresourceexploitation.MarineandPetroleumGeology56(2014)239e254

25

toconventionalwells.91Overall,between0.7%and9.1%oftheO&Gwellsdevelopedsince2000showedalossofwellintegrity.Thewell-barrierorintegrityfailurerateforunconventionalwellswas6.2%.Themostcommoncauseswere“defective,insufficientorimproperlyinstalled”cementorcasing.

114. Thesamestudyalsoidentifiedtemporalandgeographicdifferencesinrisk.Temporal

differencesmayreflectmorethoroughinspectionsandgreateremphasisonfindingwellleaks,moredetailednotetakingintheavailableinspectionreports,orrealchangesinratesofstructuralintegritylossduetorusheddevelopmentorotherunknownfactors.ThepredictedcumulativeriskforallwellsintheNEregionofPennsylvaniawas8.5-foldgreaterthanwellsdrilledintherestofthestate.

115. InConsidineetal’sanalysisofrecordsfromthePennsylvaniaDepartmentofEnvironmental

Protectionfrom2008to2011,between1%and2%ofwellshadoneormorepotentialstructuralintegrityissuesreportedduringthattimeperiod.92Anotherstudyusingdatafrom2008to2013foundthat3.4%ofallmonitoredunconventionalwellsdrilledinPennsylvaniamighthavestructuralintegrityfailuresrelatedtocement/casingintegrity.93However,boththesestudiesarelimitedbytheinadequacyofthefrequencyandcompletenessofstateinspectionsasabasisforaccountingforallincidencesofcement/casingfailure.

116. FewdataexistinthepublicdomainforthefailureratesofonshorewellsinEurope.ItisalsounclearwhichoftheavailabledatasetswouldprovidethemostappropriateanaloguesforwellbarrierandintegrityfailureratesatshalegasproductionsitesintheUKandEurope.94

117. IntheUK,theintegrityfailureratesofonshore(conventional)oilandgaswellsarelargely

unknown.Daviesetal(2011)noteasmallnumberofreportedpollutionincidentsassociatedwiththefewexistingactiveonshore(conventional)wellsandnonewithinactiveabandonedwells.Theystatethatthiscouldindicatethatpollutionisnotacommonevent,butwarnthatmonitoringofabandonedwellsdoesnottakeplaceintheUKandthatlessvisiblepollutantssuchasmethaneareunlikelytobereported.Thus“wellintegrityfailuremaybemorewidespreadthanthepresentlylimiteddatashow”.

118. Theycallformoreresearch(e.g.asurveyofthesoilsaboveabandonedwellsitestoestablishingwhetherthereisalossofintegrityandfluid/gasmigrationfollowingwell

91IngraffeaAR,WellsMT,SantoroRL,ShonkoffSBC,2014.AssessmentandriskanalysisofcasingandcementimpairmentinoilandgaswellsinPennsylvania,2000–2012.ProcNatlAcadSciUSA111:10955–10960.92ConsidineT,WatsonR,ConsidineN,MartinJ(2012)EnvironmentalImpactsDuringMarcellusShaleGasDrilling:Causes,Impacts,andRemedies.Report2012-1ShaleResourcesandSocietyInstitute(StateUniversityofNewYork,Buffalo,NY)93VidicRD,BrantleySL,VandenbosscheJM,YoxtheimerD,AbadJD(2013)Impactofshalegasdevelopmentonregionalwaterquality.Science340(6134):1235009.94Daviesetal,2014.Oilandgaswellsandtheirintegrity:Implicationsforshaleandunconventionalresourceexploitation

26

abandonment),amechanismforfundingrepairsonorphanedwells,andanownershiporliabilitysurveyofexistingwells.

F. Wastewatermanagement

119. Asnotedearlier,oneofthehazardsassociatedwithSGPisthevolumeandleveloftoxicityoffluidthatisbroughttothesurface.

120. Optionsformanaginglargevolumes95ofhazardousflowbackfluidandwastewateronthesurfaceincludethereuseofflowbackfluidforfurtherhydraulicfracturing;on-siteoroff-sitewastewatertreatmentfollowedbydischarge;anddeepwellinjection.

121. Initiallyflowbackfluidreturnstothesurfaceinlargevolumesandcloselyreflectsthecompositionoffrackingfluid.Later,whenthewellisproducinggas,formationandproducedwatersarereturnedinlowervolumes,butwithhigherconcentrationsofheavymetals,NORMandothercontaminantsfromtheshale.ThismaycontinueformonthsafterHVHF.Inthisreport,boththeinitialflowbackfluidandthesubsequentproducedorformationwaterareconsideredtogetheraswastewater.

122. Highlevelsofcontaminationandpollutantsinwastewater,andparticularlyradioactive

NORM,requirespecialisedtreatmentfacilitiesbeforetheycanbesafelydisposed.Theactualcompositionofwastewaterfluidisanimportantfactor.Forexample,highlevelsofdissolvedsaltsrequiredistillation(whichisgenerallyexpensivebecauseofthehighenergyinputs)orreverseosmosisbeforethewastewatercanbesafelydisposedof.

123. IntheUS,themanagementofwastewaterincludesstorageinopenpits;deepwellinjection

(reinjectingwastewaterintotheground);transportationtotreatmentfacilitiesfollowedbydisposal;andon-sitetreatmentwithsomere-useofwateranddisposalofremainingliquidsandsolids.Althoughsomewelloperatorsrecycleandreuseflowbackfluidforhydraulicfracturing,manyoperatorsdonotduetothecostofseparationandfiltration.96DeepwellinjectionandstorageinopenpitsispresentlynotanoptionintheUK.Neitheris.

124. DifficultieswithwastewatertreatmentthathavebeenreportedintheUSincludethelackof

treatmentplantcapacityortechnology97andthedifficultyinpredictingthecontentand

95TheInstitutionofCivilEngineersestimatethatasinglewellcouldproducebetween7,500to18,750m3offlowbackannually.SeewrittensubmissiontoEnvironmentalAuditCommittee:EnvironmentalRisksofFrackingEnquiry(FRA070),para2.1.96RozellDJandReavenSJ(2012).WaterpollutionriskassociatedwithnaturalgasextractionfromtheMarcellusShale.RiskAnal32(8):1382–93.97J.M.Wilson,J.M.VanBriesen,2012.OilandgasproducedwatermanagementandsurfacedrinkingwatersourcesinPennsylvaniaEnviron.Pract.,14(2012),pp.288–300

27

compositionoffluidbroughtuptothesurface.98SomeUSmunicipalwastewatertreatmentfacilitieshavestruggledtohandlewastewatercontaininghighconcentrationsofsaltsorradioactivity.99Thepollutionofsomerivershasalsobeenassociatedwithmunicipalwastewatertreatmentfacilitiesnotbeingabletohandlewastewaterwithhighconcentrationsofsaltsorradioactivity.100

125. IntheUK,issuesaboutwastewatermanagementbecameapparentduringthePublicInquiry

intoCuadrilla’sappealagainstLancashire’sdecisiontorejectplanningapplicationsfortwoexploratoryshalegaswells(inRoseacreWoodandPrestonNewRoad).101

126. OneoftheissueswasthelimitedcapacityandavailabilityoftreatmentfacilitiesintheUK.

Constraintsontreatmentcapacitybecamegreaterwhenachangeinlawdesignatedwastewaterasalowlevelradioactivesubstancewhichexcludesordinarysewagetreatmentworksasaviableoption.

127. InWatson’sevidencetotheLancashirePublicInquiry,henotesthattheGovernmenthas

beenunabletoconfirmtheexistenceofadequatetreatmentcapacityintheeventofshaleproductionatscaleandthatalikelyincreaseinNORMgenerationfromiron,steelandtitaniumdioxideproduction,aswellasthedecommissioningofoffshoreoilandgasinfrastructurefromtheNorthSeaandtheanticipatedgrowthinprovisionofO&Gdecommissioningservicestoothercountries,arelikelytoplaceevenmorepressureonlimitedcapacity.

128. Theproblemoflimitedtreatmentcapacityisillustratedbytheconsiderablevolumeof

wastewaterexpectedfromthetwoexploratoryfrackingsitesthatCuadrillasoughttodevelopinLancashire:aDECCStrategicEnvironmentalAssessmentreportedthata‘highactivityscenario’wouldresultinanannualproductionof108millionm3ofwastewaterfromthetwositeswhichontheirownwouldrepresentasmuchas3%ofUKtotalannualwastewater.102

129. Anotherissueisthetransportationofwastewatertotreatmentfacilities.Accordingto

Watson,Cuadrilla’stwoexploratorysitesinLancashirewouldinvolvetransportingatleast50millionlitres,anamountthatequatesto1,440tankerswithacapacityof35,000litres(360tankerloadsperwell).Inordertotransportthisvolumeoffluidtoatreatmentfacility,a

98E.Barbot,N.S.Vidic,K.B.Gregory,R.D.Vidic,2013.SpatialandtemporalcorrelationofwaterqualityparametersofproducedwatersfromDevonian-ageshalefollowinghydraulicfracturing.Environ.Sci.Technol.,47(2013),pp.2562–256999SeeRozellandReavenrefs42and56100PennsylvaniaDEPinvestigateselevatedTDSinMonongahelaRiver.WaterandWastesDigest.October27,2008.Availableat:http://www.wwdmag.com/Pennsylvania-DEP-Investigates-Elevated-TDS-in-Monongahela-RivernewsPiece16950,101Cuadrilla’sapplicationsincludeprovisionsforanextendedflowtestingperiodof18-24monthsafteraninitial90dayflowtesting.Itwasanticipatedthatproducedfluidswouldbegeneratedthroughoutthatextendedperiod.102AccordingtoWatson,theimpactofsuchasuddenandsignificantsurgeindemand,evenifonlyforarelativelyshort-term,intermsoftheopportunitycoststoothermajorusersandtheconsequencesofanyaccidentsordisruptionatthetreatmentsiteswasnotconsideredinCuadrilla’splanningapplications.

28

potentialtotaltankermileageof470,000miles(approximately19timesaroundtheearth)wouldberequired,andresultinemissionsofaround2,000tonnesofcarbondioxide.103

130. Althoughon-sitetreatmentandre-useofflowbackcouldreducethevolumesofwastewater

generatedandlessenanyeffectsonoffsitetreatmentinfrastructurecapacity,thiswouldrequiremoresophisticatedequipment.Thereisalsosignificantuncertaintyastothequantityofflowbackfluidwhichmaybesuitableforre-use.

G. Airpollution

131. Airpollutantsinclude:(1)unintendedorirregular(fugitive)emissionsofgasfromtheground,wellandassociatedinfrastructure(e.g.pumps,flanges,valves,pipeconnectors,andcollectionandprocessingfacilities);(2)dieselfumesfromenginesusedtopowerequipment,trucksandgenerators;(3)emissionsfromdrillingmuds104,fracturingfluids105andflowbackwater;(4)silicadust(silicaisusedtopropopentheshalefractures);(5)ventingorthedeliberatereleaseofgasintotheatmosphere(whenthereisasafetyrisk);and(6)theflaringofgas(limitedintheUKtoexploratoryfrackingduetotheexpectedrequirementforgreenorreducedemissions‘completions’duringtheproductionphase).

132. Mooreetal(2014)conductedacriticalreviewoftheairimpactsofallfivestagesofthenaturalgaslifecycle(pre-production;production;transmission,storage,anddistribution;enduse;andwellproductionend-of-life).106Eachstagehasapotentialtoproducehazardousairpollutantswhichmayincludeparticulatematterfromdieselpoweredequipmentandtrucktraffic,VOCs,respirablesilica,H2S,NOxandSO2.Photochemicalreactionsinvolvingnitrogenoxides(NOxandVOCscanalsoproduceground-levelozone,sometimemanymilesawayfromtheactualsitesoffracking.

133. Airpollutionmayalsoarisefromthesub-surface.AccordingtoMaceyetal,“wedonot

understandtheextentofdrilling-relatedairemissionsaspocketsofmethane,propane,andotherconstituentsinthesubsurfacearedisturbedandreleasedtotheatmosphere”.107Thepotentialforgastobereleasedfromthesub-surfacedirectlyintotheatmospherehasbeen

103Thesefiguresareconservative,andbasedontheassumptionthattheflowbackratewouldonlybe19%ofthetotalwaterinjectionduringtheinitialflowtesting/explorationperiod(althoughconfusingly,afigureof40%wasreportedelsewhere).TheflowbackrateoverthethreemonthstestingatPreeseHallwas70%.104Duringthedrillingstageawater-basedfluidknownas“drillingmud”iscirculatedthroughtheboreholetolubricateandcoolthedrillbitandtoloosenandcollectfragmentsofrockcausedbythedrilling(‘cuttings’).105Frackingfluidmayincludebiocidestopreventbacterialgrowth;surfactantstoreducesurfacetensiontoaidfluidrecovery;gelsandpolymerstoincreaseviscosityandreducefriction;acids;andchemicalstoinhibitcorrosionofmetalpipes.Theexactcompositionwillvaryfromoperatortooperator,andfromsitetositedependingonfactorssuchasthedepthoftheoperation,thelengthofthewellandthenatureoftheshale.106MooreCetal,2014.AirImpactsofIncreasedNaturalGasAcquisition,Processing,andUse:ACriticalReviewEnviron.Sci.Technol.2014,48,8349−8359107Maceyetal,2014.Airconcentrationsofvolatilecompoundsnearoilandgasproduction:acommunity-basedexploratorystudy.EnvironmentalHealth2014,13:82doi:10.1186/1476-069X-13-82

29

poorlystudied,andechoessomeoftheissuesdiscussedearlieraboutthepotentialforfaultsandfracturestoactasconduitsforthemigrationofgasandfluidbelowthesurface.

134. Multiplefactors(describedearlier)areinvolvedindeterminingtheactuallevelofair

pollution.Theseincludevariableoperatingpracticesaswellasgeologicalandmeteorologicalvariables.ThisexplainswhyairqualitystudiescarriedoutinregionswithhighlevelsofunconventionalO&Gproductionhaveyieldedvariableandconflictingresults.Thevariabilityinfindingsacrossthescientificliteratureisalsoafunctionofthescientificmethodsusedtomeasureairpollution.

135. Colbornetal(2013)demonstratethisvariabilityinastudywhichgatheredweekly,24-hour

airsamples0.7milesfromawellpadinGarfieldCountywhichshoweda“greatdealofvariabilityacrosssamplingdatesinthenumbersandconcentrationsofchemicalsdetected”.108

136. Eapietal(2014)alsofoundsubstantialvariationinfencelineconcentrationsofmethaneand

hydrogensulphide,whichcouldnotbeexplainedbyproductionvolume,numberofwells,orcondensatevolumeatnaturalgasdevelopmentsites.109Twosetsofdrive-bymeasurementsweretaken(theresearchersdidnothaveaccesstothesites)andthestudydefined‘high’levelsas>3ppmformethaneand>4.7ppb(theodourthreshold)forH2S.Elevatedlevelsofmethaneand/orH2Swerefoundat21%ofsites(highmethanelevelsat16.5%ofsitesandhighH2Sat8%ofsites).Whilemeanmethaneconcentrationsatdry(wheretheproducedgasisoverwhelminglymethane)sitesweresignificantlyhigherthanthoseatwetsites(whereproducedgasiscomprisedofmethaneandothervolatilessuchasethaneandbutane),norelationshipwiththesizeofthesiteorproductionvolumewasfound.

137. SomestudieshaveshownlittleinthewayofsignificantairpollutioncausedbySGP.Otherstudiesshowthatsomepollutantsareemittedatlevelsthatcanbreachairqualityandsafetystandards.

138. Goetzetal(2015)assessedthecompositionofairsamplesusingamobilelaboratoryatsiteswithhighlevelsofshalegasactivityinthesummerof2012inNEandSWPennsylvania,includingover50compressorstationsand4200wells.110Theyfoundnoelevationofsub-micrometerparticles,noroflightaromaticcompoundssuchasbenzeneandtoluene.NearlyallVOCsdetectedwereattributedtoon-roadengineexhaust.Accordingtotheauthors,theabsenceoflightaromaticswasnotsurprisingbecausetheMarcellusshaledoesnothaveassociatedoildeposits.

108ColbornT,SchultzK,HerrickL,KwiatkowskiC.Anexploratorystudyofairqualitynearnaturalgasoperations.HumEcolRiskAssess2013.http://dx.doi.org/10.1080/10807039.2012.749447109EapiGR,SabnisMS,SattlerML,2014.MobilemeasurementofmethaneandhydrogensulfideatnaturalgasproductionsitefencelinesintheTexasBarnettShale.JAirWasteManagAssoc.64(8):927-44.110GoetzJ,FloerchingerC,FortnerEetal,2015..AtmosphericemissioncharacterizationofMarcellusShaleNaturalGasDevelopmentSites.

30

139. Bunchetal(2014)analyseddataonVOClevelscollectedbytheTexasCommissiononEnvironmentalQualityusing7monitorsat6sitesfrom2000-2011.111Theyfoundalmostzeroexceedanceofhealth-basedcomparisonvalues.Thestudy,supportedbyanindustryfundedEnergyEducationCouncil,alsoranriskassessmentstudiesbasedonthesedataandconcludedthatshalegasproductionactivitieshadnotledtoVOCexposuresofpublichealthconcern.

140. Pauliketal(2015)usedpassiveairsamplerstoassesslevelsof62PAHsat23residentialpropertiesinCarrollCountyOhiolocatedbetween0.04and3.2milesofanactivewellpadinearly2014.112SamplingsitesexcludedothersourcesofPAHssuchasurbanareasandproximitytoairports,andsamplersweredeployedasfaraspossiblefromobviouspotentialconfoundingsources.LevelsofPAHswereanorderofmagnitudehigherthanresultspreviouslypublishedforruralareaswithaclearpatternofincreasingPAHlevelswithcloserproximitytowellpads.

141. Maceyetal(2014)assessedconcentrationsofVOCsin35airsamplesaroundUNGsitesthat

werecollectedbytrainedmembersofthecommunityinfiveUSstates.113Residentsusedanassessmentoflocalconditionstodeterminethesitesof35grabsamplesandsupplementedthesewith41formaldehydebadgesatproductionfacilitiesandcompressorstations.46%oftheformerand34%ofthelatterexceededestablishedairsafetystandards.Highconcentrationsofbenzene,formaldehyde,hexaneandH2Swereidentified.Insomecases,benzenelevelsexceededstandardsbyseveralordersofmagnitude.

142. AstudyinsixcountiesoftheDallas/FortWorthareasbyRichetal(2016)assessedchemicals

inambientairsamplesinresidentialareasnearshalegaswells.114Sampleswerecollectedusing24-hourpassivesamplersat39locationswithin61mofaUNGsitefrom2008-2010.Approximately20%ofthe101chemicalsidentifiedweredesignatedHAPs,including1,3-butadiene,tetrachloroethaneandbenzene(withthelatteridentifiedat76%ofsites).Virtuallyalltheanalysesdetectedhighmethanelevels,withthemeanlevelbeingsixtimeshigherthanbackgroundconcentrations.Principalcomponentanalysisidentifiedcompressorsasthedominantsourceofmanyofthechemicals,althoughfurtherstudieswithlargersamplesizesarerequiredtoconfirmthesefindings.

143. Ethridgeetal(2015)reportedonextensivemonitoringofairborneVOCsintheBarnettShale

regionbytheTexasCommissiononEnvironmentalQuality(TCEQ).TCEQdevelopedanextensiveinventoryofemissionsourcesincludinginformationonlocation,typeandnumberofemissionsources;equipmentandactivitiesconducted;releasestoair;andproximityofreceptors.Arangeofmonitoringtechniqueswasusedtoestimatelongandshort-termexposuresinareaswithandwithoutUNGduring2009and2010.Whileseveralshort-termsamplesexceededodour-based

111BunchAG,PerryCS,etal,2014.EvaluationofimpactofshalegasoperationsintheBarnettShaleregiononvolatileorganiccompoundsinairandpotentialhumanhealthrisks.SciTotalEnviron468–469:832–42.112Pauliketal,2015.ImpactofNaturalGasExtractiononPAHLevelsinAmbientAir.Environ.Sci.Technol.2015,49,5203−5210113Maceyetal,2014.Airconcentrationsofvolatilecompoundsnearoilandgasproduction:acommunity-basedexploratorystudy.EnvironmentalHealth2014,13:82114RichandOrimoloye.ElevatedAtmosphericLevelsofBenzeneandBenzene-RelatedCompoundsfromUnconventionalShaleExtractionandProcessing:HumanHealthConcernforResidentialCommunities.EnvironmentalHealthInsights2016:1075–82doi:10.4137/EHI.S33314.

31

airmonitoringcomparisonvaluesanddetectedlevelsabovetypicalbackgroundnormsdownwindofUNG,onlythreesamplesexceededhealth-basedAMCVs.Short-termsamplingfoundelevatedlevelsofVOCs,mostnotablybenzene,beingemittedfromasmallpercentageofthosefacilities.

144. Inastudyofairqualitybefore,duringandafterthedevelopmentandoperationofafracked

gaswellpad,Colbornetal(2014)measuredlevelsofVOCsandcarbonylsusingamonitoringstation1.1kmfromasiteinWesternColoradooverthecourseofayear.115Variouschemicalsweremonitored,andmethane,ethane,propane,toluene,formaldehydeandacetaldehydeweredetectedineverysample.Chemicalsassociatedwithurbantrafficemissionsasopposedtogasoperations(e.g.ethane)werefoundatlowlevels.TherewasconsiderabletemporalvariabilityinthenumberandconcentrationsofchemicalsdetectedalthoughlevelsofNMHCswerehighestduringtheinitialdrillingphasepriortofracturing.TheauthorsalsonotedthatexposuretosomeNMHCsatevenverylowconcentrations(andbelowgovernmentsafetystandards)couldhavehealtheffects.TheyhighlightedthatcertainPAHs“wereatconcentrationsgreaterthanthoseatwhichprenatallyexposedchildreninurbanstudieshadlowerdevelopmentalandIQscores”andthat“thehumanandenvironmentalhealthimpactsoftheNMHCs,whichareozoneprecursors,shouldbeexaminedfurthergiventhatthenaturalgasindustryisnowoperatingincloseproximitytohumanresidencesandpubliclands”.

145. Litovitz2013estimatedlevelsofVOC,NOx,PM10,PM2.5andSO2emissionsandthecostoftheenvironmentalandhealthdamagesassociatedwithshalegasextractioninPennsylvania.116Whileemissionswereasmallproportionoftotalstatewideemissions,NOxemissionswereupto40timeshigherinareaswithconcentratedshalegasactivitiesthanpermittedforasingleminorsource.Theyestimatedtheenvironmentalandhealthcostsfor2011torangefrom$7.2to$32millionwithover50%duetocompressorstations.However,theyemphasisethatasubstantialproportionofthesedamagescannotbespecificallyattributedtoshalegasandarelessthanthoseestimatedforanyofthestate’slargecoalpowerplants.Despitetheuncertaintiesassociatedwiththeestimates,theyconsiderthepollutionemissionstobenon-trivial.

139. Swarthoutetal(2015)analysedairsamplesfromacrossaregionsurroundingPittsburghand

compareddatafromtwosites:onewithnearly300unconventionalnaturalgas(UNG)wellswithin10kmandtheotheraremotelocationwithasinglewellwithin10km.117TheyfoundelevatedmixingratiosofmethaneandC2−C8alkanesinareaswiththehighestdensityofUNGwells.ThefindingthatalkanemixingratioswerenotelevatednearconventionalwellssupportstheconclusionthatUNGwellsmayleakatahigherratethanconventionalwells.SourceapportionmentmethodsindicatedthatUNGemissionswereresponsibleforthemajorityofmixingratiosofC2−C8alkanes,butaccountedforasmallproportionofalkeneandaromatic

115ColbornT,SchultzK,HerrickL,KwiatkowskiC.Anexploratorystudyofairqualitynearnaturalgasoperations.HumEcolRiskAssess2014;20(1):86–105.116LitovitzA,CurtrightA,etal(2013).Estimationofregionalair-qualitydamagesfromMarcellusShalenaturalgasextractioninPennsylvania.EnvironResLett8(1),014017doi:10.1088/1748-9326/8/1/014017.117SwarthoutR,etal,2015.ImpactofMarcellusShaleNaturalGasDevelopmentinSouthwestPennsylvaniaonVolatileOrganicCompoundEmissionsandRegionalAirQualityEnviron.Sci.Technol.2015,49,3175−3184

32

compounds.TheVOCemissionsfromUNGoperationswerealsoassociatedwithlevelsofozoneformationthatcompromisedfederalairqualitystandards,butweredeemednottobehighenoughtoraiseconcernaboutcancerandnon-cancerrisks.

140. Vinciguerraetal(2015)usedambientlevelsofethane,amarkerforfugitivenaturalgasemissions,andreportedthatdaytimeethaneconcentrationshadincreasedfromabout7%oftotalmeasurednon-methaneorganiccarbontoabout15%from2010to2013inareasoverlyingtheMarcellusShale.118Thistrendwasnotobservedinacontrolareawithsimilarurbansourcesofpollutionbutnoextensivenaturalgasproduction.Theyconcludethatasubstantialfractionofnaturalgasisescapinguncombusted,andthesignalisdetectablehundredsofkilometersdownwind.TheyconcludethatthiscouldcauseozoneandPMlevelstoriseandbreachairqualitystandardsinmajorurbancentersdownwind.

141. Kemball-Cooketal(2010)developedprojectionsoffutureUNGproductioninthe

Haynesvilleshaleunderthreedifferentintensityconditionsbasedonthenumberofnewwellsdrilledandproductionestimatesforeachnewactivewell.119Theseestimateswereusedtodevelopemissioninventoriesforeachscenariousingdatafromadevelopmentinasimilarnearbyformation.EstimatedemissionsofNOx,VOCsandCOwerelargeenoughtothreatentheachievementofproposedozonestandardseveninthemodelassuminglimitedUNGdevelopment.Drillrigs,compressorstationsandgasplantswereidentifiedastheprincipalsourcesofNOxandtheauthorssuggestedadditionalcontrolsontheseelementsoftheprocess.

142. Theauthorsofastudyofthetraffic-relatedenvironmentalimpactsoffrackingoperations

(Goodmanetal,2016),concludedthat“thelocalimpactsofasinglewellpadmaybeshortdurationbutlargemagnitude”,andthatwhilesingledigitpercentileincreasesinemissionsofCO2,NOxandPMwereestimatedovertheperiodfromstartofconstructiontopadcompletion(potentiallyseveralmonthsoryears),excessemissionsoftraffic-relatedNOxonindividualdaysofpeakactivitycouldreach30%overbaseline.120

143. TheWestVirginiaNaturalGasHorizontalWellControlActof2011requiresdeterminationof

theeffectivenessofa625footset-backfromthecenterofthepadofahorizontalwelldrillingsite. An investigationwhich collected data on dust, hydrocarbon compounds and radiation tocharacterizelevelsthatmightbefoundat625feetfromthewellpadcenterofunconventionalgasdrilling sites founddetectable levels of dust andVOCswith somebenzene concentrationsabovewhattheCDCcallsthe“theminimumrisklevelfornohealtheffects.”Buttherewerenoconcernsfoundrelatedionizingradiationlevelsfromairborneparticulatematter.121

118VinciguerraTetal(2015)Regionalairqualityimpactsofhydraulicfracturingandshalenaturalgasactivity:EvidencefromambientVOCobservations.AtmosphericEnvironment110(2015)144e150119Kemball-CookS,Bar-IlanA,etal(2010).OzoneimpactsofnaturalgasdevelopmentintheHaynesvilleShale.EnvironSciTechnol44(24):9357–63.120Goodmanetal,2016Investigatingthetraffic-relatedenvironmentalimpactsofhydraulic-fracturing(fracking)operations,EnvironmentInternational89–90(2016)248–260121McCawleyM,2013.Air,Noise,andLightMonitoringResultsforAssessingEnvironmentalImpactsofHorizontalGasWellDrillingOperations(ETD-10Project.http://wvwri.org/wp-content/uploads/2013/10/a-n-l-final-report-for-web.pdf

33

144. Gilman2013comparedVOCconcentrationsmeasuredatanatmosphericresearchfacilitylocatedintheColoradoWattenbergfieldwithambientlevelsmonitoredintwootherNEColoradosites.122VOCsrelatedtooilandnaturalgaswereidentifiedatallthreesitesandconsideredtorepresentasignificantsourceofozoneprecursors.

145. SeveralotherpapersnotethatO&Goperationscontributetotheformationofozone.Field

etal2015reportednumerouslocalisedozoneepisodesduringthewinterof2011associatedwithfugitiveemissionsofnaturalgas(aswellasothersourcessuchastraffic,condensateandwatertreatmentfacilities).123Edwardsetal(2014)describedthatO&Gactivitiescontributedtotheformationofozoneduringthewinterof2012-13intheUintahbasin.124

146. Helmigetal’s(2014)examinationofthehighozonelevelsintheUintahbasininthewinterof2012/13notedthattheUintahBasinWinterOzoneStudieshadpreviouslyidentifiedhighlyelevatedlevelsofatmosphericalkanehydrocarbonswithenhancedratesofC2−C5non-methanehydrocarbon(NMHC)molefractions.ThetotalannualmassfluxofC2−C7VOCwasestimatedtobeequivalenttotheannualVOCemissionsofafleetof∼100millionautomobiles,“reachingorexceedinglevelsreportedfromthemostheavilypollutedinnercities”.Totalannualfugitiveemissionofbenzeneandtoluenewerealsoestimated(1.6±0.4×106and2.0±0.5×106kgyr−1respectively).Theirfindingsreveal“astrongcausallinkbetweenoilandgasemissions,accumulationofairtoxics,andsignificantproductionofozoneintheatmosphericsurfacelayer".TheyalsoestimatedthatfugitivemethaneandNMHCemissionsamountedtoatotalhydrocarbon/naturalgasproductionlossrateof8.4−15.9%.

147. Royetal(2014)developedanemissioninventorytoestimateemissionsofNOx,VOCs,and

PM2.5inPennsylvania,NewYork,andWestVirginiafor2009and2020.125TheanalysissuggestedthatMarcellusshaledevelopmentwouldbeanimportantsourceofregionalNOxandVOCspotentiallycontributing12%(6–18%)ofemissionsintheregionin2020.Thislevelofreleasewasconsideredlargeenoughtooffsetprojectedemissionsreductionsinothersectorsandchallengeozonemanagementinruralareas.WhiletheMarcellusshalewasnotpredictedtocontributesignificantlytoregionalPM2.5levels,itcouldaccountfor14%(2-36%)ofelementalcarbon.

148. AhmadiandJohn2015conductedacomprehensiveanalysisofhistoricalozonedataanddevelopedatimeseriesanalysistoevaluatethelongtermrelationshipbetweenshalegasdevelopmentandozonepollutionintheDallas-FortWorthregionofTexas.Theyalsoconductedacomparativeassessmentwithanadjacentnon-shalegasregion.Regionalairqualityhadbeenextensivelymonitoredforover30yearsandprovidedanexceptionallycomprehensiveandextensivedataset.Theanalysisconsideredtrendsduringtheperiods2000to2006andfrom

122GilmanJB,LernerBM,KusterWC,deGouwJA.SourcesignatureofvolatileorganiccompoundsfromoilandnaturalgasoperationsinNortheasternColorado.EnvironSciTechnol2013;47(3):1297–305123Fieldetal2015.Influenceofoilandgasfieldoperationsonspatialandtemporaldistributionsofatmosphericnon-methanehydrocarbonsandtheireffectonozoneformationinwinter.Atmos.Chem.Phys.,15,3527–3542,124EdwardsPM,BrownSS,RobertsJMetal,2014.Highwinterozonepollutionfromcarbonylphotolysisinanoilandgasbasin.Nature,2014,514,351-354.125Royetal,2014.Airpollutantemissionsfromthedevelopment,production,andprocessingofMarcellusShalenaturalgas.JAirWasteManagAssoc.2014Jan;64(1):19-37.

34

2007to2013andshowedthatozonelevelsdecreasedinthenon-shalegasregioncomparedtotheshalegasregion.Theaveragelong-termcomponentofmeteorologicallyadjustedozonewas2%higherintheshalegasareafrom2008andthemeanshort-termmeteorologicallyadjustedozonewasalmost10%higher.

149. UNG’sphotochemicaloxidantformationpotentialhasbeenestimatedtobeaboutnine

timeshigherforUKshalegascomparedtoNorthSeagaswhenusedforelectricitygenerationand60%worsethancoalpower(Stamfordetal2014).

H. Healthimpactsofpollution

150. Potentialhazardsbecomeriskstohealthwhenthereisexposuretothosehazardsatlevelsthatmightharmhealth.Somepollutantsareacutelydetrimental(i.e.toxic)whilstothersmaycauselongtermhealtheffectsduetochronicexposureatevenrelativelylowlevels.

151. The number of risk studies is limited and more research is needed to address public

concerns about the risks of SGP on human and ecosystem health.126 127 A cumulative riskassessment approach would incorporate chemical, physical, and psychosocial stressors thatcontributetostress-relatedhealtheffectsinpopulationslivingnearUNGdevelopmentsites.128

152. Somestudieswhichhavemeasuredlevelsofpollutionhavebeenabletomodelorestimate

thepotential impactonhealth.These includestudiesmentionedearlier.However, fewstudieshaveactuallyassessedormeasuredstatesofhealthandlookedforanyassociationswithO&Gactivities.

153. AstudybyZielinskaetal(2014)oftheimpactofSGPonpopulationexposuretoairpollutantsintheBarnettShaleregionusedacombinationofactivewellVOCemissioncharacterisation,pollutantmonitoringinalocalresidentialcommunityof250-300householdsinanareaofhighwelldensityandadjacenttoacompressorstation,andmeasurementofthepollutantgradientdownwindofagaswell.129MonitoringincludedNOx,NO2,SO2,C5–C9hydrocarbons,carbondisulphideandcarbonylcompounds,PM2.5andPAHs.Samplesfromwellheadcondensatetankventingemissionswereusedtoestablishasourceprofile.TheaverageVOCandPM2.5concentrationsintheresidentialareawerefoundtobegenerallylow,and“notlikelytobediscerniblebeyondadistanceofapproximately100minthedownwinddirection”.However,theresultsalsoindicatedasignificantcontributiontoregionalVOCsfromgasproductionsources.

126Sexton,K.;Linder,S.H.CumulativeRiskAssessmentforCombinedHealthEffectsFromChemicalandNonchemicalStressorsAm.J.PublicHealth2011,101(S1)S81–S88,DOI:10.2105/ajph.2011.300118127Brittingham,M.EcologicalRisksofShaleGasDevelopment.RisksofUnconventionalShaleGasDevelopment;WashingtonDC,2013;http://sites.nationalacademies.org/DBASSE/BECS/DBASSE_083187.128Adgate2013129Zielinskaetal,2014.ImpactofemissionsfromnaturalgasproductionfacilitiesonambientairqualityintheBarnettShalearea:apilotstudy.JAirWasteManagAssoc.2014Dec;64(12):1369-83.

35

154. Brownetal(2015)conductedamodellingstudytodeterminethehealthimpactofexposure

toVOCandPM2.5inahypotheticaltowninproximitytoashalegasdevelopmentsite.130Theycombineddataonweatherpatternswithknownandestimatedmeasuresofemissionsfromshalegasoperationstoassesspotentialhealthimpact.Theyfoundthatresidentswouldbeexposedtodifferentintensitiesofpollutantsatdifferenttimes,andthatthesedifferencesarerelatedtothetypeofactivityatthewellpadinconjunctionwithotherconditionsforthespecifiedtimeperiod.Drilling,flaring,finishingandgasproductionstagesproducedhigherexposurelevelsthanthehydraulicfracturingstage.Thestudydemonstratedtheimportanceofairstabilityandwinddirectioninexposureattheresidentiallevelwhichwould“provideapossibleexplanationfortheepisodicnatureofhealthcomplaintsandsymptomsingasdrillingandprocessingareas”.Theauthorsmake3recommendations:1)moreresearchisneededtomeasureemissionsinveryshorttimeintervalswhilealsomeasuringoveralongperiodoftime;2)thehealthcarecommunityshouldconsiderthepossibilityofpatientssufferingfromintermittentindustrialexposuresiftheyliveorworknearUNGdevelopmentsites;and3)individualslivinginshalegasareasshouldmonitorweatherconditionstounderstandwhentheairislikelytobeparticularlypollutedandwhenitislikelytobelesspolluted.

155. McKenzieetal’s(2012)assessmentoftheriskofexposuretoairpollutioninvolved

calculatinghazardindices(HIs)forresidentsliving<1/2mileand>1/2milefromwells.131Thestudyusedroutineambientairmonitoringdatafrom187frackingsitesfromJanuary2008toNovember2010andassumedacumulativeeffectfrommultiplechemicals.Itfoundthatresidentslivingwithin0.5mileofwellswereatgreaterriskthanthoseliving>0.5mileaway.Forsub-chronicnon-cancerconditionsthiswasprincipallyduetoexposuretotrimethylbenzenes,xylenes,andaliphatichydrocarbons.Cumulativecancerriskswere10inamillionfortheproximalzoneandsixinamillioninthedistalzone,withbenzeneandethylbenzeneasthemajorcontributortorisk.ThelargestHIwasattributedtotherelativelyshort-termeffectsofhighemissionsduringthewelldevelopmentandcompletionperiod,drivenprincipallybyexposuretotrimethylbenzenes,aliphatichydrocarbonsandxyleneswhichhaveneurologicaland/orrespiratoryeffects(haematologicalanddevelopmentaleffectsalsocontributedtothecombinedHI).AccordingtoPHE,“thepapersuggeststhatthepotentialrisksfromsub-chronicexposureareofmostconcern,especiallyamongresidentsclosesttothewellpad”.

156. However,inSwarthoutetal’s(2015)studyofairsamplesinaregionsurroundingPittsburgh,whichfoundthatlocalpeopleareexposedtohigherlevelsofhazardousairpollutantscomparedtopopulationslivingmoreremotelyfromgasoperations,theactualconcentrationsofVOCs

130BrownDR,LewisC,andWeinbergerBI,2015.Humanexposuretounconventionalnaturalgasdevelopment:Apublichealthdemonstrationofperiodichighexposuretochemicalmixturesinambientair.J.Environ.SciHeal.A,50,460–472,doi:10.1080/10934529.2015.992663.131McKenzieetal,2012.Humanhealthriskassessmentofairemissionsfromdevelopmentofunconventionalnaturalgasresources.ScienceoftheTotalEnvironment424(2012)79–87.

36

resultedinarelativelylowHIforbothcancerandnon-cancerrisks(usingamodifiedversionofthemethodusedbyMcKenziein2012).132

157. Ariskassessmentofthepotentialpublichealthimplicationsresultingfromtheinhalationof

VOCsinGarfieldCountyindicatedslightlyelevatedexcesslifetimecancerrisksdrivenmainlybybenzenebutwhichwerewithintheEPA’sacceptablerangeofrisk.Italsofoundsomeelevationofacuteorsubchronicnon-cancerrisksforthoselivingclosesttowellsites,butlittleindicationofchronicnon-cancerrisks.133134

158. Apopulation-basedstudyoftheassociationbetweenozonelevelsandhealtheffectsina

UNGdevelopmentregioninWyomingbetween2008and2011observeda3%increaseinthenumberofclinicvisitsforadverserespiratory-relatedeffectsforevery10ppbincreaseinthe8hozoneconcentrationthepreviousday.135

159. Community-basedsurveyshavedocumentedvarioussymptoms,aswellasinstancesofsleep

loss, stress and odour complaints in association with shale gas developments. Though thesestudieslackscientificrigorbecausetheyaresmall,anduseself-selectingorconveniencesamplesof the local population,many of the findings are consistentwith the known health effects ofexposuretopetroleumhydrocarbons.

160. Aself-reportingsurveyof108individualsfrom55householdsin14countiesinPennsylvania

between August 2011 and July 2012 found over 50% of participants reporting variousrespiratory, behavioural, neurological,muscular, digestive, skin and vision symptoms; someofwhich were associated with proximity to fracking and experience of odours. The same studyconducted34airtestsand9watertestsinasubsetof35households.19airsamplesrecordedavarietyofVOCsandBTEXlevelshigherthanthosepreviouslyreportedbythelocalDepartmentfor Environmental Protection; and 26 chemicals detected in 11 well water samples whichexceededtheMCLformanganese,iron,arsenic,orlead.Therewassomecongruencebetween

132SwarthoutRetal,2015.ImpactofMarcellusShaleNaturalGasDevelopmentinSouthwestPennsylvaniaonVolatileOrganicCompoundEmissionsandRegionalAirQuality.EnvironSciTechnol,49:3175−3184133HealthConsultation:PublicHealthImplicationsofAmbientAirExposurestoVolatileOrganicCompoundsasMeasuredinRural,Urban,andOil&GasDevelopmentAreasGarfieldCounty,Colorado,AgencyforToxicSubstancesandDiseaseRegistry;U.SDepartmentofHealthandHumanServicesAgency;Atlanta,GA,2008;http://www.atsdr.cdc.gov/HAC/pha/Garfield_County_HC_3-13-08/Garfield_County_HC_3-13-08.pdf.134GarfieldCountyAirToxicsInhalationScreeningLevelHumanHealthRiskAssessment:InhalationofVolatileOrganicCompoundsMeasuredIn2008AirQualityMonitoringStudy.ColoradoDepartmentofPublicHealthandEnvironment:DiseaseControlandEnvironmentalEpidemiologyDivision;Rifle,CO,2010.http://www.garfield-county.com/public-health/documents/6%2030%2010%20%20RisK%20Assessment%20for%20Garfield%20County%20based%20on%202008%20air%20monitoring.pdf135AssociationsofShort-TermExposuretoOzoneandRespiratoryOutpatientClinicVisits-SubletteCounty,Wyoming,2008–2011;Pride,K.;Peel,J.;Robinson,B.;Busacker,A.;Grandpre,J.;Yip,F.;Murphy,T.;StateofWyomingDepartmentofHealth:Cheyenne,WY,2013;

37

symptomsandchemicals identifiedbyenvironmental testing,but thestudywassmallanddidnotinvolvearandomsampleofparticipants.136

161. AcrosssectionalstudyofpatientspresentingtoaprimarycarecentreinPennsylvaniaby

Saberi(2014)usedaself-administeredquestionnairetoexploreattributionofhealthperceptionsand29symptomstoenvironmentalcausesincludingUNGoveroneweekin2012.137Ofthe72participants,42%attributedatleastonesymptomtoanenvironmentalcausewith22%identifyingUNGdevelopment.22%ofrespondentslinkedahealthproblemtonaturalgas(16of72),howeversomeofthesesymptomsareofdubiousplausibility.Nineofthe16linkednaturalgastoa‘medicalsymptom’,areducedlistof15drawnfromthe29inthequestionnaire.Casereviewswereconductedonsixparticipantslinking‘medicalsymptoms’tonaturalgasandonlyonehadarecordofboththesymptomandtheconcernandinthreecasestherewasnorecordofeither.Therewasnomeasureofpotentialexposureandwhilemappingof74%ofrespondentsshowedresidencewithintwomilesofawell,italsodemonstratednoevidenceofclustering.Thepotentialforbiasisreflectedinthehighlevelsofsymptomlinkagetootherenvironmentalissuessuchasantibioticsinfood(22%)andageingduetofreeradicals(11%).

162. Steinzoretal(2013)reportedaquestionnairebasedcommunityhealthsurveysupplementedwithenvironmentaldata(VOCsinairandheavymetalsinwellwater)fromsitesclosetoparticipants’homes.138Thisstudyinvolved108individualsincludingpeoplerecruitedatpubliceventsfrom14Pennsylvaniacounties.Allintervieweesreportedsymptoms(range2-111)withover50%reportingmorethan20.Avarietyofsymptomswasidentifiedincludingrespiratory,behavioural,neurological,muscular,digestive,skinandvisionsymptoms.ThroatandsinusissuesincreasedwithresidentialproximitytoUNGsitesandanassociationbetweenodoursandsomesymptomswasalsoidentified.Thereislikelybiasintheselectionofstudysubjectsandwhilesomeenvironmentaldatawerecollected,thisstudyuseddistanceasaproxyforexposure.34airandninewatersamplesweretakenat35households;locationswereselectedbasedonhouseholdinterest,severityofreportedsymptoms,andproximitytogasfacilities.19airsamplesrecordedavarietyofVOCsandwhileBTEXlevelswerehigherthanthosepreviouslyreportedinsamplestakenbythelocalDepartmentforEnvironmentalProtectionandusedascontrols,nocomparisonswithregulatoryoradvisorystandardsweremade.26chemicalsweredetectedinwellwaterwith11samplesexceedingtheMCLformanganese,iron,arsenic,orlead.Whilethestudyreportssomecongruencebetweensymptomsandchemicalsidentifiedbyenvironmentaltestingallthesymptomswereself-reported,mostlyhighlynon-specificandcannotbeconfidentlylinkedtoemissionsfromUNGsites.

163. A retrospective study of 124,862 births in rural Colorado showed an association betweenmaternalproximitytonaturalgaswellsitesandbirthprevalenceofcongenitalheartdefectsand

136FerrarKJ,KrieskyJ,ChristenCL,MarshallLP,MaloneSL,etal.AssessmentandlongitudinalanalysisofhealthimpactsandstressorsperceivedtoresultfromunconventionalshalegasdevelopmentintheMarcellusShaleregionInt.J.Occup.Environ.Health2013,19(2)104–12,DOI:10.1179/2049396713y.0000000024137SaberiP.NavigatingMedicalIssuesinShaleTerritoryNewSolutions2013,23(1)209–221.138SteinzorN,SubraWandSumiL(2013).InvestigatinglinksbetweenshalegasdevelopmentandhealthimpactsthroughcommunitysurveyprojectinPennsylvania.NewSolut23:55–83.

38

neural tube defects, but no association with oral clefts, term low birth weight or pretermbirth.139Exposurewas imputedby calculating tertilesof inversedistanceweightednatural gaswellcountswithina10-mileradiusofmaternalresidence(range1to1400wellspermile)andareferencepopulationwithnowellswithin10miles.Associationswereexaminedusing logisticregression andmultiple linear regressions. The number of births was approximately equal inexposed/non-exposedgroups.PrevalenceofCHDsincreasedwithexposuretertilewithanORinhighest tertileof 1.3 (CI 1.2, 1.5).NTDprevalencewasalsoassociatedwith thehighest tertile(OR2.0;CI1.0,3.9),comparedwiththenon-exposedgroup.Exposurewasnegativelyassociatedwithprematurityand lowbirthweightandtherewasamodestpositiveassociationwith foetalgrowth. No association was reported for oral clefts. This well conducted analysis of a largepopulationsuggestsapositiveassociationbetweenproximityanddensityofgaswellsinrelationto mothers’ residence and an increased prevalence of CHDs and possibly NTDs. This type ofstudyhasseveralrecognised limitations,whichtheauthorsacknowledge, including incompletedata, undercounting, the effect of folic acid supplements, residual confounding and lack ofexposuremeasures.Againtheauthorscallforfurtherresearchaddressingtheseissues.

164. Aworkingpaperexploring1,069,699births inPennsylvania reported increasedprevalence

of lowbirthweight and small for gestational agebirths, aswell as reducedappearance,pulse,grimace,activity,respiration(APGAR)scoresininfantsborntomotherslivingwithin2.5kmofanaturalgaswellcomparedtoinfantsborntomotherslivingfurtherthan2.5kmfromawell.140

165. Anindustry-fundedstudy(Fryzekatal,2013)ofchildhoodcancersbeforeandafterfracking

inPennsylvaniafoundnodifferenceintheincidencerate,exceptforCNStumoursalthoughnorelationshipwasapparentwiththenumberofwellsdrilled.Thestudyfoundahigherincidenceoftotalcancersforcountieswith500wellsorfewercomparedtocountieswithmorethan500wells. The period of data analysis after drilling was generally too short for an adequateassessmentofcancerrisks,givenlatencyincancerdevelopment.141TheauthorsrecognisethatSIRsshouldnotbedirectlycomparedbutactuallydosotomakereassuringconclusions.Thishasbeenchallengedonotherkeymethodologicalissuesbyothers.142

166. Few studies have attempted to use biomonitoring to explore risks from shale gas-related

pollutants.Bloodandurinesamplescollectedfrom28adults living inDish,Texas,atownwithlargenumbersof gaswells, storage tanks, andcompressor stationsnear residences, foundnoindication of community wide-exposure to VOCs.143 These results likely reflect the multiplepotentialsourcesandtheshorthalf-livesofmostVOCsinurineandblood,especiallysincethe

139McKenzieL.M,GuoR,WitterRZ,etal,2014.MaternalresidentialproximitytonaturalgasdevelopmentandadversebirthoutcomesinruralColoradoEnviron.HealthPerspect.DOI:10.1289/ehp.1306722140Hill,E.UnconventionalNaturalGasDevelopmentandInfantHealth:EvidencefromPennsylvania.CornellUniversity:WorkingPaper,CharlesDysonSchoolofAppliedEconomicsandManagement,2012141FryzekJ,PastulaS,JiangX,GarabrantDH.ChildhoodcancerincidenceinPennsylvaniacountiesinrelationtolivingincountieswithhydraulicfracturingsitesJ.Occup.Environ.Med.2013,55(7)796–801142GoldsteinD,Malone,S.ObfuscationDoesNotProvideComfort:JournalofOccupationalandEnvironmentalMedicine.2013.55(11);1376–1378).143DISH,TexasExposureInvestigation;TexasDepartmentofStateHealthServices:Dish,DentonCounty,TX,2010;www.dshs.state.tx.us/epitox/consults/dish_ei_2010.pdf.

39

samplingdidnotcoincidewithknownorperceivedexposures,andconcurrentairsampleswerenotcollectedforstudysubjects.

167. Rich et al (2016) found elevated atmospheric levels of carbon disulphide (CS2) and 12

associated sulphide compounds present in the atmosphere in residential areas where UOGextraction and processing operations were occurring. Atmospheric chemical concentrationswere compared to the US Environmental Protection Agency’s Urban Air Toxics MonitoringProgrammeandindicatedthatatmosphericCS2concentrationsinthestudyareasexceededthenationalmaximumaverageby61%(2007),94%(2008–2009),53,268%(2010),351%(2011),and535% (2012)" abovenational background levels. The literature regarding thehealth effects ofCS2 was also reviewed and found to be consistentwith complaints of adverse health effects.However,becauseairmonitoringanalysisalsofoundmultipleVOCspresentsimultaneouslywithCSandsulphidechemicals, itwasdifficulttodeterminewhichchemicalorchemicalsmayhavebeenresponsibleforthehealthcomplaints'144.

168. Jemielitaetal(2015)examinedtherelationshipbetweeninpatientratesandwellnumbersanddensity(wellsperkm2)inthreePennsylvaniacountiesfor2007-2011.145TwoofthecountieshadexperiencedalargeincreaseinUNGactivitiesduringthisperiodwhilethethirdhadn’t.Thestudy found that cardiology inpatient prevalence rateswere significantly associatedwithwellnumbers(p<0.00096)andwelldensity(p<0.001)andneurologyinpatientprevalencerateswerealso significantly associated with density (p<0.001). According to the authors, other evidence“also supported an association between well density and inpatient prevalence rates for themedical categories of dermatology, neurology, oncology, and urology”. However, rates forgynaecologyandorthopaedicswerefoundtohavedecreased.Whilethisstudyinvolvedalargeresident population, there are several recognised limitations.While population demographicswere similar by county there was no analysis by zip code and no control for smoking, a keyconfounderforcardiologyinpatientprevalence.Mostwellsappeartohavebeenestablishedinlastyearofstudywhichcoveredarelativelyshortperiodandtherewasconsiderablevariationinthenumberofwellsbyzipcodeaddingtothepotentialforexposuremisclassification.

169. Caseyetal(2016)conductedaretrospectivecohortstudyofmorethan9,000motherslinkedtoalmost11,000neonatesoverfouryearstoexaminetherelationshipbetweenproximitytoUNGandlevelofdrillingactivityandfouradversereproductiveoutcomes:birthweight,pretermbirth,5-minuteApgarscores,andsmallforgestationalage(SGA).146MultilevellinearandlogisticregressionmodelsfoundastrongassociationbetweenUNGactivityandpretermbirth,butnotwiththeotheroutcomes.Aposthocanalysisalsoidentifiedanassociationwith

144Richetal,2016,CarbonDisulfide(CS2)InterferenceinGlucoseMetabolismfromUnconventionalOilandGasExtractionandProcessingEmissions,EnvironmentalHealthInsights2016:1051–57doi:10.4137/EHI.S31906.145JemielitaT,GertonGL,NeidellM,ChillrudS,YanB,StuteM,etal.(2015)UnconventionalGasandOilDrillingIsAssociatedwithIncreasedHospitalUtilizationRates.PLoSONE10(7):e0131093.doi:10.1371/journal.pone.0131093146CaseyJA,etal,2016.UnconventionalnaturalgasdevelopmentandbirthoutcomesinPennsylvania,USA.Epidemiology.2016March;27(2):163–17

40

physicianrecordedhigh-riskpregnancy(OR1.395%CI1.1,1.7).TheauthorsconcludedthatprenatalresidentialexposuretoUNGdevelopmentactivitywasassociatedwithtwopregnancyoutcomes,“addingtoevidencethatUNGdevelopmentmayimpacthealth”.Whilethisstudycontrolledforanumberofconfoundingfactors,thereispotentialforresidualconfoundingandthelackofexposuremeasuresinevitablyincreasestheriskofexposuremisclassification.

170. Stacyetal(2015)conductedaretrospectivecohortstudyofover15,000livebirthstoexaminetheassociationbetweenproximitytoUNGwithbirthweight,SGAandprematurityinSWPennsylvaniafortheperiod2007-2010.147Multivariatelinear(birthweight)orlogistical(SGAandprematurity)regressionanalysesfoundnosignificantassociationbetweenproximityanddensityofUGDwithprematurity.However,therewasanassociationbetweenlowerbirthweightandSGA,andbeinginthe‘mostexposed’quartilecomparedwiththe‘leastexposed’quartile.

171. Rabinowitz(2015)conductedahouseholdsurveyofresidents’self-reportedsymptomsand

viewsonenvironmentalqualityinWashingtonCountyPennsylvaniain2012duringaperiodinwhichtherewere624activewells(95%firstdrilledbetween2008-12).Homeswerevisitedtoestablishaccesstoground-fedwaterwellsandhouseholdsclassifiedaccordingtodistancefromthenearestwell:<1km,1–2km,or>2km.148Afteradjustmentforage,sex,householdeducationlevel,smokersinhousehold,jobtype,animalsinhousehold,andawarenessofenvironmentalrisk,householdproximitytowellsremainedassociatedwiththenumberofsymptomsreportedperperson<1km(p=0.002)and1–2km(p=0.05)comparedwith>2kmfromgaswellsrespectively.Livinginahousehold<1kmfromthenearestwellremainedassociatedwithincreasedreportingofskinconditions(OR=4.13;95%CI:1.38,12.3)andupperrespiratorysymptoms(OR=3.10;95%CI:1.45,6.65)whencomparedtohouseholds>2kmfromthenearestgaswell.Environmentalriskawarenesswasalsosignificantlyassociatedwithreportsofallgroupsofsymptoms.Thesamplesizeisrelativelysmallinepidemiologicaltermsandisalsolimitedbytheselfreportednatureofthesymptoms,potentialbiasandlackofdirectexposuremeasuresandtheissueofmultipletesting.However,theauthorsalsooutforwardanumberofplausibleexplanationsforthefindings.

172. BambergerandOswald(2012)usedanecologicalstudywithinterviewsoffarmersandfamiliesfromsixUSstatestogetherwithlimitedexposure,diagnosticandtoxicologicaldata.149Thefamilieswerereferredbyenvironmentalgroupsoractivistsandassociatedwithsevenconventionalwellsitesand18HVHFsites.Theresearchersalsoconductedtwoopportunisticnaturalexperimentswherelivestockhadbeenexposedandnon-exposedonthesamefarms.Exposureswereallegedtohaveoccurredthroughcontaminationofwater.Virtuallyallhealth

147StacySL,BrinkLL,LarkinJC,SadovskyY,GoldsteinBD,PittBR,etal.(2015)PerinatalOutcomesandUnconventionalNaturalGasOperationsinSouthwestPennsylvania.PLoSONE10(6):e0126425.doi:10.1371/journal.pone.0126425148Rabinowitzetal,2015.ProximitytoNaturalGasWellsandReportedHealthStatus:ResultsofaHouseholdSurveyinWashingtonCounty,Pennsylvania.EnvironmentalHealthPerspectivesvolume123(1):149BambergerandOswald(2012)Impactsofgasdrillingonanimalandhumanhealth.NEWSOLUTIONS,Vol.22(1)51-77,2012

41

datawereself-reportedandincludedawiderangeofsymptomsforhumans(neurological,GI,dermatological,headaches,nosebleeds,fatigueandbackache)andanimals(mortality,reproductive,neurological,GI,anddermatologicalsymptoms).Outcomesreportedforthetwonaturalexperimentsincluded21/60cattleexposedtofrackingfluidhavingdiedand16havingfailedtocalveversuszerodeathsandonefailuretocalveinthe36non-exposedcattle(nosignificancelevelsreported).Twenty-oneoftheintervieweeswerefollowedup15-34monthsaftertheinitialinterviewandquestionedaboutsubsequentexposuresandhealtheffects.Therewerenosignificanthealthchangesreportedbythoselivinginareaswhereindustryactivityhadeitherincreasedorremainedconstant.Whereindustryactivityhaddecreasedthetotalnumberofreportedsymptomsinhumansandanimalsalsodecreased.

173. AfollowupstudybyBambergerandOswald(2015)setouttofollow-uponseveralcasestudiesreportedintheir2012publicationtoseeifhealthimpactshadchangedovertimeandwhetherthatcorrelatedwithanincrease,decrease,ornochangeinoilandgasindustrialactivity.150Overall,theyfoundthatsymptomsimprovedforfamiliesmovingoutofaffectedareasandthoselivinginareaswhereO&Gactivityhaddecreased.Inthecasesoffamiliesthatremainedinthesameareaandforwhichdrillingactivityeitherremainedthesameorincreased,nochangeinhealthimpactswasobserved.Thedistributionofsymptomswasunchangedforhumansandcompanionanimals,butwassignificantlychangedforfoodanimals.Reportsofreproductivefailurefell,whilerespiratoryissuesandstuntedgrowthwerereportedmoreoften.

174. AHealthImpactAssessmentconductedbyWitter(2013)followingconcernsreportedbycommunitiesinBattlementMesaestimatedanincreasedriskofnon-cancerhealtheffectsfromsubchronicVOCexposuresduringthewellcompletionperiodandasmallincreasedlifetimeexcesscancerrisk(10x10−6)forthoselivingclosetowellscomparedtothoselivingfartherfromwells(6x10−6).151Self-reportedshorttermsymptomssuchasheadaches,nausea,upperrespiratoryirritationandnosebleedsinresidentslivingwithinahalfmileofwelldevelopmentwereconsideredplausiblyassociatedwithodourevents.

175. HavingdeterminedthathouseholdsinproximitytogaswellsinOhiowereexposedtohigher

levelsofPAHs,Pauliketal(2015)usedquantitativeriskassessmenttoestimatetheexcesslifetimecancerrisksforresidentsandworkersassociatedwiththerecordedlevelsofPAHs.).Usinganassumedexposuredurationof225daysperyearforaperiodof25yearswithdailyexposuredurationsof8hours,theyestimatedanexcesslifetimecancerriskforoutdoorworkersrangingfrom40to59inamillion(dependingonwhethertheyworkedcloserorfurtherfromtheclosestactivewellpad).Theyalsoconcludedthattheriskintheproximalresidentialexposure

150BambergerandOswald(2015)Long-termimpactsofunconventionaldrillingoperationsonhumanandanimalhealth.JournalofEnvironmentalScienceandHealth,PartA(2015)50,447–459151WitterRZ,McKenzieL,etal(2013).Theuseofhealthimpactassessmentforacommunityundergoingnaturalgasdevelopment.AmJPubHealth103(6):1002–10.

42

groupexceededtheEPAacceptablerangeandwas30%highercomparedtothedistalpopulation.152

I. Hazardsandrisksassociatedwithtraffic,noise,lightandodour

176. SGPinvolvescontinuousactivityconductedovertheentirecourseofaday,sevendaysa

week,forasustainedperiodoftime.153Thenoiseofcompressors,generatorsanddrilling;extensivetruckmovements;intrusiveun-naturallightingovernight;andthereleaseofbadsmellingchemicals,canhavesignificantnegativehealthandwellbeingimpactsonnearbycommunities,especiallyinthecontextofquietruralandsemi-ruralareas.

177. SGPintheUKisexpectedtobesitedcloseenoughtoamainswatersupplyandgasdistributionnetworkwhichwillconsiderablyreducethenumberoftruckmovementscomparedtomanyoperationsintheUS.Nonetheless,truck-heavytrafficisstillrequiredtoconstructwellpads(includingancillaryinfrastructuresuchasoffices,generators,compressorsandtanks),drilltheboreholes,andtransportfrackingfluid,silicaandwastewater.

178. The amount of traffic affecting any given area involved will depend on the number of

wellpadsandboreholesinthatarea,andthevolumeofwastewaterneedingtobetransportedaway.TheInstitutionofCivilEngineersestimatedthatasinglewellmightrequirebetween500and1,250HGVlorrymovements.154TheRoyalSocietyfortheProtectionofBirdsgiveafigureofbetween4,300and6,600trucktripsperwellpad.155Asnotedearlier,Watsonestimatedthatthevolume of fluid needing treatment from two exploratory fracking sites in Lancashire wouldinvolve about 1,440 tankerswith a capacity of 35,000 litres (360 tanker loadsperwell) and atotaltankermileageof470,000miles.

179. Potentialadverseimpactsfromtrucktraffic includecongestion;roadtrafficaccidents(withpotential spills of hazardous materials); as well as damage to roads, bridges and otherinfrastructure.OnestudyfromtheUSreportedthatautomobileandtruckaccidentrateswerebetween 15% and 65% higher in counties with shale gas drilling compared to thosewithout,includinganassociatedincreaseintrafficfatalities.156

180. In theBakkenshale region, therewasan increaseof68%of crashes involving trucks from

2006 to2010.157 In theEagleFord region, theTexasDepartmentofTransportation reporteda

152Pauliketal,2015ImpactofNaturalGasExtractiononPAHLevelsinAmbientAir.Environ.Sci.Technol.2015,49,5203−5210153Thetypicallifetimeforawellisvariableandnotwellestablished;butitseemstorangefromabouttwotofiveyearsdependingonhowmuchtheshaleisre-workedandthewellre-fracked.154InstitutionofCivilEngineers.WrittenSubmission,EnvironmentalAuditCommittee:EnvironmentalRisksofFrackingEnquiry(FRA070),para2.1155RoyalSocietyfortheProtectionofBirds.WrittenSubmissiontoEnvironmentalAuditCommittee:EnvironmentalRisksofFrackingEnquiry(FRA015),para3.6156GrahamJ,IrvingJ,TangX,SellersS,etal.(2015).IncreasedTrafficAccidentRatesAssociatedwithShaleGasDrillinginPennsylvania.AccidentAnalysisandPrevention,74:203–209.157RidlingtonEandRumplerJ,2013.FrackingbytheNumbers.EnvironmentAmericaResearch&PolicyCenter.http://www.environmentamerica.org/reports/ame/fracking-numbers

43

40% increase in fatal motor vehicle accidents from 2008 to 2011.158 Likewise, the CrashReportingSystemfromthePennsylvaniaDepartmentofTransportationreportedanincreaseinaccidents involving heavy trucks between 1997 and 2011.159 Some data from Pennsylvaniaindicate that between 1997 and 2011, counties with a relatively large degree of shale gasdevelopmentexperiencedasignificant increase inthenumberoftotalaccidentsandaccidentsinvolvingheavytruckscomparedtocountieswithnoshalegasdevelopment.160

181. Noise,smellsandintrusivelightingarealsopotentialhazardsassociatedwithSGP.

182. Suchnuisancesarewell recognisedashealthhazardsandpotentially serious interferences

to normal day-to-day living.161 162 163 The stress and loss of sleep that may be caused bynuisancessuchastrafficcongestion,noiseandlightpollutionareformsofillhealthintheirownright,butarealsofactorsinthegenesisofarangeofotherdiseasesandillnesses.164165

183. TheHealth ImpactAssessmentconductedbyWitter(2013)followingconcernsreportedby

communities in Battlement Mesa found that increased traffic would increase the risk ofaccidents and reduce levels ofwalking and cycling. Recorded noise levels and complaint datasuggested that noise levels related to the site could be in the range associated with healthimpacts.166Thepaperalsoreporteda15%reductioninpropertyvaluesinthevicinityofthesiteand postulated that anxiety and stress levels would be increased as a result of communityconcerns.

184. The effects of a nuisance are source dependent, meaning that objective measures of

nuisancearenotsufficienttogaugeitspotentialeffect.Thesourceandunderlyingcauseofthenuisanceisanimportantinfluenceonthetypeanddegreeofimpactofthatnuisance.

158IncreasedTraffic,CrashesPromptNewCampaigntoPromoteSafeDrivingonRoadwaysNearOil,GasWorkAreas;TexasDepartmentofTransportation:Austin,TX,2013;http://www.txdot.gov/driver/share-road/be-safe-drive-smart.html.159AdgateJL,GoldsteinBDandMcKenzieLM,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol48(15),pp8307–8320160Muehlenbachs,L.;Krupnick,A.J.ShalegasdevelopmentlinkedtotrafficaccidentsinPennsylvania.CommonResources.2013;http://common-resources.org/2013/shale-gas-development-linked-to-trafficaccidents-in-pennsylvania/161https://www.gov.uk/statutory-nuisance162WHO/EuropeanCommission.Burdenofdiseasefromenvironmentalnoise.QuantificationofhealthylifeyearslostinEurope.TheWHOEuropeanCentreforEnvironmentandHealth,BonnOffice,WHORegionalOfficeforEurope.ISBN:97892890022952011163http://ec.europa.eu/health/scientific_committees/opinions_layman/artificial-light/en/l-2/4-effects-health.htm#1164BattlementMesaHealthImpactsAssessment(Colorado,USA).Availableathttp://www.garfield-county.com/environmental-health/battlement-mesa-health-impact-assessment-ehms.aspx165GeeGC,Payne-SturgesDC,2004.EnvironmentalHealthDisparities:AFrameworkIntegratingPsychosocialandEnvironmentalConcepts.EnvironHealthPerspect.112(17):1645–1653166WitterRZ,McKenzieL,etal(2013).Theuseofhealthimpactassessmentforacommunityundergoingnaturalgasdevelopment.AmJPubHealth103(6):1002–10.

44

185. ThelevelofstressthatwillbeexperiencedbyindividualsandcommunitiesaffectedbySGPcannotbepredictedwithprecision,butwillclearlydependonthescaleofSGPandthesizeandproximityofsurroundingcommunities.

186. When considering the health impacts of noise from a given source, the volume and

intensityofthenoise,whetheritisprolongedandcontinuous,howitcontrastswiththeambientnoise levels,andthetimeofdaymustbetaken intoaccount.Noise levelsdependnotonlyonthe source, but also on other factors such as distance from the source, air temperature,humidity,windgradient,andthetopography.

187. Both the sound levelof thenoise (objectivenoiseexposure) and its subjectiveperception

can influence the impact of noise on neuroendocrine homeostasis.167 In other words, noiseexposure can lead to adverse health outcomes through direct and indirect pathways. Non-physical effects of noise aremediated by psychological and psycho-physiological processes.168Noiseannoyancemayproduceahostofnegativeresponses,suchasfeelingangry,displeasure,anxious,helpless,distractedandtired.169170

188. Sleep disturbance is another common response among populations exposed to

environmental noise, and is associated with negative impacts on both health and quality oflife.171 Meaningful levels of sleep fragmentation and deprivation can adversely affect bothphysical andmental health, and are often considered themost severe non-auditory effect ofenvironmentalnoiseexposure.172

189. AccordingtoGoodmanetal(2016),thelocalimpactsofasinglewellpadontrafficmaybe

of short duration but large in magnitude.173 They also note that the effects of SGP onsurrounding communities will vary over time. While excess noise emissions may appearnegligible(b1dBA)whennormalisedoraveragedacrossthewholeperiodfromconstructiontocompletion,they“maybeconsiderable(+3.4dBA)inparticularhours,especiallyatnight”.

190. An investigationwhich collected data on noise levels at 625 feet away from thewell pad

centerofunconventional gasdrilling sites inWestVirginia found thataveragenoise levels forthedurationofworkateachsitewerenotabovetherecommended70dBAlevelrecommended

167Munzel,T.,T.Gori,W.Babisch,andM.Basner(2014),CardiovascularEffectsofEnvironmentalNoise

Exposure.EurHeartJ.,35,829–836;doi:10.1093/eurheartj/ehu030.168Shepherd,D.,D.Welch,K.N.Dirks,andR.Mathews(2010),ExploringtheRelationshipbetweenNoiseSensitivity,AnnoyanceandHealth-RelatedQualityofLifeinaSampleofAdultsExposedtoEnvironmentalNoise.IntJ.EnvironResPublicHealth,7,3579–3594;doi:10.3390/ijerph7103580169Babisch,W.(2002),TheNoise/StressConcept,RiskAssessmentandResearchNeeds.NoiseHealth,4,1–11.170Babisch,W.,G.Pershagen,J.Selander,D.Houthuijs,O.Breugelmans,E.Cadum,etal.(2013),Noise

Annoyance—AModifieroftheAssociationbetweenNoiseLevelandCardiovascularHealth?ScienceofTheTotalEnvironment,452–453,50–57;doi:10.1016/j.scitotenv.2013.02.034.

171Muzet,A.(2007),EnvironmentalNoise,SleepandHealth.SleepMedicineReviews,11,135–142;doi:10.1016/j.smrv.2006.09.001172Hume,K.I.,M.Brink,andM.Basner(2012),EffectsofEnvironmentalNoiseonSleep.NoiseHealth,14,297–

302;doi:10.4103/1463-1741.104897.173Goodmanetal,2016Investigatingthetraffic-relatedenvironmentalimpactsofhydraulic-fracturing(fracking)operations,EnvironmentInternational89–90(2016)248–260

45

bytheEPAfornoiseexposure,butthatnoiseatsomelocationswasabovethelocallimitssetbysomecountiesandcities.174

K.Social,economicandlocalenvironmentaleffects

191. Shalegasproductioncanproducepositivehealtheffectsinlocalcommunitiesthroughsocialandeconomicpathwaysbygeneratingnewinvestment,profitsandemployment.EvidencefromtheUSshowsvariousformsofeconomicbenefitassociatedwiththeshalegasboom.

192. ItislesscommonlyunderstoodthatSGPalsoproducessocialandeconomicdis-benefitsandcan impact negatively on health by disrupting the social fabric of local communities, harmingothereconomicactivity,anddamagingpublicinfrastructure.

193. ThescaleandnatureofthesocialandeconomiceffectsofSGPwillbecontextspecificand

distributedunevenlywithinparticular localities. For somemembersofa community,SGPmayimprovesocialandeconomicwellbeing,whileforothersitmaydotheopposite.

194. Acomprehensiveassessmentoftheeconomiceffectsofshalegasdevelopmentinvolves

lookingatwhowillbenefitfromtheeconomicbenefitsandnewjobs;whowillsufferthecostsassociatedwithshalegasdevelopment,andwhowillpayforthedifferentcostsassociatedwithshalegasproduction.Thelatterincludesthetaxpayerwhohastofootthebillforalargeamountoftherequiredinfrastructureandthenecessarylevelsofeffectiveregulation.

195. Government policy is important in shaping the economic effects of SGP. In the UK, the

government has agreed that local communitieswill receive £100,000 perwell site during theexploration or appraisal stage aswell as 1% of revenues during the production stage. Finally,localcouncilswillalsobeallowedtokeep100%ofthebusinessratestheycollectfromshalegasoperators(doublethecurrent50%figure).

196. AhealthimpactassessmentofproposedshalegasdevelopmentinGarfieldCountry,

conductedbytheColoradoSchoolofPublicHealthnotedthattheproposalitselfhadalreadycaused“additionalstress”associatedwith:thelikelysocialeffectsofindustrialactivityinanon-industrialarea;perceivedlossofsharedcommunityidealsandcohesion;decliningpropertyvalues;andworriesaboutpossibleimpactsontheeducationsystem,populationnumbersandlocalcustoms.175Italsonotedthattheimpactsofagasindustryboomin2003-2008anditssubsequentdeclinein2009elsewhereinthestatehadincluded“increasedcrimeandsexuallytransmitteddiseases,decliningpropertyvaluesandimpactsontheeducationalenvironment”.

174McCawleyM,2013.Air,Noise,andLightMonitoringResultsforAssessingEnvironmentalImpactsofHorizontalGasWellDrillingOperations(ETD-10Project.http://wvwri.org/wp-content/uploads/2013/10/a-n-l-final-report-for-web.pdf175BattlementMesaHealthImpactsAssessment(Colorado,USA).Availableathttp://www.garfield-county.com/environmental-health/battlement-mesa-health-impact-assessment-ehms.aspx

46

197. As part of a health impact assessment in Lancashire related to two exploratory fakingapplications, theDirector of PublicHealth noted that themain risks of the proposed projectswere“alackofpublictrustandconfidence,stressandanxietyfromuncertaintythatcouldleadto poor mental well-being, noise-related health effects due to continuous drilling and issuesrelatedtocapacityforflow-backwastewatertreatmentanddisposal”.176

198. This includes the contentious and divisive nature of SGP within the community causing

stress,anxietyandillnessalreadybeingexperiencedbylocalcommunities.IntheHealthImpactAssessment, theDirectorofPublicHealth reported that:“Theover-riding responsesabout thetwoproposedexplorationsitesvoicedbymembersof the local communitieswhoattended theworkshopswere those of fear, anxiety and stress, which are affecting theirmentalwellbeing,withsomepeopleexperiencingsleepdisturbanceanddepression”.177

199. Importantly, levels of stress and community division (and consequent negative mental

health effects) are amplified when levels of trust and transparency concerning industry andgovernmentactionarelow.178

200. AreviewofriskstocommunitiesfromshaleenergydevelopmentbyJacquet(2014)notes

thattheintroductionoftemporarybutintensiveextractiveindustriesintoanareacanproducebenefitsintheformofnewjobsandincreasedlocalrevenue,butalsobringavarietyofharms.Amongtheeffectswithnegativeimpactsisaninfluxoftemporaryworkers(oftenpredominantlycomposedofyoungmen)underminingcommunitycohesion,increasingthecostofliving,andraisinglevelsofalcoholanddruguse,mentalillnessandviolence.179

201. Otherstudieshavealsonotedthattheextractionofnon-renewablenaturalresourcessuch

asgasistypicallycharacterizedbya“boom-bust”cycle,andthataftertheinitialperiodofconstructionanddrilling,thereisadeclineinwell-paying,stablejobsduringtheproductionphase.180181182

176LancashireCountyCouncil,2014.PotentialhealthimpactsoftheproposedshalegasexplorationsitesinLancashire.Minutes,http://council.lancashire.gov.uk/ieIssueDetails.aspx?IId¼29552&PlanId¼0&Opt¼3#AI22656177BenCaveAssociates.OverviewreportonHIAworkconcerningplanningapplicationsfortemporaryshalegasexploration:healthimpactassessmentsupport,shalegasexploration.LancashireCountyCouncil,2September.Leeds:BenCaveAssociatesLtd.,2014,http://bit.ly/1BsZ3Au178FerrarK,Kriesky,ChristenC,MarshallLetal,2013.AssessmentandlongitudinalanalysisofhealthimpactsandstressorsperceivedtoresultfromunconventionalshalegasdevelopmentintheMarcellusShaleregion.Int.J.Occup.Environ.Health2013.19(2):104−12.Doi:10.1179/2049396713y.0000000024.179JacquetJ,2009.Energyboomtownsandnaturalgas:ImplicationsforMarcellusShalelocalgovernmentsandruralcommunities.TheNortheastRegionalCenterforRuralDevelopment:UniversityPark,PA,.Availablefrom:http://aese.psu.edu/nercrd/publications/rdp/rdp43/view.180AdgateJ,GoldsteinB,McKenzieL,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol.48(15):8307-8320.Doi:10;1021/es404621d.181HouseofRepresentativesStandingCommitteeonRegionalAustralia.2013.Cancerofthebushorsalvationforourcities?Fly-in,fly-outanddrive-in,drive-outworkforcepracticesinregionalAustralia.Canberra:CommonwealthofAustralia.http://www.aph.gov.au/parliamentary_business/committees/house_of_representatives_committees?url=ra/fifodido/report.htm

47

202. Concernsaboutboom-bustcycleswerealsodescribedbyHaefeleandMorton(2009)intheir

assessmentofthelargeincreaseinnaturalgaswellsintheRockyMountainregionfrom1998-2008.Areviewofspecificcasestudieswhichhighlightedthespectreofasubsequentlocaleconomy‘bust’precipitatedbyadropinnaturalgasprices.183Theyconcludedthatthesamenaturalgasindustry‘boom’thatbringssomebenefitsforruralcommunitiesalsobringsaninfluxofnon-localworkers;increasedcrime,housingcostsanddemandforpublicservices;andadditionalburdensonlocalinfrastructure.

203. Increasedpressureonlocalpublicservicescanalsoprecipitatenegativeknock-oneffects.

AnecdotalevidencefromtheUSnotesthattheshalegasindustryhassubjectedlocalmunicipalitiestoarangeofdemandsforadditionalornewservices,andthattheadministrativecapacity,staffing,equipment,andexpertiseneededtomeetthosedemandscanoverwhelmavailablepublicbudgets.184Likewise,healthservicesandPublicHealthdepartmentsmustbepreparedtoreceiveandrespondtoincidentreportsandcitizenconcernsaboutenvironmentalhealthissues.

204. Oneareaofimpacthasbeenonlocalroadsandbridgeswhicharedamagedandworndown

bytheheavytrafficassociatedwithshalegas.IntheBarnettShaleregionofTexas,ithasbeenreportedthatearlydeteriorationofcitystreetshasincreasedtheburdenontaxpayersbecause,eventhoughaccessroadstothewellsitesarebuiltandmaintainedbytheoperators,manyofthejourneysmadebythetruckswereonpublicroadsthatwerenotdesignedtowithstandthevolumeorweightofthisleveloftrucktraffic.185Abramzonetal(2014)estimatedthatMarcellusUNG-relatedheavytrucktrafficcausedbetween$13-23,000ofdamageperwelltostatemaintainedroadsin2011.186

205. SGP is a spatially intense activity that can alter the character and aesthetic of the

surrounding landscape, affect wildlife and biodiversity, and cause habitat fragmentation. Theeconomicdevelopmentofgasandoilfromshaleformationscanresultinhighwelldensitiesofatleastonewellper80surfaceacres,overlargecontinuousareasofaplay.187

182HossainD,GormanD,ChapelleB,etal.ImpactoftheminingindustryonthementalhealthoflandholdersandruralcommunitiesinsouthwestQueensland.AustralasPsychiatry2013;21:32-37.183Haefele,M.andP.Morton.2009.Theinfluenceofthepaceandscaleofenergydevelopmentoncommunities:LessonsfromthenaturalgasdrillingboomintheRockyMountains.WesternEconomicsForum8(2):1-13.184ChristophersonandRightor,2011.HowShouldWeThinkAbouttheEconomicConsequencesofShaleGasDrilling?CornellUniversity185ChristophersonandRightor,2011.HowShouldWeThinkAbouttheEconomicConsequencesofShaleGasDrilling?CornellUniversity186Abramzonetal2014EstimatingTheConsumptiveUseCostsofShaleNaturalGasExtractiononPennsylvaniaRoadways.JournalofInfrastructureSystems10.1061/(ASCE)IS.1943-555X.0000203,06014001.187Ingraffeaetal,2014.AssessmentandriskanalysisofcasingandcementimpairmentinoilandgaswellsinPennsylvania,2000–2012.www.pnas.org/cgi/doi/10.1073/pnas.1323422111

48

206. LaveandLutz(2014)consideredthatwhilethelandscapedisturbanceofUNGsitesmaybesmall compared to someother landuseactivities, fragmentationofecosystemswasextensiveandrequiresfurtherresearch.188

207. Thesocial,healthandeconomicimpactofdamaginggreenspaceand‘ecosystemservices’,undermining leisure and tourism, and eroding the intrinsic value of the natural integrity andbeautyoftheenvironmentmayalsobenotable(althoughtheseconsiderationsapplytoalltypesof energydevelopment). Thehealthbenefit of theavailability andaccess to green spaceshasbeendocumented.189190

208. The importance of social, psychological and emotional attachments to people’s

environmentsisrecognisedasanimportantdeterminantofhealth.191Largescaledevelopmentsmaybringlossofamenity,includingimpactonlandscapesandvisualimpact.Thehealthimpactof unwelcome environmental change depends on the nature of the amenity lost, but isexacerbated by the perception of powerlessness over the change and in cases wherecommunitiesstronglyidentitywiththeirsenseofplace.192193

209. There is also a growing literature describing the pathways bywhich psycho-social factors,influenced by thewider social and physical environment, impact on both physical health andmentalwellbeing.194 195196 It is also recognised that levelsof trust, community cohesion, socialcapital andagency can influencepsychological andemotional states that influencehealthandwellbeing.197198199

188LaveandLutz,2014.HydraulicFracturing:ACriticalPhysicalGeographyReview.GeographyCompass8/10:739–754,10.1111/gec3.12162189MitchellR,PophamF,2008.Effectofexposuretonaturalenvironmentonhealthinequalities:anobservationalpopulationstudy.TheLancet.372:1655-1660.Doi:10.10166/50140-6736(08)61689-x.190CABE,2010.Communitygreen:usinglocalspacestotackleinequalityandimprovehealth.London.Availablefrom:http://www.openspace.eca.ed.ac.uk/pdf/appendixf/OPENspacewebsite_APPENDIX_F_resource_1.pdf.191BaldwinC,2014.Assessingimpactsonpeople’srelationshipstoplaceandcommunityinhealthimpactassessment:ananthropologicalapproach.ImpactAssessmentandProjectAppraisal,2014http://dx.doi.org/10.1080/14615517.2014.983725192WarsiniS,MillsJ,UsherK.Solastalgia:livingwiththeenvironmentaldamagecausedbynaturaldisasters.PrehospDisasterMed.2014:29(1);87-90.193Albrechtetal,2007.Solastalgia:thedistresscausedbyenvironmentalchange.AustralasianPsychiatry194SiegristandMarmot,2004.Healthinequalitiesandthepsychosocialenvironment—twoscientificchallenges.SocialScience&Medicine58(2004)1463–1473195WhiteheadM,etal,2016.Howcoulddifferencesin‘controloverdestiny’leadtosocio-economicinequalitiesinhealth?Asynthesisoftheoriesandpathwaysinthelivingenvironment.Health&Place39(2016)51–61196LynneFriedli,2009.Mentalhealth,resilienceandinequalities.WorldHealthOrganisation.197KawachiIandBerkmanL,2001.Socialtiesandmentalhealth.JUrbanHealth.2001Sep;78(3):458–467.198Muruyamaetal,2012.SocialCapitalandHealth:AReviewofProspectiveMultilevelStudies.JEpidemiol.2012;22(3):179–187.199GiordanoandLindström,2016.Trustandhealth:testingthereversecausalityhypothesis.JEpidemiolCommunityHealth2016;70:10-16

49

210. There is some, but limited, literature assessing the ecological impacts of shale gasdevelopmentintheUS.200201202203204205206207208Someadverseeffectsonagro-ecosystemsandanimalhusbandryhavealsobeenidentified.209

211. Followingastudy210thatreportedadecline incownumbersandmilkproduction indrilled

areas, Finkel et al (2013) compared the effect of UNG activities on milk production in fivePennsylvania counties with the most unconventional drilling activity were six neighbouringcountieswithmuchfewerwells.211Theyfoundthatthenumberofcowsandtotalvolumeofmilkproduction declined more in the most fracked counties compared to the six comparisoncounties. The authors recognised the weaknesses of their study but recommended furtherresearchgiventheimportanceofthemilkproductionindustryinPennsylvania.

212. Anotherconcernistheuseofconsiderablequantitiesofwaterposinglocalisedriskstowater

supplies.212TherearemanyfiguresusedtodescribetheamountofwaterrequiredforSGP.TheaverageestimatedwaterusagefordrillingandhydraulicfracturingawellintheMarcellusShaleissaidtorangefrom13,000m3to21,000m3withlimitsof9,000m3to30,000m3foratypical1,200mhorizontalwell.213AccordingtotheUKTaskForceonShaleGas,awellneedsbetween10,000and30,000m3(twotosixmilliongallons).TheInstitutionofCivilEngineers,inawritten

200JonesNFandPejcharL,2013.Comparingtheecologicalimpactsofwindandoil&gasdevelopment:alandscapescaleassessment.PLoSONE8(11),e81391.201JonesI,BullJ,Milner-GullandE,EsipovA,SuttleK,2014.Quantifyinghabitatimpactsofnaturalgasinfrastructuretofacilitatebiodiversityoffsetting.Ecol.Evol.4(1):79–90.Doi:10.1002.ece3.884.202SoutherS,TingleyM,PopescuV,Haymanetal,2014.Bioticimpactsofenergydevelopmentfromshale:researchprioritiesandknowledgegaps.Front.Ecol.Environ.12(6):330–338.Doi:10.1890/130324.203HamiltonL,DaleB,PaszkowskiC,2011.Effectsofdisturbanceassociatedwithnaturalgasextractionontheoccurrenceofthreegrasslandsongbirds.AvianConserv.Ecol.6(1):7.Doi:10.5751:ACE-00458-060107.204PapouliasD,VelascoA,2013.HistopathologicalanalysisoffishfromAcornForkCreek,Kentucky,exposedtohydraulicfracturingfluidreleases.Southeast.Nat.12(sp4):92–111.Doi:10.1656/0(!.012s413.205Weltman-FahsM,TaylorJ,2013.HydraulicfracturingandbrooktrouthabitatintheMarcellusShaleregion:potentialimpactsandresearchneeds.Fisheries.38(1):4–15.Doi:10.1080/03632415.2013.750112.206BrittinghamM,MaloneyK,FaragA,HarperD,BowenZ,2014.Ecologicalrisksofshaleoilandgasdevelopmenttowildlife,aquaticresourcesandtheirhabitats.Environ.Sci.Technol.48(19):11034–11047.207RacicotA,Babin-RousselV,DauphinaisJ,JolyJ-Setal,2014.Aframeworktopredicttheimpactsofshalegasinfrastructuresontheforestfragmentationofanagroforestregion.Environ.Manag.53(5):1023–1033.Doi:10.1007/s00267-014-0250-x.208KiviatE,2013.RiskstobiodiversityfromhydraulicfracturingfornaturalgasintheMarcellusandUticashales.AnnNYAcadSci.1286:1–14.Doi:10.1111/nyas.12146.209BambergerM,OswaldRE,2012.ImpactsofGasDrillingonHumanandAnimalHealth.NewSolutions22,51–77.210AdamsandT.W.Kelsey,PennsylvaniaDairyFarmsandMarcellusShale,2007-2010,2012,PennStateCooperativeExtension,CollegeofAgriculturalSciences;MarcellusEducationFactSheet,http://pubs.cas.psu.edu/freepubs/pdfs/ee0020.pdf(accessedJune15,2012)211Finkeletal,2013.MARCELLUSSHALEDRILLING’SIMPACTONTHEDAIRYINDUSTRYINPENNSYLVANIA:ADESCRIPTIVEREPORT.NEWSOLUTIONS,Vol.23(1)189-201,2013212CharteredInstituteofEnvironmentalHealth(CIEH)andScientistsforGlobalResponsibility(SGR)21/7/2014‘ShaleGasandfracking-examiningtheevidence’213NewYorkStateDept.ofEnvironmentalConservation.PreliminaryRevisedDraftSupplementalGenericEnvironmentalImpactStatementoftheOil,GasandSolutionMiningRegulatoryProgram:WellPermitIssuanceforHorizontalDrillingandHigh-VolumeHydraulicFracturingtoDeveloptheMarcellusShaleandOtherLow-PermeabilityGasReservoirs.October5,2009.RevisedJuly2011.

50

submission toEnvironmentalAuditCommittee,gavea figureof10,000 to25,000m3.TheCCCgivesfiguresofbetween1,200and45,000m3perwell,quotingKing.214

213. The amount of water used per well varies depending on geological characteristics, wellconstruction (depth and length) and fracturing operations (chemicals used and fracturestimulationdesign).215216Ofthetotalwater,10%isusedfordrilling,89%forfracking,andtherest isconsumedby infrastructure. In regionswhere local,naturalwatersourcesarescarceordedicatedtootheruses,thelimitedavailabilityofwatermaybeasignificantimpedimenttogasresourcedevelopment.217218

214. Broderick et al (2011) estimate that a multi-stage fracturing operation for a single well

requiresaround9,000-29,000m3.219Theyalsoestimatethat inorder toprovide9bcm/yearofshale gas for 20 years in the UK, an estimated 1.25 to 1.65 million m3 of water is neededannually,whichwouldaddarelativelysmallamounttothe905millionm3ofwaterabstractedannuallybyindustryasawhole.Thus,althoughthevolumesofwaterthatwouldbeusedsoundslarge,whensetinthecontextofoverallwateruseinotherindustries,itisnot.220

215. Nonetheless,alargenumberofactivewellsmayhavethepotentialtocreatelocalisedand

occasionalperiodsofwaterstress.

216. Both the economic and commercial viability and benefits of shale gas production aredependentonarangeofvariables includingtheactualproductivityofthewells, futureenergymarket conditions, and the policy / regulatory environment within which natural gas isextracted.Production inshaleplays isunpredictableandonlyasmallnumberofwellsmaybeabletoproducecommercialvolumesofgasovertimewithoutre-fracking,whichisverycostly.

217. The claims of economic development and public benefit need to be looked at carefully

because theyareoftenproducedby thosewitha vested interest andarebasedonoptimisticassumptions. Severalpapershavenoted that claimsaboutemployment generationassociated

214King(2012)HydraulicFracturing101,http://www.kgs.ku.edu/PRS/Fracturing/Frac_Paper_SPE_152596.pdf215Freyman,M.,2014Hydraulicfracturing&waterstress:waterdemandbythenumbers(2014)http://www.ceres.org/issues/water/shale-energy/shale-and-water-maps/hydraulic-fracturing-water-stress-water-demand-by-the-numbers(accessed10.20.14)216TorresYadavandKhan2016.Areviewonriskassessmenttechniquesforhydraulicfracturingwaterandproducedwatermanagementimplementedinonshoreunconventionaloilandgasproduction.ScienceoftheTotalEnvironment539(2016)478–493217StuartME,2011.PotentialgroundwaterimpactfromexploitationofshalegasintheUK.BritishGeologicalSurveyOpenReport,OR/12/001.218NicotJP,ScanlonBR,2012.Wateruseforshale-gasproductioninTexas,U.S.Environ.Sci.Technol.2012,46(6),3580−3586.219Brodericketal,2011.Shalegas:anupdatedassessmentofenvironmentalandclimatechangeimpacts.TyndallCentreUniversityofManchester220CharteredInstitutionofWaterandEnvironmentalManagement,2015.WrittenSubmissiontoEnvironmentalAuditCommittee:EnvironmentalRisksofFrackingEnquiry(FRA006),para4

51

withshalegasintheUShaveusuallybeenover-stated,221222223andthatinitialeconomicboomsoftentransformintolong-termsocialandeconomicdeclines.224225

218. Kinnaman’s analysis226 of six industry-sponsored reports (three ofwhich had an academicaffiliation) that highlighted the economic benefits of UNG identified several shortcomingsincluding: a) assumptions that all the lease and royalty payments and the great majority ofindustryexpenditureisspent locally;b)thatthelevelofwellactivity isafunctionsolelyofthecurrentgasprice;c)erroneousinterpretationofdata;d)disregardoftheimpactonotherusersof the resource;ande) failure toassesswhether theoverallbenefitsofgasextractionexceedthe costs. Kinnaman considered the consistent use of the term ‘conservative estimates’ inindustry-sponsored reportage to be misleading and that estimates were more likely to be‘overstated’.

219. LaveandLutz(2014)notedthatwhereresearchonthesocialeffectsofUNGisavailable,itis

notnecessarilyof adequatequalityand thatmostof theeconomicanalysis is speculativeandnotsubjecttoacademicpeer-review.227Thelackoffundingforindependentresearchhasleftaknowledge vacuum which has been largely filled by industry funded or produced literature.However,theyalsoclaimthatthelimitedresearchonthesocialandculturalimpactsofUNGtobe overwhelmingly negative, and note that government agencies often behave more likeadvocatesfortheindustrythanmediatorsinthedebate.

220. Hughes (2013) also concluded that industry and government projections are ‘wildly

optimistic’.228 His analysis, based on data for 65,000 shale wells from an industry andgovernment production database, showed well and field productivity declining rapidly,productioncostsinmanycasesexceedingcurrentgasprices,andproductionrequiringincreaseddrilling andmajor capital input tomaintain production. He identifies a familiar pattern of an

221WeberJ,2012.TheeffectsofanaturalgasboomonemploymentandincomeinColorado,Texas,andWyoming.EnergyEcon.34(5),1580–1588(Sep).Doi:10.1016/j.eneco.2011.11.013.222PatridgeM,WeinsteinA,2013.Economicimplicationsofunconventionalfossilfuelproduction.NationalAgricultural&RuralDevelopmentPolicyCenter.Availablefrom:http://www.nardep.info/uploads/Brief15_EconomicsFossilFuel.pdf.223 MauroF,WoodM,MattinglyM,PriceM,HerzenbergSandWardS,2013.ExaggeratingtheEmploymentImpactsofShaleDrilling:HowandWhy.Multi-StateShaleResearchCollaborative.Availablefromhttps://pennbpc.org/sites/pennbpc.org/files/MSSRC-Employment-Impact-11-21-2013.pdf224JacquetJ,2009.EnergyBoomtowns&NaturalGas:ImplicationsforMarcellusShaleLocalGovernments&RuralCommunities.NERCRDRuralDevelopmentPaperN°43.Availablefrom:http://aese.psu.edu/nercrd/publications/rdp/rdp43.225ChristophersonS,RightorN,2011.Howshouldwethinkabouttheeconomicconsequencesofshalegasdrilling?AComprehensiveEconomicImpactAnalysisofNaturalGasExtractionintheMarcellusShale.WorkingPaper,CityandRegionalPlanning,CornellUniversity.Availablefrom:http://cce.cornell.edu/EnergyClimateChange/NaturalGasDev/Documents/PDFs/Comprehensive%20Economic%20Analysis%20project.pdf.226KinnamanT,2011.Theeconomicimpactofshalegasextraction:Areviewofexistingstudies.EcologicalEconomics70(2011)1243–1249227LaveandLutz,2014.HydraulicFracturing:ACriticalPhysicalGeographyReview.GeographyCompass8/10(2014):739–754,10.1111/gec3.12162228HughesDJ,2013.Arealitycheckontheshalerevolution.Nature494,307–308

52

initialdrillingboom,exploitationof‘sweetspots’(small,highlyproductiveareas)followedbythedrilling of more marginal areas, and then rapid decline within a few years. The investmentrequiredfornewwellstomaintainsupplyoftenexceedssalesincome,whichinturnnecessitateshighergasprices.

221. Paredesetal(2015)usedtwoeconometricmethodstoisolateandquantifytheeffectof

UNGonlocalincomeandemployment.229TheyfoundthatthedirectincomeeffectsofMarcellusshaleUNGdevelopmenthadanegligibleincomeimpactonthegeneralpopulation.Whilelocalemploymenteffectsweremoresubstantial,manyofthenewjobswerelowpaidandtakenupbyoutsiderswhowouldtendtospend/sendmuchoftheirincomehome.

222. Sovacool(2014),ontheotherhand,describedseveraleconomicbenefitsofanumberof

shalebooms.Theseincludedabout29,000newjobsand$238mintaxrevenuesinPennsylvaniain2008;acontributionof$4.8billiontogrossregionalproduct,57,000newjobsand$1.7billionintaxrevenueacrossWestVirginiaandPennsylvaniain2009;and$11.1billioninannualoutputrepresenting8.1%oftheregion’seconomyand100,000jobsintheBarnettShaleinTexasin2011.230However,thereviewalsoidentifiedthecomplexitiesofassessingeconomicimpactandtheexpenseofcostoverruns,accidentsandleakages,andconcludedthatthebenefitsofSGPareuncertainandconditionalonthe“right”mixoftechnologicalsystems;operatingprocedures,governmentregulations,andcorporatevaluesateachlocality.

223. Wrenetal(2015)notedthatthevariedfindingsintheliteratureaboutemploymenteffects

wasrelatedinparttodifficultiesincapturingaccuratedataaboutworkers’placeofresidenceandfoundthatincreasesinemploymentmayhavelittlebenefittothoselocalitiesdirectlyfacedwiththecostsofUNGactivity.TheiranalysisoflocalemploymentinPennsylvaniafoundthatwhileUNGactivityhadhadapositiveeffectonemployment,itwasonlystatisticallysignificantforcountiesinwhich90ormorewellsweredrilledinagivenyear.

224. HardyandKelsey(2014)foundmodestemploymentincreasesincountieswithdrilling

activityinMarcellusshaledevelopmentinPennsylvania,andthatmanyofthenewjobsweregoingtonon-residents,leavingminimalemploymentimpactonresidents.231

225. MunasibandRickman(2014)widereconomiceffectsofunconventionalshaleoilandgas

explorationinArkansas,NorthDakotaandPennsylvaniaonemployment,incomeandpovertyrates,232usingasyntheticcontrolmethodwasusedtoassesseconomicactivityintheabsenceofincreasedunconventionalenergydevelopment.TheyfoundsignificantpositiveeffectsforalloilandgascountiesinNorthDakotaacrossallregionallabourmarketmetrics,butthatpositive

229Paredesetal2013.Incomeandemploymenteffectsofshalegasextractionwindfalls:EvidencefromtheMarcellusregion.EnergyEconomics47(2015)112–120230Sovacool2014.Cornucopiaorcurse?Reviewingthecostsandbenefitsofshalegashydraulicfracturing(fracking)RenewableandSustainableEnergyReviews37(2014)249–264231HardyandKelsey2014.Localandnon-localemploymentassociatedwithMarcellusShaleDevelopmentinPennsylvania.PolicyBriefpublishedbyNationalAgricultural&RuralDevelopmentPolicyCenter232MunasibandRickman,2014RegionalEconomicImpactsoftheShaleGasandTightOilBoom:ASyntheticControlAnalysis

53

effectsinArkansaswereonlyidentifiedincountieswiththemostintensiveshalegasproduction.Theyfeltthatthepositiveimpactsonemploymentweregenerallysmallerthanthoseestimatedinotheranalysesandthatlocalinflationandothereffectshadanegativeimpactonthelocalqualityoflife.Inaddition,theyfoundnosignificantpositiveeffectsinPennsylvania.Thestudyalsohighlightedthatareaswithsignificantlevelsofeconomicactivitysuchasagricultureandtourism,maybemorelikelytoexperienceadverseeconomiceffects.

226. Weber’s(2012)studyofcountiesinColorado,TexasandWyomingwithincreasedUNGfoundmodestincreasesinemploymentandincome.233Analysisofgasdepositandproductiondatawitheconomicdatafor1998/99to2007/08suggestedthecreationoffewerthan2.5jobspermilliondollarsofgasproduction,anannualemploymentincreaseof1.5%onpre-boomlevels.

227. AsubsequentstudybyWeberetal(2014)assessedthebenefitsoftheoilandUNGboomin

ruralNorthDakotainthe2010swhichwasestimatedtohavecontributedoverabilliondollarstotheState’sfinancesandcreated65,000newjobs.234Thisregionhadseenpreviousoilrelatedboomsinthe1950sandlate1970swhichhadledtohousingshortages,moreexpensivepublicservices,andalegacyofcostsforobsoleteinfrastructure.Theirstudyoftheassociatedsocialeffectsoftheboom,throughinterviewswithsocialworkersandDirectorsofSocialCare,foundhousingtobearecurrenttheme,especiallyinadequatesupplyandhighhousingcosts.SocialServicesDirectorsalsoreportedanincreaseinchildprotectionissues,increasingdaycareshortageandadiminishingsupplyoffosterhomes,whiledatafromthepolicesuggested‘troublingincreasesindomesticviolenceissuesdisproportionatetopopulation’.Reportedbenefitsincludedeconomicdevelopment,partnershipswiththeindustry,anddecreasesinbenefitsupport.However,thesewereregardedas‘mixedblessings’.Theauthorsnotedthelimitationsinherentinthedesignoftheirsmallcross-sectionalstudy.

228. Muehlenbachsetal(2015)usedamethodologytoquantifytherealorperceivedeffectsofshalegasdevelopmentonpropertypricesinPennsylvania.235Theyhadaccesstoasubstantialpropertysalesdatasetandusedbothatechniquetocontrolforpotentialconfounders.Theyfoundthatthepricesofhomesdependentongroundwaterwerenegativelyaffectedbyproximitytoshalegasdevelopments(upto-16.5%forthosewithin1km),whilethevalueofhomesonamainssupplyshowedasmallincrease.However,thelatterwasonlyapplicabletohomesproximaltoproducingwellswhichreceivedhomeownerroyaltypayments,andifthewellswerenotvisiblefromtheproperty.

229. Jonesetal(2014)reviewedthepotentialimplicationsforUKpropertyandinvestmentina

professionalbriefingnotebasedoninternetresources,peerreviewedpapersandgovernment

233WeberJ,2012.TheeffectsofanaturalgasboomonemploymentandincomeinColorado,Texas,andWyoming.EnergyEconomics34(2012)1580–1588234Weberetal,2014.Shalegasdevelopmentandhousingvaluesoveradecade:EvidencefromtheBarnettShale.235MuehlenbachsL,SpillerEandTimminsC,2015.TheHousingMarketImpactsofShaleGasDevelopmentAmericanEconomicReview2015,105(12):3633–3659

54

agencyresearch.236Theynotedreasonsforconcernaboutadequateandaffordableinsurancecoverandproblemswithobtainingmortgagesforhomesincloseproximitytoshalegasoperations.TheUKGovernment’sowninvestigationintotheimpactofSGPonruralcommunitieswasonlyreleasedunderalegalchallenge,butwhenitwasreleaseditwasinaheavilyredactedform.237

230. Barth(2013)notedthatUNGactivitiesintheMarcellusShaleareacouldincreasedemand

andcostsforrentalpropertiesaswellasareductioninhouseprices,difficultiesinobtainingpropertyinsuranceandanegativeimpactonfutureconstructionandeconomicdevelopment.238WhileBarthrecognisedthatshalegaswillgeneratesomelocalandregionaljobsandrevenues,thelevelsofbothhaveprobablybeenexaggeratedintheindustry-fundedliterature.HenotesthatsomestudieshaveusedinappropriateeconomicmodellingassumptionssuchasusingcostsfromTexaswhichhasalongestablishedextractiveindustryinfrastructureandapplyingthemtoareaswithoutinfrastructure.Inaddition,costsfromsuchareaslikeTexaswhichispredominantlynon-urbanwithsmallerpopulationsandwithlowereconomicdiversitywouldbedifferentfromareasdependentonagriculture,tourism,organicfarming,hunting,fishing,outdoorrecreation,andwineandbrewing.

231. Thesocialdesirabilityofdifferentformsofenergyhasalsobeenstudiedthroughvarious

economicchoicestudies,andthereissomeliteraturesuggestingthathouseholdsarewillingtopayapremiumforelectricityfromrenewableenergysourcessuchaswind,solarandbiomass.239240241

232. Popkinetal(2013)exploredthelikelywelfareimpactsofusingUNGextractedbyhydraulic

fracturingforhouseholdelectricityinaneconomicchoiceexperimentinvolving515householdsfromnineNewYorkcountiesintheMarcellusShaleregionand18outsidetheshaleregion.242Theanalysiscontrolledforage,gender,education,placeofresidenceandproximitytoUNGsites.TheyfoundrespondentsbeingwillingtoacceptUNGderivedelectricityprovidedtheirmonthlybillswerereducedbybetween$22-$48(meanbill$124)withtherequireddiscountingincreasingwithincreasedproximitytoUNGsites.Respondentsalsogenerallyexpressedapreferencetocontinuewiththestatusquo(outofstatefossilfuelandnuclearenergy).

236JonesP,ComfortDandHillierD,2014.FrackingforshalegasintheUK:propertyandinvestmentissues’.JournalofPropertyInvestment&Finance,32,5:505–517237RuralCommunityPolicyUnit,2014.ShaleGasRuralEconomyImpacts.https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/408977/RFI6751_Draft_Shale_Gas_Rural_economy_impact_paper.pdf238BarthJ,2013.Theeconomicimpactofshalegasdevelopmentonstateandlocaleconomies:Benefits,costsanduncertainties.NewSolutions,Vol.23(1)85-101,2013239SusaetaA,etal,2011.Randompreferencestowardsbioenergyenvironmentalexternalities:AcasestudyofwoodybiomassbasedelectricityintheSouthernUnitedStates.EnergyEconomics32,1111-1118.240BorchersAM,etal,2007.Doeswillingnesstopayforgreenenergydifferbysource?EnergyPolicy35(6),3327-3334.241ScarpaandWillis,2010.Willingness-to-payforrenewableenergy:PrimaryanddiscretionarychoiceofBritishhouseholds'formicro-generationtechnologies.EnergyEconomics32(2010)129–136242Popkinetal,2013.SocialcostsfromproximitytohydraulicfracturinginNewYorkState.EnergyPolicy62:62–69

55

233. ThisnegativelocalperceptionofUNGisalsoreflectedinBernsteinetal’s(2013)contingentvaluationstudyofarandomsampleofSusquehannaValleyPennsylvaniaresidents’(n=186)WTPforeliminatingtherisksofwaterpollutionduetohydraulicfracking.243Thisfoundthatresidentswerewillingtopayupto$10.50amonthforadditionalsafetymeasurestoprotectlocalwatershedsfromshalegasextraction.

L.Fugitiveemissions

234. Fugitiveemissionsaregases(mainlymethane,butalsootherhydrocarbonssuchasethane)thatareunintentionallylosttotheatmosphereduringtheprocessofgasextraction,collection,processingandtransportation.Theycanemanatefromaboveorbelowtheground.

235. Abovetheground,leaksmayarisefromanyofthe55to150connectionsbetweenpiecesofequipmentsuchaspipes,heaters,meters,dehydrators,compressorsandvapour-recoveryapparatusofatypicalwell.244Pressurereliefvalvesarealsodesignedtopurposefullyventgas.

236. Leaksandemissionsalsooccurinthedistributionsystemusedtosupplygastoend

consumers.LargeemissionsofVOCshavebeenobservedonoilandgas(O&G)wellpadsbecauseofleaksfromdehydrators,storagetanks,compressorstations,andpneumaticdevicesandpumps,aswellasevaporationandflowbackpondwater.245TheEPAreportthatpneumaticdevicescontributeto14%ofgassupply-chainemissionsintheUS,whilecompressorsareusedtoboostthegaspressureandareestimatedtoberesponsiblefor20%ofemissions.246

237. Heathelal’s(2015)reviewoftheUSGHGIconcludedthatapproximately43%oftotal

methaneemissionsacrossthenaturalgasindustryerefromcompressorsandcompressorstations.247

238. Smallvolumesofgasmayalsobegeneratedduringthedevelopmentofthewell,mostof

whichislikelytobeburnedinaflare.Generallyspeaking,thereislittleinformationaboutemissionsassociatedwithexploration,andmoststudiesignoretheGHGemissionsassociatedwiththisphaseofSGP.248249However,itshouldnotbeassumedthatemissionsfromexplorationwillbelow,especiallyforanyextendedwelltests.250

243BernsteinP,KinnamanTC&WuM(2013).Estimatingwillingnesstopayforriveramenitiesandsafetymeasuresassociatedwithshalegasextraction.EasternEconomicJournal,39(1),28-44.244HowarthandIngraffea2011.Methaneandthegreenhouse-gasfootprintofnaturalgasfromshaleformations.ClimaticChange(2011)106:679–690245WarnekeC,GeigerF,EdwardsPM,DubeW,etal,2014.VolatileorganiccompoundemissionsfromtheoilandnaturalgasindustryintheUintahBasin,Utah:oilandgaswellpademissionscomparedtoambientaircomposition.Atmos.Chem.Phys.14,10977e10988.http://dx.doi.org/10.5194/acp-14-10977-2014.246SGI(2015),MethaneandCO2emissionsfromthenaturalgassupplychain,http://www.sustainablegasinstitute.org/publications/white-paper-1/247Heath,Warner,SteinbergandBrandt,2015.EstimatingUSMethaneEmissionsfromtheNaturalGasSupplyChain,http://www.nrel.gov/docs/fy16osti/62820.pdf248DJMacKay&TJStonePotentialGreenhouseGasEmissionsAssociatedwithShaleGasExtractionandUse(DECC,2013)

56

239. Keyemissionsourcesinthegasproductionprocessarefromwellcompletions(when

methaneisreleasedasfrackingfluidreturnstothesurfacepriortogasflowingatahighproductionrate),workovers(periodsoftimewhenthewellundergoesmaintenance,cleaningandre-fracturing)andliquidsunloading(theremovalofanybuild-upofliquidsthataccumulatesatthebottomofthewellandimpedestheflowofgas).

240. IntheUS,thegasmixedintheflowbackfluidhashistoricallybeenpredominantlyventedto

theatmosphere.Thevolumeofgasproducedduringcompletionislinkedtothepressureofthewellandtheinitialflowrate.

241. Emissionrateswillvaryfromoneareatoanotherbecausegasreservoirsvarybyageandgeologicproperties,andoperatingpractices.Emissionsfromwellcompletionsandliquidunloadingsarealsohighlyvariable.251252

242. Currentunderstandingofthedistributionofemissionsacrosstheglobalwellpopulationis

extremelypoorwithintheliteratureandfurtherresearchisrequiredtodetailandquantifythefactorsaffectingunloadingemissionssuchaswellage,reservoirproperties,equipmentusedandoperationalstrategies.253

243. AccordingtotheSustainableGasInstitute(SGI),thereisincompleteandunrepresentative

dataforanumberofemissionsources.Specifically,moredataarerequiredforliquidsunloading,wellcompletionswithRECs,andtransmissionanddistributionpipelines.254SGIalsonotealackoftransparencyindataandaccountingformethaneemissionsacrossalloftheLNGstages.

244. Fugitiveemissionsareamajorhealthhazardbecausemethaneisapotentgreenhousegas(GHG).Iftheamountoffugitiveemissionsexceedsacertainthreshold,theargumentthatshalegasisa‘cleanenergysource’relativetocoaloroilfallsapart.AccuratemeasuresoffugitiveemissionsproducedbytheO&Gindustryarethereforeimportant.

245. Methodstoquantifyfugitiveemissionsaretypicallydividedintotwogroups:bottomup

methodsandtopdownmethods.

249SGI(2015),MethaneandCO2emissionsfromthenaturalgassupplychain,http://www.sustainablegasinstitute.org/publications/white-paper-1/250CommitteeonClimateChange,2016.ThecompatibilityofUKonshorepetroleumwithmeetingtheUK’scarbonbudgets.251Zavala-Aaraizaetal(2015)ReconcilingdivergentestimatesofoilandgasmethaneemissionsPNAS|December22,2015|vol.112|no.51|15597–15602252Balcombe,Anderson,Speirs,BrandonandHawkes,2015.MethaneandCO2emissionsfromthenaturalgassupplychain.London:SustainableGasInstitute253Balcombe,Anderson,Speirs,BrandonandHawkes,2015.MethaneandCO2emissionsfromthenaturalgassupplychain.London:SustainableGasInstitute254Balcombe,Anderson,Speirs,BrandonandHawkes,2015.MethaneandCO2emissionsfromthenaturalgassupplychain.London:SustainableGasInstitute

57

246. Bottomupmethodsusedirectmeasurementsofleakageratesfromempiricalstudiestocalculateemissionfactors(EFs)fordifferentsourcesofleakage.TheseEFsarethenappliedtothenumberofsuchsourcesandtheiractivitylevels,fromwhichatotalemissionsestimateiscalculated.

247. ThisisthebasisfortheEPA’sInventoryofGreenhouseGasEmissionsandSinkswhich

providesanoverallnationalemissionestimatebysectorfortheUS.TheEPAalsohasaGreenhouseGasReportingProgram(GHGRP)whichinvolvesmandatoryreportingbyO&GoperatorsofGHGemissionsfromallsourcesthatemitmorethan25000tofCO2eperyear.

248. However,attemptstoestablishaccurateemissionsinventoriesintheUShavebeenhindered

bydatagaps,arelianceofself-reporteddatacollection,andtheuseofoutmodedemissionsfactors.255Maceyetal(2014)alsonotehowthedirectmeasurementofairpollutantsfromonshoregasoperationshasbeenlimitedbyinadequateaccesstowellpadsandotherinfrastructure;theunavailabilityofapowersourceformonitoringequipment;andafailuretocaptureunscheduledepisodesofflaring,fugitivereleasesandmovementsoftrucktraffic.256

249. Topdownmethodsmeasuremethaneconcentrationsdirectlyintheatmosphere,andthen

apportionapercentageofthetotalemissionstodifferentsourcesofmethaneinthegivensourcearea.

250. Bottom-upestimationsoffugitiveemissionsusedintheofficialUSinventoriesaregenerally

acceptedasbeingtoolow.Independenttop-downinvestigationssuggestthattheGHGRPmayunderestimatetherealemissionratebyuptoafactorof3.8.257Brandtetal’sreviewof20yearsoftechnicalliteratureonnaturalgasemissionsintheUSandCanadafoundthatofficialinventoriesconsistentlyunderestimateactualCH4emissions.258

251. Actionswhichwouldhelpconvergetop-downandbottom-upestimatesincludeensuring

thattop-downstudiesreportonfossilmethaneonly;havingaccuratefacilitycountsinbottom-upanalysis;andcharacterisingthecontributionofsuper-emittersaccurately.259

252. Ingeneral,methaneemissionsintheUShavebeenunder-estimated.Onerecent

quantitativeestimateofthespatialdistributionofanthropogenicmethanesourcesshowedthatEPAinventoriesandtheEmissionsDatabaseforGlobalAtmosphericResearch(EDGAR)have

255FieldRA,SoltisJ,MurphyS:Airqualityconcernsofunconventionaloilandnaturalgasproduction.EnvironSciProcessImpacts2014,16:954–969.256Maceyetal,2014.Airconcentrationsofvolatilecompoundsnearoilandgasproduction:acommunity-basedexploratorystudy.EnvironmentalHealth2014,13:82doi:10.1186/1476-069X-13-82257Lavoie2015Aircraft-BasedMeasurementsofPointSourceMethaneEmissionsintheBarnettShaleBasin,Lavoieetal.,EnvironmentalScienceandTechnology,vol.49no.13pp.7904-7913,http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b00410258Brandtetal,2014.MethaneLeaksfromNorthAmericanNaturalGasSystems,Science,vol.343pp.733-735,http://psb.vermont.gov/sites/psb/files/CLF-SC-2%20Science-Methane%20Leaks.pdf259Heath,Warner,SteinbergandBrandt,2015.EstimatingUSMethaneEmissionsfromtheNaturalGasSupplyChain,http://www.nrel.gov/docs/fy16osti/62820.pdf

58

underestimatedmethaneemissionsbyafactorof∼1.5and∼1.7,respectively.260Thediscrepancyinestimateswasparticularlypronouncedinsouth-centralUSwherefossilfuelextractionandrefiningareprominent.261Accordingtothispaper,regionalmethaneemissionsduetofossilfuelextractionandprocessingcouldbe4.9±2.6timeslargerthaninEDGAR.

253. ThereasonsforthisincludetheuseofoutdatedEFs;262inadequatesamplingandthefailure

toaccountfor‘super-emitters’(emissionsfromindividualwellsandgasprocessingfacilitiesdonotexhibitanormaldistribution,buttendtodisplayaskeweddistributionwitha‘fat-tail’ofsuper-emitters263);assumptionsthatoperatorsareapplyingbestpractice;inaccuratecountsofsites,facilities,andequipment;non-reportingbyO&Goperators;264andthefalseassumptionthatEFsareconsistentacrosstheindustryanddifferentregions.265266

254. AccordingtoBrandtetal,becausemeasurementsforgeneratingEFsareexpensive,sample

sizesareusuallysmallandaffectedbysamplingbiasduetorelianceuponself-selectedcooperatingfacilities.Inaddition,becauseemissionsdistributionshave‘fattails’,smallsamplesizesarelikelytounderrepresenthigh-consequenceemissionssources.267

255. Themethodologicalchallengesinaccountingforfugitiveemissionsaredemonstratedby

largeyear-to-yearrevisionsofthereportedemissionsbytheEPA.268Forexample,theestimatednationalaverageproduction-sectorleakratefor2008increasedfromapproximately0.16%(oftotalgasproduced)inits2010report,to1.42%inthe2011and2012reports,beforebeing

260Miller2013AnthropogenicemissionsofmethaneintheUnitedStates,PNAS,vol.110no.50pp.20018-20022,10thDecember2013http://www.pnas.org/content/110/50/20018.full.pdf?with-ds=yes261Emissionsduetoruminantsandmanurearewerealsouptotwicethemagnitudeofexistinginventories.262Karionetal,2013MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield,GeophysicalResearchLetters,vol.40no.16,http://onlinelibrary.wiley.com/doi/10.1002/grl.50811/pdf263Fat-tailsitesdonotnecessarilyhavepersistentlyhighemissionsbutmayrepresentshort-termemissioneventscausedbymaintenanceactivitiesormalfunctions.264Lavoie2015Aircraft-BasedMeasurementsofPointSourceMethaneEmissionsintheBarnettShaleBasin,Lavoieetal.,EnvironmentalScienceandTechnology,vol.49no.13pp.7904-7913,http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b00410265Karionetal,2013MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield,GeophysicalResearchLetters,vol.40no.16,http://onlinelibrary.wiley.com/doi/10.1002/grl.50811/pdf266Zavala-Aaraizaetal(2015)ReconcilingdivergentestimatesofoilandgasmethaneemissionsPNAS|December22,2015|vol.112|no.51|15597–15602267Brandtetal,2014.MethaneLeaksfromNorthAmericanNaturalGasSystems,Science,vol.343pp.733-735,http://psb.vermont.gov/sites/psb/files/CLF-SC-2%20Science-Methane%20Leaks.pdf268Karionetal,2013MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield,GeophysicalResearchLetters,vol.40no.16,http://onlinelibrary.wiley.com/doi/10.1002/grl.50811/pdf

59

reviseddownto0.88%inthe2013report.269ThesechangesledtheEPA’sOfficeofInspectorGeneralcallingforimprovedemissionsdataforthenaturalgasproductionsector.270

256. AccordingtoHowarthandIngraffea,1.9%ofthetotalproductionofgasfroman

unconventionalshale-gaswellisemittedasmethaneduringwellcompletion[madeupoflossesfromflowbackfluids(1.6%)anddrillout(0.33%)].271Additionalfugitiveemissions(0.3–3.5%)continueatthewellafterwellcompletion(fromleakageatconnections,pressurereliefvalves,pneumaticpumps,dehydratorsandgasprocessingequipment),whileemissionsduringtransport,storageanddistributionareestimatedtobeanadditional1.4%to3.6%.

257. Altogether,HowarthandIngraffeaestimatethat3.6%to7.9%ofmethanefromshalegas

productionescapestotheatmosphere.Theyestimatethatemissionsareatleast30%andpossiblytwiceasgreatasthosefromconventionalgas.

258. Caultonetal’sassessmentoftheliteratureonemissionratesfromunconventionalgas

productionsince2010isthatitrangesfrom0.6to7.7%atthewellsiteandduringprocessingoverthelifetimeproductionofawell;andfrom0.07to10%duringtransmission,storageanddistributiontoconsumers.Thehighestpublishedestimatesforcombinedmethaneemissions(2.3–11.7%)arebasedonactualtop-downmeasurementsinspecificregions.272273

259. Petronetal’s(2014)topdownmeasurementofmethaneemissionsintheDenver-Julesburg

BasininnortheasternColoradoover2daysinMay2012wasusedtoestimatetheemissionsfromoilandgasoperationsandothersourcesofmethane(livestockfarming,landfills,wastewatertreatmentandnaturalmicro-seepage).274TheestimatedcontributionfromO&Goperationswasonaverage19.3±6.9t/h,or75%ofthetotalmeasure.Themeasurementwasalmost3timeshigherthananhourlyemissionestimatebasedontheEPA’sGHGRP.Theleveloffugitiveemissionsasafractionoftotalgasproductionwas4.1±1.5%;similartofindingsreportedfromastudyin2008ofthesameregion.275

269ThesechangeswerecausedbydifferentEFsforcalculatingemissionsfromliquidunloading,unconventionalcompletionswithhydraulicfracturing,andtherefracturingofnaturalgaswells.Themaindriverforthe2013reductionwasareportpreparedbytheoilandgasindustry,whichcontendedthattheestimatedemissionsfromliquidunloadingandrefracturingofwellsintightsandsorshaleformationsshouldbelower.270U.S.EnvironmentalProtectionAgencyOfficeofInspectorGeneral(2013),EPANeedstoImproveAirEmissionsDatafortheOilandNaturalGasProductionSector,EPAOIG,Washington,D.C.271HowarthandIngraffea,2011.MethaneAndTheGreenhouse-GasFootprintOfNaturalGasFromShaleFormations–ALetter,ClimaticChange,vol.106no.4pp.679-690.http://link.springer.com/content/pdf/10.1007%2Fs10584-011-0061-5.pdf272PétronG,etal.(2012)HydrocarbonemissionscharacterizationintheColoradoFrontRange:Apilotstudy.JGeophysRes,10.1029/2011JD016360.273KarionA,etal.(2013)MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield.GeophysResLett,10.1002/grl.50811.274Pétronetal2014AnewlookatmethaneandnonmethanehydrocarbonemissionsfromoilandnaturalgasoperationsintheColoradoDenver-JulesburgBasin,JournalofGeophysicalResearch:Atmospheres,vol.119no.11pp.6836-6852,http://onlinelibrary.wiley.com/doi/10.1002/2013JD021272/pdf275Pétronetal2012HydrocarbonemissionscharacterizationintheColoradoFrontRange:Apilotstudy,JournalOfGeophysicalResearch,vol.117no.D4,http://www.fraw.org.uk/library/extreme/petron_2012.pdf

60

260. Peischletal’s(2013)studyofmethane,carbondioxide,carbonmonoxideandC2–C5alkanelevelsacrosstheLosAngelesbasinin2010,foundthatmethaneemissionsweregreaterthanthatwhichwouldbeexpectedfrombottom-upstateinventories.Morethanhalftheemissionscamefromfugitivelossesfrompipelinesandurbandistributionsystemsandgeologicseeps.276

261. Karionetal’s(2013)studyofatmosphericmeasurementsofCH4fromanaturalgasandoil

productionfieldinUtahin2012foundanemissionratethatcorrespondedto6.2%-11.7%ofaveragehourlynaturalgasproduction.277Thehighratesareexplainedbythefactthattheregionproducesmoreoilthangas(becausegasisnottheprimaryproduct,moremethaneisflaredorventedduetotheabsenceofgasinfrastructure).

262. Peischletal’s(2015)top-downmeasurementofmethaneoverseveralregions(representing

overhalfofUSshalegasproduction),foundemissionratesvaryingfromoneregiontothenext,andbeinggenerallylowerthanthosereportedinearlierstudies.278Methaneemissionsasapercentageoftotalgasextractedwas1.0–2.1%intheHaynesvilleregion,1.0–2.8%intheFayettevilleregion,and0.18–0.41%innortheastPennsylvania.Therelativelylowrateswerethoughttobedueinparttothecompositionofthefossilfuelextractedandtheuseofmoreefficienttechnology.Itshouldbenotedthatthesefiguresdonotincludeanestimateofemissionsduringthetransmissionandend-usestagesofthegassystem.TheauthorsnotethatrepeatedmeasurementswouldbenecessarytodeterminetheextenttowhichtheironedaymeasuresofCH4arerepresentativeofemissionratesoverthefulllifecycle,andwhytwenty-folddifferencesinlossratesacrossdifferentoilandgas-producingregionshavebeenreported.

263. Karionetal’s(2015)estimatesofregionalmethaneemissionsfromO&Goperations

(includingproduction,processinganddistribution)intheBarnettShale(Texas),usingairborneatmosphericmeasurements,foundmeasuresthatagreedwiththeEPAestimatefornationwideCH4emissionsfromthenaturalgassector,buthigherthanthosereportedbytheEDGARinventoryortheEPA’sGHGRP.279Theemissionsrateamountedto1.3−1.9%oftotalCH4production,whichislowerthanratesrangingfrom4to17%foundinotherstudies.280281282

276Peischletal2013.QuantifyingsourcesofmethaneusinglightalkanesintheLosAngelesbasin,California,JournalofGeophysicalResearch:Atmospheres,vol.118no.10pp.4974-4990,27thhttp://www.fraw.org.uk/library/extreme/peischl_2013.pdf277KarionA,etal.(2013)MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield.GeophysResLett,10.1002/grl.50811.278Peischletal,2015.QuantifyingatmosphericmethaneemissionsfromtheHaynesville,Fayetteville,andnortheasternMarcellusshalegasproductionregions,JournalofGeophysicalResearch:Atmospheres,vol.120pp.2119-2139,http://onlinelibrary.wiley.com/doi/10.1002/2014JD022697/pdf7279Karionetal,2015.Aircraft-BasedEstimateofTotalMethaneEmissionsfromtheBarnettShaleRegion,EnvironmentalScienceandTechnology,vol.49no.13pp.8124-8131.http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b00217280Karionetal2013.MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield.Geophys.Res.Lett.40(16),4393−4397281Peischl,J;etal.QuantifyingsourcesofmethaneusinglightalkanesintheLosAngelesbasin,California.J.Geophys.Res.:Atmos.2013,118(10),4974−4990.282Wennberg,P.Oetal.OnthesourcesofmethanetotheLosAngelesatmosphere.Environ.Sci.Technol.2012,46(17),9282−9289.

61

264. Lanetal(2015)quantifiedfugitiveCH4emissionsfrommorethan152facilities,including

wellpads,compressorstations,gasprocessingplantsandlandfillsfromONGoperationsintheBarnettShale.283Theyestimatedatotalwellpademissionrateof1.5×105kg/hinthearea,withratesbetweenindividualwellpadsrangingfrom0.009to58kg/handbeinglinearlycorrelatedwithgasproduction.Methaneemissionsfromcompressorstationsandgasprocessingplantsweresubstantiallyhigher,withsome“superemitters”havingemissionratesof3447kg/h,morethen36,000-foldhigherthanreportedbytheEPA’sGHGRP.Theemissionrateasaproportionoftotalgasproductionvariedfrom0.01%to47.8%withamedianandaveragevalueof2.1%and7.9%,respectively.

265. MeasurementsofmethaneemissionsbyLavoieetal(2015)ateightdifferenthigh-emitting

pointsourcesinOctober2013intheBarnettShale,Texas(fourgasprocessingplants,onecompressorstationandthreelandfills)werecomparedtootheraircraft-andsurface-basedmeasurementsofthesamefacilities,andtoestimatesreportedtotheEPA’sGHGRP.284Fortheeightsources,CH4emissionmeasurementswereafactorof3.2−5.8greaterthantheGHGRP-basedestimates.Summedemissionstotalled7022±2000kghr−1,roughly9%oftheentirebasin-wideCH4emissionsestimatedfromregionalmassbalanceflightsduringthecampaign.

266. Allenetal’s(2013)studywhichconsistedofdirectmeasurementsofmethaneemissionsat

190onshorenaturalgassitesintheUS(150productionsites,27wellcompletionflowbacks,9wellunloadings,and4workovers)alsofoundemissionsmeasurementsthatvariedbyordersofmagnitude.285However,theiroverallestimateofemissionsforcompletionflowbacks,pneumatics,andequipmentleaksamountedto0.42%ofgrossgasproductionwhichisconsiderablylowerthanotherfindingsfromotherstudiesandevenlowerthantheEPA’sinventory-basedrates.However,twopaperspublishedin2015haveindicatedthatthedatainAllenetal’spapermayhavebeenflawed.286

267. Goetzetal’s(2015)studyofthecompositionofairsamplesusingamobilelaboratoryfrom

sitesinNEandSWPennsylvania,includingover50compressorstationsand4,200wellsfoundmethaneemissionstobebetween4and23timesgreaterthantheupperrangeofwellpad

283Lanetal,2015CharacterizingFugitiveMethaneEmissionsintheBarnettShaleAreaUsingaMobileLaboratory,EnvironmentalScienceandTechnology,vol.49no.13pp.8139-8146284Lavoieetal2015Aircraft-BasedMeasurementsofPointSourceMethaneEmissionsintheBarnettShaleBasin,EnvironmentalScienceandTechnology,vol.49no.13pp.7904-7913,http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b00410285AllenDT,etal.(2013)MeasurementsofmethaneemissionsatnaturalgasproductionsitesintheUnitedStates.ProcNatlAcadSciUSA110(44):17768–17773.286 See: a) Howard T, Ferrarab TW, Townsend-Small A. Sensor transition failure in the high flow sampler:implications for methane emission inventories of natural gas infrastructure. J Air Waste Manag Assoc.2015;65:856–862;andb)39.HowardT.UniversityofTexasstudyunderestimatesnationalmethaneemissionsinventory at natural gas production sites due to instrument sensor failure. Energy Sci Eng. 2015;DOI:10.1002/ese3.81.

62

equipmentleakestimatesinAllenetal(2013).287Theauthorsarguedthatthelargedisparitybetweenthetwostudies“suggeststhatthereareotherfactorssuchasoperatingpractices,productionvolumedecline,locationofleaks,scheduledversusunscheduledmonitoring,aswellasthenumberandrepresentativenessofsitessampledthatmaybeimportantconsiderationswhencompilingabottom-upinventory".

268. Zavala-Aaraizaetal’s(2015)studyconstructedacustomisedbottom-upCH4inventoryinthe

Barnettregionthatwasbasedonextensivelocalmeasurementsoffacility-wideemissionsfromproductionsites,compressorstations,andprocessingplants;updatedfacilitycounts;andanexplicitaccountofthecontributionofhigh-emitters(theestimatedemissiondistributionsimplythat,atanyonetime,2%offacilitiesareresponsibleforhalftheemissions).288High-emittersweredividedroughlyequallyamongproductionsites,compressors,andprocessingplants.TheyestimatedthatCH4emissionsfortheBarnettregiontobe59MgCH4/h(48–73MgCH4/h;95%CI),withthethreemainsourcesbeingproductionsites(53%),compressorstations(31%),andprocessingplants(13%).Thisequatestoalossof1.5%(1.2–1.9%)oftotalBarnettproduction.Theirmeasureofemissionswas1.9timestheestimatedemissionsbasedontheEPA’sGreenhouseGasInventoryand3.5timesthatoftheGHGRP.

269. Theleakagerateislowenoughforgas-firedelectricityinthisregiontobelessclimate

forcingthancoal-firedelectricity.However,long-distancetransmissionandstorageofnaturalgasresultsinasubstantialincrementofCH4emissionsthatwouldneedtobeconsideredwhenanalysingtheclimateimplicationsofnaturalgasconsumptioninregionsthatarenotproximatetoaproductionarea.289

270. Zavala-Aaraizaetalnotethatmoreworkisneededtounderstandthecharacteristicsthat

causeanindividualsitetobeahigh-emitter.Theyalsonotethatthechallengefacingoperatorsisthathigh-emittersarealwayspresent(atthebasinscale)butoccuratonlyasubsetofsitesatanyonetime,andmovefromplacetoplaceovertime.

271. Lyonetal(2016)usedaspatiallyresolvedemissioninventory,tomeasuremethane

emissionsfromtheO&GindustryandothersourcesintheBarnettShaleregioninOctober2013.290Theywereestimatedtobe72,300(63,400−82,400)kg/hrofwhich46,200(40,000−54,100)kg/hrwereO&Gemissions(64%ofthetotal).About19%ofemissionscamefromfat-tailsitesrepresentinglessthan2%ofallsites.ThemeasuredestimatewashigherthantheEPAGreenhouseGasInventory,theEPA’sGHGRP,andtheEmissionsDatabaseforGlobal

287GoetzJ,FloerchingerC,FortnerEetal,2015..AtmosphericemissioncharacterizationofMarcellusShaleNaturalGasDevelopmentSites.288Zavala-Aaraizaetal(2015)ReconcilingdivergentestimatesofoilandgasmethaneemissionsPNAS|December22,2015|vol.112|no.51|15597–15602289Zavala-Aaraizaetal(2015)ReconcilingdivergentestimatesofoilandgasmethaneemissionsPNAS|December22,2015|vol.112|no.51|15597–15602290Lyonetal,2015.ConstructingaSpatiallyResolvedMethaneEmissionInventoryfortheBarnettShaleRegion,EnvironmentalScienceandTechnology,vol.49no.13pp.8147-8157,http://pubs.acs.org/doi/pdf/10.1021/es506359c

63

AtmosphericResearch(EDGAR)byfactorsof1.5,2.7,and4.3,respectively.Theirestimatedemissionratewasequivalentto1.2%(1.0−1.4%)ofgasproduction.

272. Astudyofglobalandregionaltrendsinatmosphericmethanebetween2003and2012by

Schneisingetal(2014)foundthatmethaneconcentrationshadrisendramaticallyinthenorthernhemisphere.291ByevaluatingtrendsindrillingandhydraulicfracturingactivityintwolargeshaleregionsintheUS(theEagleFordinTexasandtheBakkeninNorthDakota),theauthorsestimatedmethaneemissionratesof9.5%(±7%)intermsofenergycontentduringthe2009–2011period.

273. Fugitiveemissionsfromabandonedwellshavealsobecomeagrowingconcern.Inastudy

whichinvolveddirectmeasurementsofmethanefluxesfromabandonedO&GwellsinPennsylvania,muchhighermethaneflowrateswerefoundwhencomparedtocontrollocations.292Threeoutof19measuredwellswerehighemittersandhadmethaneflowratesthreeordersofmagnitudelargerthanthemedianflowrate.GiventhattherearemillionsofabandonedwellsacrosstheUS,thismaymeanthattherearetensorhundredsofthousandsofhighemittingwells.Theauthorsrecommendthatmeasurementsofmethaneemissionsfromabandonedwellsbeincludedingreenhousegasinventories.

274. Astudyoffugitiveemissionsofmethanefromformeronshore(conventional)O&G

explorationandproductionintheUKselected66%(n=102)ofallwellswhichappearedtohavebeendecommissioned(abandoned)from4differentbasinsandanalysedthesoilgasaboveeachwellrelativetoanearbycontrolsiteofsimilarlanduseandsoiltype.293Ofthesewells,30%hadCH4levelsatthesoilsurfacethatwassignificantlygreaterthantheirrespectivecontrol.Conversely,39%ofwellsiteshadsignificantlylowersurfacesoilgasCH4concentrationsthantheirrespectivecontrol.TheauthorsinterprettheelevatedsoilgasCH4concentrationstobetheresultofwellintegrityfailure.Thedatasuggestameanfugitiveemissionof364±677kgCO2eq/well/year.Inthisstudy,allthestudysiteshadbeendecommissionedinlinewithbestpracticerecommendations.Theauthorsnotethatwellswhichhavenotbeenappropriatelydecommissionedarelikelytoemitgreaterlevelsofmethane.Thepotentialfordiffuseleakageintothesurroundinggroundwaterandoverabroaderareamightmeanthatthereallevelofmethaneleakageisgreater.

291SchneisingO,BurrowsJP,DickersonRR,BuchwitzM,ReutersM,BovensmannH.RemotesensingoffugitiveemissionsfromoilandgasproductioninNorthAmericantightgeologicalformations.EarthsFuture,2014;2:548–558292Kangetal,2014DirectmeasurementsofmethaneemissionsfromabandonedoilandgaswellsinPennsylvania.,PNAS,vol.111no.51pp.18173-18177,http://www.pnas.org/content/111/51/18173.full.pdf?with-ds=yes293Boothroydetal2016Fugitiveemissionsofmethanefromabandoned,decommissionedoilandgaswells,ScienceofTheTotalEnvironment,vol.547pp.461-469,http://www.sciencedirect.com/science/article/pii/S0048969715312535/pdfft?md5=28d125f6f39d20a2e7783d9dd6443062&pid=1-s2.0-S0048969715312535-main.pdf

64

275. TheobservedincreaseinatmosphericmethaneconcentrationsovertheUSparallelsglobaltrends.Theglobalburdenofatmosphericmethaneroseby1–2%inthe1970sand1980s,stabilizedinthe1990s,buthasbeenrisingagainsincethemid-2000s.294295

276. TheincreaseofUSmethaneemissionsbymorethan30%overthepastdecadeisamajor

contributiontothistrend.AccordingtoTurneretal(2016),USanthropogenicmethaneemissionscouldaccountforupto30–60%oftheglobalincrease.296CaultonetalalsoagreethatincreaseinanthropogenicCH4emissionintheUS,causedprimarilybynaturalgassystemsandentericfermentation,playasignificantpartintheseglobaltrends.297

277. The20%increaseinO&Gproduction(includinganinefoldincreaseinshalegasproduction)

from2002to2014isalikelycausefortheriseinmethaneemissionsseenintheUS,althoughabetterunderstandingofUSanthropogenicmethaneemissions,particularlythosefromthelivestockandO&Gsectors,isneededbeforeanydefinitiveconclusionscanbemade.

278. Atmosphericmethanemostlyarisesfromthreesources:biogenicmethaneproducedby

microbesfromorganicmatterunderanaerobicconditions(e.g.inwetlands,ruminants,andwastedeposits),thermogenicmethaneformedingeologicalprocessesandreleasedbyoilandgasproduction,andpyrogenicmethaneproducedbyincompletecombustionprocessessuchasinbiomassburning.Theriseinmethaneconcentrationsatthegloballevelisbelievedtobedrivenbyacombinationofincreasedbiogenicmethaneemissionsfromthetropicalwetlandsandgrowingoilandnaturalgasproduction.Thecontributionmadebyoilandgasoperationstotheoverallincreaseinmethaneconcentrationsisunclear.Hausmannetalhavesuggestedthataround40%oftherecentriseinatmosphericmethanebetween2007and2014canbeattributedtooilandgasactivities.298

279. Itisarguedthattechnologycanavoidorreducetheamountoffugitiveemissions.Methane

emissionsduringtheflowbackperiodcanpotentiallybereducedbyupto90%throughReducedEmissionCompletions(REC)technologies,althoughsuchtechnologiesarenotalwayseconomicallyviableorpracticable.Forexample,RECtechnologiesrequirethatpipelinestothewellareinplacepriortocompletionwhichmaynotalwaysbepossible.Theuseofbetterstoragetanksandcompressorsandimprovedmonitoringforleaksmayalsoreduceemissions.RECstechnologiesarenowcompulsoryintheUS,andwouldexpecttobesointheUK.

294Turneretal,2016.AlargeincreaseinU.S.methaneemissionsoverthepastdecadeinferredfromsatellitedataandsurfaceobservations,Turneretal.,GeophysicalResearchLetters(preprint),2016–http://onlinelibrary.wiley.com/doi/10.1002/2016GL067987/pdf295FrankenbergC,etal.(2011)Globalcolumn-averagedmethanemixingratiosfrom2003to2009asderivedfromSCIAMACHY:Trendsandvariability.JGeophysRes116(D4):D04302.296Turneretal,2016.AlargeincreaseinU.S.methaneemissionsoverthepastdecadeinferredfromsatellitedataandsurfaceobservations,Turneretal.,GeophysicalResearchLetters(preprint),http://onlinelibrary.wiley.com/doi/10.1002/2016GL067987/pdf297Caulton2013.Towardabetterunderstandingandquantificationofmethaneemissionsfromshalegasdevelopmentwww.pnas.org/cgi/doi/10.1073/pnas.1316546111298HausmannPetal,2016.Contributionofoilandnaturalgasproductiontorenewedmethaneincrease.Atmos.Chem.Phys.,16:3227–3244.

65

280. TheUKCCCalsonotesthattechniquesandtechnologiestomitigatefugitivemethaneexist

andinclude:reducedemissionscompletions(REC);andtheuseofaplungerliftsystemduringliquidunloadings,improvedpneumaticdevices,drysealcompressors,electrifiedcompressorsandvapourrecoveryunits;andtheadoptionofaneffectiveleakagedetectionandrepair(LDAR)programme.TheCCCclaimsthatalthoughacompleteavoidanceofsuper-emittersmaybeunachievable,operationalandmaintenanceprocedurescouldlargelyeliminatethesehighemitters.

M.RegulationandRiskManagement

Introduction

281. Regulationisonewaythatsocietyexpressesitspreferencesfordistributingthepotentialrisksandbenefitsassociatedwithanyindustrialoreconomicactivity(includingbetweencurrentandfuturegenerations).Itexpressesthewayinwhichweapplytheprecautionaryprinciple299andhowwevaluenatureandotherdimensionsoftheworldthathavenomarketvalue.

282. Giventherequirementofcommercialcompaniestomaximiseprofitasaprimarygoal(andthereforeseektoexternalisesocialandenvironmentalcostsasmuchaspossible),300regulationisimportanttoprotectthepublicinterestandensurethatcommercialoperatorsbehaveethicallyandsafely.Manywell-documentedcasestudiesfromavarietyofsectorsdescribehowtheimperativetomaximiseprofitresultsincompaniesignoringwarningsignalsaboutpotentialharmsanddangers,andconcealingriskinformationpriortotheemergenceofindustrialcatastrophes.301302Oilandgascorporationsarebelievedtobeespeciallyhostiletoregulationandreluctanttoacknowledgerisk.303

283. Companiesthatfacedifficultiesinsecuringaprofitwillbeplacedunderpressureto

compromiseonsafetyinordertominimisecosts.Thisiswhytheeconomicviabilityofshalegasproductionisanimportantfactortoconsiderfromahealthprotectionperspective.

284. Regulatorymechanismsincludelegalconstraintsthatlimitorprohibitcertainactivities;laws

thatprescribemandatorysafetystandards;andliabilityandtaxsystemsthataredesignedtoaligntheeconomicinterestsofcompanieswiththeinterestsofsociety.Forregulationtowork,

299ThePrecautionaryPrincipleisrecognisedasguidanceto'erronthesideofcaution'whenanactivityisbelievedtothreatenhumanhealthortheenvironment,evenifthereissomescientificuncertainty.SeeTicknerandRaffensperger(1998),ThePrecautionaryPrinciple:AFrameworkforSustainableBusinessDecision-Making,EnvironmentalPolicy,(5/4)75–82.300LeMenestrel,M.,2002,'EconomicRationalityandEthicalBehavior.EthicalBusinessbetweenVenalityandSacrifice',BusinessEthics:AEuropeanReview,(11/2)157–166. 301ChernovandSornette,2016.Man-madeCatastrophesandRiskInformationConcealment.Switzerland:SpringerInternaitonalPublichsing302EEA,2001,Latelessonsfromearlywarnings:theprecautionaryprinciple1896–2000,EnvironmentalissuereportNo22,EuropeanEnvironmentAgency.303KonschnikKEandBolingMK.Shalegasdevelopment:asmartregulationframework.EnvironSciTechnol2014;48:8404–8416.

66

theremustalsobemechanismsformonitoringtheactivitiesofcommercialcompaniesandassessingtheirimpactonpeopleandtheenvironment,andtheenforcementofappropriatesanctionsintheeventofnegligenceornon-compliancewithregulation.

RegulationandSGP

285. Inlinewithmanyotherindustrialprocessesandhumanactivities,SGPcannotbeconsideredtorisk-free.SGPwillleadtosomepollution,anditwillhavesomenegativesocialandeconomicimpacts.Thekeyquestioniswhethertherisksandharmsaredeemedacceptable–bothinabsoluteterms,butalsoinrelationtothepotentialbenefitsofSGP.

286. SGPisaparticularlydifficultindustrytoregulateforseveralreasons.Muchactivitytakesplaceundergroundandoutofsight.Therearemanysourcesandtypesofhazardandpollutantsmaybegeographicallydispersed.Theleakageofmethaneintotheatmosphereisespeciallyhardtodetect.Inaddition,shalegasoperationsmayinvolvemultiplecontractors(comprisingdrillingcompanies,hydraulicfracturingservicecompanies,chemicalsuppliers,wastehaulersandcementcontractors)whichmakescompliancedeterminationdifficult.

287. ProponentsofSGPclaimthatitissafeifregulatedproperly.AccordingtoPHE,thepotentialrisksfromexposuretotheemissionsassociatedwithshalegasextractionwillbelow“iftheoperationsareproperlyrunandregulated”.304

288. ThereisalsoaviewthatregulationintheUKisbetterthanintheUSA.Theindustry-funded

TaskForceonShaleGasissatisfiedthat“currentregulationsintheUKareadequateandonthewholearemorerigorousandrobustthanthoseinoperationintheUS”.Similarly,PHEstatedthatconcernsandproblemsassociatedwithSGPintheUS“aretypicallyaresultofoperationalfailureandapoorregulatoryenvironment”andthatshalegasdevelopersandoperatorsintheUKcanbereliedupon“tosatisfytherelevantregulatorsthattheirproposalsandoperationswillminimisethepotentialforpollutionandriskstopublichealth”.305

289. However,athoroughandindependentassessmentoftheadequacyoftheregulatorysystem(includingthecapacityofregulatoryagencies)forshalegasintheUKhasnotbeenconducted.

304KibbleA,CabiancaT,DaraktchievaZ,GoodingTetal,2014.ReviewofthePotentialPublicHealthImpactsofExposurestoChemicalandRadioactivePollutantsasaResultofShaleGasExtraction.CentreforRadiation,ChemicalandEnvironmentalHazards,PublicHealthEngland.Availablefrom:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/332837/PHE-CRCE-009_3-7-14.pdf305KibbleA,CabiancaT,DaraktchievaZ,GoodingTetal,2014.ReviewofthePotentialPublicHealthImpactsofExposurestoChemicalandRadioactivePollutantsasaResultofShaleGasExtraction.CentreforRadiation,ChemicalandEnvironmentalHazards,PublicHealthEngland.Availablefrom:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/332837/PHE-CRCE-009_3-7-14.pdf

67

AnoverviewoftheregulatorysystemforSGPinEngland306

288. TheregulatorysystemforSGPinEnglandisspreadacrossanumberofnationalandlocalgovernmentagencies.ResponsibilityforoverallcoordinationofpolicyonunconventionaloilandgaslieswiththeDepartmentofEnergyandClimateChange(DECC),withinwhichtheOfficeofUnconventionalGasandOil(OUGO)existstoencourageunconventionaloilandgasexplorationandproduction.In2015,thegovernmentestablishedanewexecutiveagencycalledtheOilandGasAuthoritytotakeresponsibilityforregulatingoffshoreandonshoreoilandgasoperationsintheUK,includingoilandgaslicensing.Itspurposeis“toworkwithgovernmentandindustrytomakesurethattheUKgetsthemaximumeconomicbenefitfromitsoilandgasreserves”.

289. TheDepartmentforEnvironment,FoodandRuralAffairs(DEFRA)hasleadresponsibilityfortheenvironmentalaspectsofshalegaspolicy,whiletheDepartmentforCommunitiesandLocalGovernment(DCLG)isresponsibleforthelocalplanningsystem.OverallresponsibilityforclimatechangeandseismicitylieswithDECC.TheHealthandSafetyExecutive(HSE)whichreportstotheDepartmentforWorkandPensionsisresponsibleforensuringsafeworkingpracticesatandaroundthewellpad,includingsafeandproperwellconstruction.

290. OncePetroleumExplorationDevelopmentLicenceshavebeengrantedbyDECCto

operators,givingthemrightstodrillforshalegas,307operatorsmustobtainplanningpermissionfromthelocalMineralsPlanningAuthority(MPA),usuallylocatedintheplanningdepartmentsofcountycouncils.

291. TheoperatormustalsoconsulttheEnvironmentAgency(EA),anexecutivenon-departmentalpublicbodysponsoredbyDEFRA,whichisresponsibleforregulationofairemissionsandtheprotectionofwaterresources(includinggroundwateraquifersandsurfacewater),andobtaintherequiredpermitsrelatedto,amongotherthings,waterabstraction;wastewaterdischarge;managementanddisposalofminingwastes,includingradioactivematerial;andflaringandventing.

292. Thefocusofthelocalplanningsystemisonwhetherthedevelopmentisanacceptableuseofthelandandtheimpactsofthoseuses,ratherthanonanycontrolprocesses,healthandsafetyissuesoremissionsthataresubjecttoapprovalunderotherregimeswhichlocalauthoritiesshouldassumeareoperatingeffectively.

293. TheUKhasa‘goal-settingapproachtoregulation’inwhichoperatorsarerequiredtodemonstratethatrisksrelatingtooilandgasoperationsarereducedto‘aslowasreasonablypracticable’,suchthattheymovebeyondminimumstandardsinacontinuouseffortforimprovement.

306TherearesomedifferencesintheregulatorysystemsandapproachesacrossthefourhomenationsoftheUK.ThefocusofthissectionisontheEnglishsystem.307Thelicencesalsocoverconventionalexplorationandproductionofhydrocarbons.

68

294. Intermsofstandardsandbestpracticeguidelines,theUnitedKingdomOnshoreOperatorsGroup(UKOOG),therepresentativebodyforUKonshoreoilandgascompanies,publishedupdatedguidelinesinJanuary2015,butonlyfortheexplorationandappraisalphaseofshalegasexploitation.308

295. A‘regulatoryroadmap’publishedbyDECCinDecember2015providesanoverviewof

regulationandbestpracticerelatedtothelicensing,permittingandpermissionsprocessforonshoreoilandgasexplorationandappraisal,butnotfordevelopmentandproduction,norfordecommissioning,restorationandaftercare.309

296. DrafttechnicalguidancepublishedbytheEAtoclarifywhichenvironmentalregulations

applytoonshoreoilandgasexplorationandwhatoperatorsneedtodotocomplywiththoseregulationswasputouttopublicconsultationin2013.310TheresultsoftheconsultationwereonlymadepubliclyavailableinJuly2016.311

297. Currentregulationsstatethatanenvironmentalriskassessment(ERA)isrequiredforallshalegasoperationsasamatterofgoodpractice,andthatthisshouldinvolvetheparticipationofstakeholdersincludinglocalcommunitiesandaddressissuessuchasnoise,ecology,archaeology,siteaccessandvisualimpact,aswellasthedisposalofwastes,wellabandonmentandrisksofinducedseismicity.Anenvironmentalimpactassessment(EIA)isonlymandatory“iftheprojectislikelytohavesignificantenvironmentaleffects”.

298. Operatorsarethenrequiredtopresentanenvironmentalstatement(ES)tothelocal

planningauthority.Thiswoulddescribethedesignandsizeofthedevelopment,incorporatefindingsfromtheERAandEIAandoutlinethemeasuresenvisagedforavoiding,reducingand,ifpossible,remedyinganysignificantadverseeffects.Itshouldalsoincludethedatarequiredtoidentifyandassessthemaineffectsthatthedevelopmentislikelytohaveontheenvironmentandoutlinetheplansformitigatingsucheffectsandthesuggestedenvironmentalmanagementandmonitoringschemetobefollowed.

299. Ifplanningpermissionisgranted,theHSEmustbenotifiedatleast21dayspriortoany

drillingcommencingsothatitcanassessthedesignandconstructionofthewell(s)andthe

308UKOOG,2015.GuidelinesforUKWellOperatorsonOnshoreShaleGasWells.http://www.ukoog.org.uk/images/ukoog/pdfs/ShaleGasWellGuidelinesIssue3.pdf309DECC,2015.OnshoreOilandgasExplorationintheUK:RegulationandBestPractice.Availableathttps://www.gov.uk/government/publications/regulatory-roadmap-onshore-oil-and-gas-exploration-in-the-uk-regulation-and-best-practice310EnvironmentAgency,2013.DraftTechnicalGuidanceforOnshoreOilandGasExploratoryOperations.https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/297024/LIT_7983_3b53c2.pdf311EnvironmentAgency,2016.OnshoreOilandGasExploratoryOperations:TechnicalGuidance.Asummaryofconsultationresponses.https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/538472/Onshore_oil_and_gas_technical_guidance_summary_of_consultation_responses.pdf

69

proposedmeasuresforcontrollingmajorhazards.Itisalsoexpectedtocontinuemonitoringoperationsbyreviewingweeklyreportssubmittedbythewelloperator.

300. Healthandsafetylegislationrequiresawelltobedesignedandconstructedsuchthat,sofarasreasonablypracticable,thereisnounplannedescapeoffluidsfromit.Theoperatormustarrangeanexaminationofthewelldesignbyanindependent,competentwellexaminer.

301. TheInfrastructureActrequiresaperiodofgroundwatermonitoringpriortothe

commencementoffracking.Thenon-bindingUKOOGCodeofPracticealsocommitscompaniestosomebaselinemonitoring,whiletheShaleGasTaskForcerecommendsthat“baselinemonitoring–forground,airandwater–shouldbeginwhenasitehasbeenidentified,beforetheenvironmentalpermittingandplanninghavebeenobtained”Theyalsorecommendthat“monitoringofgas,casingpressureandsoilshouldtakeplaceforthedurationofoperationsonawell”.

302. Operatorsarerequiredtodescribethecontrolandmitigationmeasuresforfracture

containmentandforanypotentialinducedseismicity.ThisincludestheproposeddesignofthefracturegeometryshouldbeincludedintheHFP,including(fracturing)targetzones,sealingmechanism(s)andaquifers(freshandsaline),soasnottoallowfracturingfluidstomigratefromthedesignedfracturezone(s).Duringdrilling,atrafficlightsystemformonitoringinducedseismicityisrequiredtomitigateinducedseismicity.

303. Inadditiontostatutoryreporting,operatorsareexpectedtokeeprecordsof:

• Geologicalinformation,includingtheproposeddepth(s)ofthetopandthebottomoftheformationintowhichwellfracturingfluidsaretobeinjected

• Informationconcerningwatersupply,usage,recyclingandreuse• Adetaileddescriptionofthewellfracturingdesignandoperations• Adetailedpost-fracturejobreport

301. Thecompositionandpotentialtoxicityoffrackingfluidhasreceivedmuchpublicattention.DECCguidancestatesthat“operatorswilldisclosethechemicaladditivesoffracturingfluidsonawell-by-wellbasis”.

302. Whenitcomestowastewatermanagement,theEAstatesthatoperatorsshouldaimto:a)reducetheamountofwastegenerated;b)encouragethereuseofwastefluidswhereverpossible;andc)reducetheneedforfreshwaterandwatertreatmentfacilities.Forcontaminatedflowbackfluids,EAguidancestatesthatre-useisthepreferredoption,butifcannotbere-used,itmustbesenttoanappropriatepermittedwastefacilityfortreatmentanddisposal.

303. AlthoughtheEAhaspreviouslystatedthatdisposalofflowbackfluidbyre-injectingitintotheshalestratawouldbeprohibited,itnowstatesthatitmaybepermissible“where,for

70

example,itisinjectedbackintoformationsfromwhichhydrocarbonshavebeenextractedandwillhavenoimpactonthestatusofwaterbodiesorposeanyrisktogroundwater.”312

304. GuidancepublishedbytheEAmakestheuseof‘reducedemissioncompletions’technologyarecommendedpractice.TheTaskForceonShaleGasnotesthattheUShasrecentlymandatedtheuseofgreencompletions,andrecommendsthatthesamepolicybeadoptedintheUKfor‘productionwells’(asgreencompletionsarenotfeasiblefor‘exploratorywells’thatwillrequiresomeflaringofgas).

305. Oncompletionofdrillingoperations,awellmaybesuspendedtoallowforfuturetestingor

abandoned.Ifabandoned,thesitemustberestoredandaperiodofaftercareconductedtoensurethelandreturnstoastatethatisthesameorbetterthanitwaspriortooperationscommencing.

306. Beforewellscanbeabandoned,theymustbesecurelysealedtopreventleakagefromwithinthewellbore.Cementispumpedintotheproductioncasingandasteelcapisfittedtothetopofthewelltosealitoff.ThereisarequirementthattheHSEisnotifiedwhenwellsareabandonedandthattheprocesscomplieswithOilandGasUKguidelines.

307. Operatorsarealsorequiredtohaveaclosureandrehabilitationplan(torestorethesitetoa

statesimilartothatbeforedrilling)whichmustbeagreedbytheEAbeforedecommissioningbegins.OperatorswillnotbeallowedtosurrendertheirpermituntiltheEAissatisfiedthatthereisnoongoingrisktotheenvironment.TheMPAisresponsibleforensuringthewellsareabandonedandthesiteisrestored.Inthecaseofanoperatordefaulting,planningguidancestatesthatthelandownerwillthenberesponsibleforrestoration.313

ConcernsabouttheregulatorysystemThegeneralapproachtoregulation

305. BecauseSGPisanewandgenerallyuntestedactivityintheUK,itisreasonableforregulationtoevolvewithexperience.However,itisnotablethatinseekingtoencourageSGPintheUK,thegovernmenthassoughttoremoveorreduceregulatorybarriersfacingO&Ginvestorsandoperators.

308. Forexample,newtextwrittenintheUKInfrastructureAct,2015(underSection4A)has

changedthedefinitionoffrackingsothatthecontrolscontainedintheActandassociatedsecondarylegislationwillonlyapplytowellsthatmeetthiscriteria.Frackingisnowdefinedas

312http://energyandcarbon.com/uk-failing-lessons-fracking-waste-water/#_ftn24313DepartmentforCommunitiesandLocalGovernment,PlanningPracticeGuidanceforOnshoreOilandGas(July2013)pg17.para.76andinthe2014guidanceavailableathttp://planningguidance.communities.gov.uk/blog/guidance/minerals/restoration-and-aftercare-of-minerals-sites/

71

thehydraulicfracturingofshalewhichinvolves,orisexpectedtoinvolve,theinjectionof‘morethan1,000m3offluidateachstage,orexpectedstage,ormorethan10,000m3intotal.314

309. AccordingtoGillfillamandHaszeldine,thereisnoexplanationastohoworwhythese

numberswerechosen,orwhyvolumesoffluidarechosenatallasthebasisfordefiningfracking.Bythisdefinition,almosthalfthegaswellsthathavebeenhydraulicallyfracturedintheUSoverthisdecadewouldnotbeclassifiedashavingbeenfracked.315

310. Thegovernmenthasalsodecreedthatapplicationsforplanningpermissionmustnowbe

determinedwithin16weeksandthatifaplanningauthorityfailstomeetthisdeadlineorrejectsanapplicationongroundsthatareinconsistentwiththelocalplanornationalguidance,applicantsmayappealandbeawardedcosts.TheEAalsohastonowsubmitreportsaboutenvironmentalrisktocouncilswithinsixteen-weeks.

311. Atthesametime,thepowersoftheSecretaryofStatetocallinapplicationsanddecideonallappealsrelatingtoonshoreoilandgas,potentiallyover-ridinganylocalconcerns,havebeenincreased.The2015InfrastructureActhasalsorelaxedtherequirementforshalecompaniestoseekpermissionofhomeownerstodrillundertheirland.

312. TheimplicationsofBrexitarealsorelevant.TheUKwillneedtoconsiderwhetheritwantstorepeal(totallyorpartially)orchangeanylawsorregulationthatstemfromtheEU.Thisincludesanumberofdetailedenvironmentalstandardsthatsetoutbestavailabletechniquesforprotectingtheenvironmentwhenconductingavarietyofactivitiesoroperations.

313. TheextenttowhichtheUKcanamendorrepealenvironmentallawwilldependonthetypeoftraderelationshipthatisestablishedwiththeEU.IftheUKadoptsaNorwaystylemodel,EUregulatoryregimesforwater,air,chemicals,waste,noise,climatechange,energyefficiency,andtechnicalregulationsandstandards(includingREACH)wouldcontinuetoapply.ButifitleftwithoutatradedealandoperateslikeChinaandtheUS,theUKwouldnotbedirectlyboundbyEUrulesonenvironmentalregulation.

314. However,itisofnotethattheUKhasbeensubjecttonumerouscriticismsforitsnon-compliancewithEUenvironmentalstandards.RecentlytherehavebeenlegalchallengesovertheUKsfailuretomeetairqualitystandards.Furthermore,EUenvironmentalstandardshavebeensubjectedtomuchcriticismfromUKbusinesses.

Riskassessments

314Hydraulicfracturingatawellpadforhorizontalshalegaswellsisnota“oneshot”process,butisperformedinstages,asthelengthoftheboreholesusuallyexceedsseveralkilometres.Sectionsof20-40metresareblockedoffalongthehorizontalwell(packed)andthenfrackedinstages.315http://energyandcarbon.com/whats-in-a-name-the-risks-of-re-defining-fracking/

72

315. Theframeworkforriskandimpactassessmentsisnotcomprehensive.Forexample,itexcludestheneedforcomprehensivesocialandeconomicassessments,includinganassessmentoftheimpactofSGPonothereconomicactivitiessuchastourismandagriculture,aswellastheopportunitycostsincurredbyencouraginganonshoreshalegasindustry.Inaddition,planningapplicationsandriskassessmentsareconductedinapiecemealway,focusingonindividualsitesoneatatime.Thisavoidsanycumulative,holisticandcomprehensiveassessmentoftheimpactofSGP.

Regulatorycapture

316. TheUKsystemsforbothregulatingandencouragingthedevelopmentofashalegasindustryappeartobeheavilyintertwined.MuchoftheregulatoryapparatusappearstobetiedtoprocessesdesignedtofacilitatetheemergenceofashalegasindustryintheUK,raisingquestionsabouttheextenttowhichregulationisindependentoftheindustryandadequatelyfocusedonpublicandenvironmentalprotection.

317. Generallyspeaking,theapproachtoregulationisalsoheavilyreliantonself-monitoringbytheindustry.Forexample,althoughan‘independentandcompetentperson’isresponsibleforexaminingtheintegrityandqualityofwelldesignandconstruction,therobustnessofthissystemisquestionablebybecausethisindependentpersonmaybepaidoremployedbytheoperator,andbecausethereviewandexaminationofwellspecificationsanddesignisconductedasapaperexerciseandbasedoninformationsuppliedbytheoperator.Assuch,thereisnomandatoryandindependentoversightoftheactualconstructionofwells,norprovisionforunannouncedspotchecksofwellintegrityacrossthelifecycleofawell,includingafterabandonment.

318. IndependentinspectionforwellintegritywasrecommendedbytheRoyalSocietyand

AcademyofEngineering,andtheindustry-fundedShaleGasTaskForcenotedthatitisimportantnottorelysolelyonself-monitoringandself-reportingbytheoperator,andthat“regular(andsometimesrandom)visitsandinspectionsbytheregulators”isadvisable.However,mandatoryandindependentinspectionofwellswasrejectedduringthepassageoftheInfrastructureAct.

319. Asfaraslocalgovernment’sresponsibilityfordecidingwhetherornotaparticularproposed

drillingandfrackingapplicationshouldgoahead,reasonableconcernsexistaroundcountycouncilslackingin-housegeologicalexpertiseorthetimeandmoneytoseekindependentadvice.Alltoooftentheyarereliantontheinformationprovidedbytheapplicant.

Drilling

320. Whenitcomestodrilling,thecurrentregulationsmaynotbestringentenoughgiventhefaultednatureoftheUKgeologyandtheexperienceoffrackinginPreeseHall.AlthoughtheproblemsatPreeseHallhavebeenpartlymitigatedbytheintroductionofa'trafficlight'systemofseismicmonitoringduringfracking,itisnotclearifthisonitsownissufficienttoensuresafedrilling.

73

321. Moredetailedandstringentoperatingrequirements(e.gmoredetailedgeophysicalsurveys

usingnewtechniquesforimagingfaults,andclosermonitoringofseismicdataduringdrilling)mayneedtobespecified.Itmayalsobeprudenttoprohibitfrackingaltogetherinareaswherefaultspenetratethefullthicknessoftheoverburden.Intermsofprotectinggroundwaterfromcontamination,whilecurrentlawsandregulationsprohibitanydrillingin‘sourceprotectionzones’,itmaybenecessarytospecifyminimumstand-offdistances.

Chemicalcompositionoffrackingfluids

318. Whiletherearereassuringrequirementsforthedisclosureofchemicaladditivestofrackingfluid,itisunclearifoperatorswillpubliclydisclosetheexactcompositionandquantityofrackingfluidandindividualadditives.

Managementofwastewaterandreinjection

319. Thepotentialseismichazardposedbynewproposalstoallowthedisposalofwastewaterbyinjectionintothegroundisaconcern.IntheUS,re-injectionisthemostcommonandeconomicallyviablesolutiontodealwithflowbackwastewatersbut,inadditiontoinducedearthquakes,thepracticehasalsoresultedinenvironmentalcontaminationthroughsurfacespillsandleakywells.316

320. AreviewbyEllsworth(2013)ofinjection-inducedearthquakesassociatedwithSGPconcludesthatearthquakescanbeinducedbybothhydraulicfracturingandthesub-surfacedisposalofwastewater.317WithinthecentralandeasternUnitedStates,theearthquakecounthasincreaseddramaticallyoverthepastfewyears.Severalcasesofearthquakes(associateddirectlywithfracking)werelargeenoughtobefeltbuttoosmalltocausestructuraldamagehavebeenreported.However,mostoftheconcerncentersontheinjectionofwastewater,andnotfrackingitself.Hearguesthatbetterknowledgeofthestressandpressureconditionsatdepth;thehydrogeologicframework,includingthepresenceandgeometryoffaults;andthelocationandmechanismsofnaturalseismicityareneededtodevelopapredictiveunderstandingofthehazardposedbyinducedearthquakes.

321. Thepotentialpermittingofinjectionforflowbackfluidsisalsoworryingbecauseofthelack

ofresearchonthecompositionsofthewastewaterandpotentialchemicalreactionsinthesubsurface.

322. Shouldhighvolumere-injectionactivityofflowbackfluidbecarriedoutintheUK,itwouldneedtobecarefullymonitored.AnarticlewrittenbyacademicsfromEdinburghUniversitystronglyrecommendthataresearch-basedcodeofbestpracticebeestablishedtoreducethe

316http://energyandcarbon.com/uk-failing-lessons-fracking-waste-water/#_ftn24317EllsworthW,2013.Injection-inducedearthquakes,Science341(6142),doi:10.1126/science.1225942.

74

riskofenvironmentalcontaminationbeestablishedbeforeanyflowbackfluidre-injectionpermitsaregranted.318

Baselinemonitoring

323. AlthoughtheimportanceofenvironmentalbenchmarkingiswellrecognisedintheUKandsomeemphasishasbeenplacedonbaselinemonitoring,thereisstillalackofclarityandspecificationoverthescope,quality,frequencyandstandardsofmandatorymonitoring.Worriesaboutthelackofmandatoryminimumstandardsforthemonitoringofairpollutants,includingfugitivemethaneemissions,isunderstandablegiventhefactthatthereiscurrentlynodataregardingtheamountofgasventedbyexistingoilandgasoperationsintheUK.319

Abandonedwells

324. Atpresentitisnotclearwhowillmonitorwellsforleakageaftertheyhavebeenabandoned.TheShaleGasTaskForcenotesthattheGovernmentneedsto“clarifywhereresponsibilityforthecontinuedmonitoringanddocumentationofsealed-offsitesshouldlie”.Theyalsostatethat“itisnotclearwhoisresponsibleforanyissuesaroundanabandonedwelliftheoperatorhasgoneoutofbusinessatthetimewhenaleakorcontaminationhasbeenidentified”,andthatevencurrently,“thereislittlemonitoringofabandonedwells”intheUK.

325. Giventhatwellsmayleak(gasandliquid)foruptothirtyyearsaftertheyhavebeenpluggedandabandoned,320thelongtermmonitoringofabandonedwellsisalsoanissue.TheTaskForceonShaleGashasproposedthatwellsbeinspectedtwotothreemonthsaftertheconcreteplugshavebeeninsertedintothewell,andthatfurtherinspectionsfocusonsoilmonitoringandgroundwatermonitoring“atasuitablerecommendedinterval”and“ifthereisanyreasontobelievethatwellintegritymightbecompromised”.

Sanctionsregime

326. Theproposaltorequirecompaniestosecureabondtoinsurethemagainstthecostofanypotentialliabilityhasnotbeenadoptedaspolicy.Thereareinadequatesafeguardstopreventfrackingoperatorsfrompassingtheownershipandliabilityofcommerciallynon-viablewellsontosubsidiarycompaniesthatsubsequentlygointoadministrationshortlyafter.

327. Althoughtheindustryhasstatedthatitwilldevelopaninsurancemechanismtocoverfull

liabilityintheeventofapollutionincident,thisisanon-bindingpromiseandwould,inanycase,offerweakerprotectionthanalegally-mandatedbondagreementthatwouldcoverthecostsof

318HaszeldineS,GilfillanSandO’DonnellM,2016.UKFailingtoLearnUSLessonsonFrackingWastewater.http://www.talkfracking.org/news/uk-failing-to-learn-u-s-lessons-on-fracking-waste-water/319StamfordandAzpagic,2014.LifecycleenvironmentalimpactsofUKshalegas.AppliedEnergy134(2014)506–518320KangM,KannoCM,ReidMC,ZhangXetal,2014.DirectmeasurementsofmethaneemissionsfromabandonedoilandgaswellsinPennsylvania.PNASvol.111no.51:18173–18177,doi:10.1073/pnas.1408315111

75

decommissioning,faultywellremediation,andcompensationforpossiblepollutionofwaterresources,depreciationoflandandhouseprices,andearthquakedamage.

Capacityofregulatorybodies328. ItisfrequentlystatedthatregulationoftheoilandgasindustryintheUKisofahigh

standardandbetterthanintheUS.Inreality,theregulatorysystemintheUSvariesconsiderablyfromstatetostate,andinsomeinstances,regulatorystandardsmaybemorestringentthanintheUK.ItisworthnotingthatNewYorkStatehasactuallybannedSGPonthegroundsthatitwouldbeharmfultohealth.

329. Thelastfewyears,however,haveseendeepcutstothebudgets,staffingandexpertiseofarangeofregulatoryagencies.

330. Localgovernmentbudgetsandcapacityhavebeenparticularlyhardhit,includingthose

relatedtopublichealth.AccordingtotheNationalAuditOffice,therehasbeena37%estimatedreal-termsreductioningovernmentfundingtolocalauthorities2010-11to2015-16.321Oncechangestocounciltaxincomearefactoredin,therehasbeenanestimated25%real-termsreductioninlocalauthorities’incomefrom2010-11to2015-16.Therehasalsobeena46%budgetedreal-termsreductioninspendingonplanninganddevelopmentservicesbetween2010-11and2014-15.

331. Netspendingbylocalauthoritiesonpublicservices(excludingspendingonpolice,fireandrescue,education,publichealthandasmallcomponentofsocialcare)inEnglandwascutby20.4%inrealtermsbetween2009-10and2014-15.Serviceareaswiththelargestcutsincludedplanninganddevelopment(cuttolessthanhalfitsoriginallevel),regulationandsafety,housing,andtransport(allofwhichwerecutbyatleast30%).Localauthoritiesareexpectedtofacefurthercutstorevenuesin2015-16.322

332. BudgetcutstotheEAhavealsobeensevere.AccordingtoUNISON,therehasbeena16%cutinthetotalgrantsmadein2009-10comparedto2013-14.323Takingintoaccountaninflationrateof11%;thisisequivalenttoacutofnearly25%inrealterms.Thousandshavejobshavebeenlostinthisperiod.324

333. TheHSEbudgetwascutby13%from£228millionin2009–2010to£199millionin2011–2012.Itsstaffnumberswerereducedby22%from3,702in2010to2,889upto2012.325

321FromNationalAuditOfficereport,Theimpactoffundingreductionsonlocalauthorities,November2014.https://www.nao.org.uk/wp-content/uploads/2014/11/Impact-of-funding-reductions-on-local-authorities.pdf322DavidInnesandGemmaTetlow,2015.CentralCuts,LocalDecision-Making:ChangesinLocalGovernmentSpendingandRevenuesinEngland,2009/10to2014/15323https://www.unison.org.uk/at-work/water-environment-and-transport/key-issues/cuts-at-the-environment-agency/324http://www.endsreport.com/article/41653/environment-agency-cuts-surviving-the-surgeons-knife325WattersonandDinan,2015.HealthImpactAssessments,Regulation,andtheUnconventional

76

AccordingtoHSEchiefexecutiveGeoffreyPodgerin2010,‘thenumberofstaffhasfallendrastically,fromover4,200adecadeagotoaround2,200’.TheHSE’sAnnualReport&Accountsfor2014/15furthermorestateshowithasdelivereda40%realtermbudgetreductionfrom2011/12to2014/15.AccordingtoitsBusinessPlanfor2015/16,grantsprovidedbygovernmenttofundcertainactivitiesareplannedtoreducebyover£82min2015/16comparedto2011/12.TheextenttowhichdrillingwillbeproperlyscrutinisedbyspecialistwellsinspectorsfromtheHSE(oranynewbespokeregulator)isthereforeacontentiouspoint.

334. Thefiguresaboverelatetofundingcutsingeneral,anditwouldbenecessarytoassessthe

specificbudgetsandstaffingofthosedepartmentsdealingwithonshoreoilandgasinordertoassesstheadequacyofregulatorycapacityinmorepreciseterms.

N.EconomicandCommercialViability

322. The likely economic and commercial viability of a shale gas industry is an importantconsideration in shaping views about its the potential risks and benefits, and whether theindustryshouldbeactivelyencouraged.

323. Thespeedatwhichashalegasindustrymightdevelopisuncertain,dependingsignificantlyoneconomicfactorsaffectingitsprofitability,thetimerequiredforplanningandapproval,andtheextenttowhichpublicoppositionisaconstraint.Profitabilitywilldependontheunderlyingcosts of production, costs imposed by regulation, the composition of the gas produced, theproductivityof thewells,prevailingwholesalepricesand the taxation regime.Becausea largeproportionofproductioncostsarefixed,theunitcostsofproductionarehighlydependentonthequantityofoutput.

324. ThedevelopmentoftheshalegasindustryintheUStookplaceunderfavourableconditions

including: a) strong government investment in R&D and a favourable tax regime; b) a highnatural gas price; c) favourable geology; d) good knowledge of geology; e) a ‘light touch’regulatory regime; f) analreadywell-developedonshoreoil andgas sector; g) privatemineralownership;andh)apublicaccustomedtothesightofdrillingrigs.Theindustrywasalsoallowedtodevelopinawaywherewellsweredrilledlikeafactoryproductionline.326TheseconditionsarenotallpresentintheUK.327AccordingtotheCCC,thecostsofenvironmental,planningandsafetyregulationarelikelytobehigherthanintheUS.

GasIndustryintheUK:ExploitingResources,Ideology,andExpertise.JournalofEnvironmentalandOccupationalHealthPolicy0(0)1–33.326The‘factoryproductionline’styleofshalegaswellsintheUSenabledalargenumberofwellstobedrilledquicklyatareducedcost.Multilateralshalewellsaddcomplexitytowelldesignandconstructionandisstillatarelativelyearlystageofdevelopment,accordingtotheCCCwhosuggestthatitisreasonabletoassumeshalewellsintheUKwillnotutilisethistechnology,atleastintheearlystagesofadomesticindustrydeveloping.327StevensP,2013.ShaleGasintheUnitedKingdom.London:ChathamHouse.https://www.chathamhouse.org/sites/files/chathamhouse/public/Research/Energy,%20Environment%20and%20Development/131213shalegas.pdf

77

325. It isalsoworthnotingthatInspiteoffavourablegeologyintheUS,thousandsof‘trialand

error’explorationwellsweredrilledintheUSbeforethe‘sweetspots’ofhighproductivitywereidentifiedandtheindustrytookoff.TheCCCestimatesthatitwouldtakeat leasttwoyearsofexplorationtoascertainthecommercialviabilityofshalegas,andpossiblyaslongas10years.328

326. Theproductivityofawelldependson itsgeological characteristics, lengthof the lateral(s)

drilledandthecompletiondesign.Productivitycanvaryacrossashaleformationbyafactorofup to ten.329Because theUKhasnoexploration flowdata, letaloneproductiondata, it isnotpossibletoevenspeculateonthelikelyproductivityofUKwells.

327. Similarly, the future price of gas is difficult to predict with confidence. The gas price in

DECC’sfossilfuelpricescenariosrangesfrom36to95p/thermfor2025.Forthesereasons,itisdifficulttostatewithanycertaintywhetherSGPwillbeeconomicinthe2020s.

328. IntheUS,SGProsetoaround50%ofoverallgasproductionin2014.Withlittleconnectivity

tointernationalmarketsthisaddedtosupplyforUSconsumption,andputdownwardpressureonprices.TheUK,however, ispartofahighlyconnectedgasnetworkacrossEurope,which isthe world’s largest importingmarket. Even UK shale gas production at the upper end of ourscenariosfor2030wouldbelessthan10%ofthisdemand,andwoulddolittletoreduceenergybills.Theweakerdownwardpressureonwholesalepricesdoes,however,meanthatprofitabilityof production is less likely to be undermined. This is in sharp contrast to the US experience,wherethefallingaspricesactedtolimittheprofitabilityoffurtherproduction.

329. In spite of the inherent uncertainty, various production scenarios for the UK have been

developed. The Institute of Directors (IoD, 2013), funded by Cuadrilla, built bottom-upproductionscenariosbasedonanassumednumberofwells,productivityassumptionsof0.62,0.83and1.0TWhper lateral,andthedrillingoffour lateralsperwell.330Thisprovidedarangeforproductionof250-410TWhperyearby2030.TheNationalGrid’sFutureEnergyScenariosassumed the samenumberofwells as the IoD reportbutproduceda lower rangeof180-360TWhperyearin2030.331AstudybyPöyry(2011)whichaccountedfortheimpactofeconomicfactors (e.g. production costs and wholesale gas prices) on productivity yielded a range for

328IDDRI(2014)UnconventionalWisdom,http://www.iddri.org/Publications/Collections/Analyses/Study0214_TS%20et%20al._shale%20gas.pdf9Gény(2010)CanUnconventionalGasbeaGameChangerinEuropeanGasMarkets?,https://www.oxfordenergy.org/wpcms/wp-content/uploads/2011/01/NG46-CanUnconventionalGasbeaGameChangerinEuropeanGasMarkets-FlorenceGeny-2010.pdf329IDDRI(2014)UnconventionalWisdom,http://www.iddri.org/Publications/Collections/Analyses/Study0214_TS%20et%20al._shale%20gas.pdfBrowningetal(2013),Barnettstudydeterminesfull-fieldreserves,productionforecast,Oil&GasJournal,http://www.beg.utexas.edu/info/docs/OGJ_SFSGAS_pt2.pdf330IOD(2013)GettingShaleGasWorkinghttp://www.iod.com/~/media/Documents/PDFs/Influencing/Infrastructure/IoD_Getting_shale_gas_working_MAIN_REPORT.pdf331NationalGrid(2015)FutureEnergyScenarios,http://fes.nationalgrid.com/

78

productionof15-50TWhperyearin2030.332Finally,Brodericketal(2011)producedproductionscenarios inwhich the highest scenario for productionwas around 30 TWhper year in 2030,implyingawellproductivityof1.1TWh.333

330. Thesestudiesprovideawiderangeofprojectionsofproductionextending from15to410TWhperyearin2030.Thisreflectsnotjustthedegreeofuncertaintyabouttheproductivityofashale gas industry in the UK, but alsomethodological differences (e.g. while the Pöyry studyincorporated the impact of economics on the rate of production, the others assumed afavourableeconomiccontext).

331. TheCCCuse0.52TWh/wellasthelevelofproductivitybelowwhichproductionmaybe

uneconomic.

332. UsinginformationfromtheUSEnergyInformationAssociation,Dalzellestimatesthatinitialproductionratesfromshalegaswellsappeartorangebetween1and11millioncubicfeetperday and 125–1370 million cubic feet in total.334 This would equate to a value of $430,000 -$4,800,000at currentwholesalepricesof $3.5per thousand cubic feet. These figuresoverlapestimates produced by the Institute of Directors' study of UK shale gas potential (initialproductionratesofabout2.5millioncubicfeetperdayandrecoverableresourcesofaround310millioncubicfeetperwell).

332Pöyry(2013)MacroeconomicEffectsofEuropeanShaleGasProduction,http://www.poyry.co.uk/sites/poyry.co.uk/files/public_report_ogp__v5_0.pdf333Brodericketal.(2011),Shalegas:anupdatedassessmentofenvironmentalandclimatechangeimpacts,http://www.tyndall.ac.uk/sites/default/files/coop_shale_gas_report_update_v3.10.pdf334DalzellC,2016.Theeconomicsofshalegasextraction.Glasgow:CommonWeal.

79

333. Dalzell also estimates that, based on studies that have calculated the lifetime costs of an

individualwelltorangebetween$3-8million,tobreakevenatthelowerboundof$3millionperwell,gaspriceswouldneedtobearound$10perthousandcubicfeet.Atthehigherboundof$8millionperwell,itwouldneedtobe$26perthousandcubicfeetwhichistwicetheall-timegaspricehighofabout$13perthousandcubicfeetseenin2008.Thus,heconcludesthatshalegasis unlikely to be economically viable in the current low hydrocarbon price environment andwouldrequiresignificantsubsidyorsignificantefficiencyprogressionbeforeitcouldbeso.

334. Assumingamethaneleakagerateof4%,theIOD'sestimateofgasproductionfromatypical

UKwellandastudywhichcalculatedtheeconomiccostofCO2emissionsat$220pershorttonofCO2,Dalzellestimatedthattheexternalisedeconomiccostsofshalegasproductionwouldbealittleunder$1.5million.

N.Climatechangeandhealth

GlobalWarmingandclimatechange 335. Theproductionandconsumptionofenergyhasbeenanimportantingredientforthe

remarkableimprovementsinhumanhealthwitnessedoverthepasttwocenturies.However,becauseofglobalwarming,fossilfuelnowpresentsamajorthreattohumanhealth.335

336. Theaveragegloballandandseasurfacetemperaturehasrisenbyabout1°Csincepre-industrialtimes.336Lagsintheresponseoftheclimatesystemtohistoricalemissionsmeanthattheworldisalreadycommittedtofurtherwarmingoverthecomingdecades.

337. TheprimarycauseforthisincreaseintemperatureisthereleaseofGHGemissions.About

70%ofallGHGemissionscanbelinkedtotheburningoffossilfuelfortheproductionofenergyservices,goodsorenergyextraction.337Agriculture,deforestationandcementusearealsoimportantcausesofglobalwarming.

338. ThemetriccommonlyusedtoquantifythetotalamountofGHGsintheatmosphereis‘giga

tonnesofCO2equivalent’(GtCO2e).ThisconvertsquantitiesofmethaneandotherGHGsintoameasurethatisequivalenttothedominantGHGwhichiscarbondioxide.

335Globalwarmingcausedbyhumanactivityisanincontrovertiblefact,backedbyempiricalevidenceandsoundscientifictheories.ItisdrivenbyGHGstrappingheatwithintheearth-atmospheresystem.336http://www.metoffice.gov.uk/research/news/2015/global-average-temperature-2015337Victor,D,Zhou,D,Ahmed,Eetal.IntroductoryChapter.in:OEdenhofer,RPichs-Madruga,YSokona,(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY;2014

80

339. About1600GtCO2ehasbeenemittedintotheatmospheresince1870.In2010,annualglobalGHGemissionswereestimatedat49GtCO2e.338

340. GlobalGHGemissionsfromheatandelectricityproductionandtransporthavetripledanddoubledrespectivelysince1970,whereasthecontributionfromagricultureandland-usechangehasslightlyreducedfrom1990levels.339

341. Theriseintemperatureincreasestheamountofenergyintheearth-atmospheresystemaswellastheamountofwaterintheatmosphere,bothofwhichleadtochangesintheweather.340

342. CO2(andsomeotherpollutants)alsocausesoceanacidificationwhichdamagesmarineorganismsandthreatensfreshwatersuppliesacrosstheworld.Theeffectoficemeltingandwaterexpansion(causedbytemperaturerise)andsubsequentsealevelriseisanotherimportantdimensionofglobalwarming.

Impactsonglobalhealth

343. Theimpactsofglobalwarmingonhealthcanbedirect(eg,heatwaves;extremeweathereventssuchasastorm,forestfire,flood,ordrought;andsealevelrise),orindirect,mediatedthroughtheeffectsofclimatechangeon,amongstotherthings,foodproductionsystems,economies,forcedmigrationandincreasinglevelsofconflictandviolence.

344. Therearealreadyobservedimpactsofclimatechangeonhealth.Thereisawell-established

relationshipbetweenextremehightemperaturesandhumanmorbidityandmortality341andstrongevidencethatheat-relatedmortalityisrisingacrossarangeoflocalities.342

345. Heatwavesandincreasesintheincidenceofextremeheatareprojectedunderallfuturescenariosofclimatechange.343Heatposessignificantriskstooccupationalhealthandlabour

338Summaryforpolicymakers.in:OEdenhofer,RPichs-Madruga,YSokona,(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY;2014339Bruckner,T,Bashmakov,I,Mulugetta,Yetal.EnergySystems.in:OEdenhofer,RPichs-Madruga,YSokona,(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY;2014340McCoyDandHoskinsB,2014.Thescienceofanthropogenicclimatechange:whateverydoctorshouldknow.BMJ2014;349doi:http://dx.doi.org/10.1136/bmj.g5178341Aström,C,Orru,H,Rocklöv,J,Strandberg,G,Ebi,KL,andForsberg,B.Heat-relatedrespiratoryhospitaladmissionsinEuropeinachangingclimate:ahealthimpactassessment.BMJOpen.2013;3:e001842342Smith,KR,Woodward,A,Campbell-Lendrum,Detal.Humanhealth—impactsadaptationandco-benefits.Climatechange2014:impacts,adaptation,andvulnerabilityWorkingGroupIIcontributiontotheIPCC5thAssessmentReport.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014343Patz,JA,Campbell-Lendrum,D,Holloway,T,andFoley,JA.Impactofregionalclimatechangeonhumanhealth.Nature.2005;438:310–317

81

productivityinareaswherepeopleworkoutdoorsforlonghoursinhotregions.344Lossofagriculturalproductivitythroughimpairedlabourwillamplifydirectclimatechangebyimpactingnegativelyonfoodproduction.345

346. OnestudyestimatesthattheeffectsofheatcouldcostChinaandIndiabyasmuchas

US$450billionin2030.346Althoughtheremaybemodestreductionsincold-relateddeathsinsomepartsoftheworld;attheglobalscale,thesebenefitswillbeoutweighedbyheat-relatedmortality.347

347. Heatwavesalsocarryrisksforthewiderenvironment.Forexample,thesummer2010

heatwaveinRussia348wasaccompaniedbymorethan25,000firesoveranareaof1·1millionhectares349andraisedconcentrationsofcarbonmonoxide,nitrogenoxides,aerosols,andparticulates(PM10)acrossEuropeanRussia.

348. Changingweatherpatternswillaffecttheincidenceofcertainvector-bornediseases.For

example,risingtemperaturesandchangesinprecipitationpatternwillalterthedistributionofdiseasevectorssuchasmosquitoescarryingdengueormalaria.Denguefeverforexamplehas390millionrecordedinfectionseachyear,andthenumberisrising.Changingweatherpatternswillalsoincreasewaterbornediseasessuchascholerainthecomingdecades.350

349. Airborneparticulatematter(PM)producedfromthecombustionofcoalandoilalsoimpingesnegativelyuponhealthbycausingrespiratoryandcardiovasculardisease.Householdandambientairpollutionisestimatedtohavebeenresponsiblefor7millionadditionaldeathsgloballyin2012.351IntheUK,around40,000deathsareattributabletoexposuretooutdoorairpollution.352TheOECDestimatesthatthevalueofliveslostandillhealthduetoambientair

344Kjellstrom,T,Holmer,I,andLemke,B.Workplaceheatstress,healthandproductivity—anincreasingchallengeforlowandmiddle-incomecountriesduringclimatechange.GlobalHealthAction.2009;2(10.3402/gha.v2i0.2047.)345Porter,JR,Xie,L,Challinor,AJetal.Foodsecurityandfoodproductionsystems.in:CBField,VRBarros,DJDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014:485–533346DARAandtheClimateVulnerabilityForum.Climatevulnerabilitymonitor2012:aguidetothecoldcalculusofahotplanets.FundacionDARAInternacional,Barcelona;2012347Ebi,KandMills,D.Wintermortalityinawarmingclimate:areassessment.WileyInterdiscipRevClimChange.2013;4:203–212348Russo,S,Dosio,A,Graversen,RGetal.Magnitudeofextremeheatwavesinpresentclimateandtheirprojectioninawarmingworld.JGeophysResDAtmospheres.2014;199:500–512349Ryazantzev,S.Demographicandsocio-economicconsequencesofheatwaveandforestfiresof2010inEuropeanRussia.EcolLife.2011;5:80–85350Lipp,EK,Huq,A,andColwell,RR.Effectsofglobalclimateoninfectiousdisease:thecholeramodel.ClinMicrobiolRev.2002;15:757–770351WHO.Burdenondiseasefromairpollutionin2012.http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf;2014.352RoyalCollegeofPhysicians.Everybreathwetake:thelifelongimpactofairpollution.Reportofaworkingparty.London:RCP,2016.

82

pollutioninOECDcountries,plusIndiaandChina,ismorethan$3·5trillionannually(about5%grossworldproduct),withIndiaandChinaaccountingfor54%ofthistotal.353

350. Byalteringtemperatureandprecipitationfrequency,climatechangecanfurtherelevate

levelsofatmosphericparticulatematterandgroundlevelozoneincertainregions.354355356Onestudyestimatesthatozone-relatedacutemortalityintheUSAcouldriseby4·5%from1990to2050throughclimatechangealone.357

351. Mostclimate-relatedhealthimpactsaremediatedthroughcomplexecologicalandsocialprocessesasshowninthediagrambelow.

353OrganisationofEconomicCo-operationandDevelopment,2014.Thecostofairpollution:healthimpactsofroadtransport.Paris:OECD.354Giorgi,FandMeleux,F.Modellingtheregionaleffectsofclimatechangeonairquality.CRGeosci.2007;339:721–733355Tagaris,E,Manomaiphiboon,K,Liao,K-Jetal.ImpactsofglobalclimatechangeandemissionsonregionalozoneandfineparticulatematterconcentrationsovertheUnitedStates.JGeophysRes,D,Atmospheres.2007;112:D14312356Jiang,H,Liao,H,Pye,HOTetal.Projectedeffectof2000–2050changesinclimateandemissionsonaerosollevelsinChinaandassociatedtransboundarytransport.AtmosChemPhys.2013;13:7937–7960357Knowlton,K,Rosenthal,JE,Hogrefe,Cetal.Assessingozone-relatedhealthimpactsunderachangingclimate.EnvironHealthPerspect.2004;112:1557–1563

83

352. Theimpactofclimatechangeonpushingupfoodpricesandaffectingfoodavailabilityand

affordabilitywillbesubstantial,especiallyforregionsandpopulationsthatarealreadyfoodinsecure.358Policiesrelatedtopolicesonfoodstocks,reactionstofoodpricesbyproducercountries,anddemandforlandtohedgeagainstclimateshiftsmayfurtherincreasevolatilitywithintheglobalfoodsystemandcompoundthethreatofreducedfoodproductivityformanypopulations.359

353. Addedtothechallengeofworseningfoodsecurity,isthecriticalfactorofwateravailability.Groundwaterresourcesarealreadyinacriticalstateinmanyregions360361andincreasedexposuretodrought-likemeteorologicalconditionsoverthecomingdecadesisaconsiderablethreat.Oneanalysisshowsthatclimatechange,whencombinedwithpopulationchanges,couldleadto1·4billionadditionalpersondroughtexposureeventsperyearbytheendofthecentury.362

354. Thepotentialimpactofincreasedfrequencyoffloods,stormsurgesandhurricanesis

exemplifiedbythe6000plusfatalitiesthatresultedfromtyphoonHaiyaninthePhilippinesin2013.Floodsalsohavelong-termandshort-termeffectsonwellbeingthroughdiseaseoutbreaks,mentalhealthburdens,anddislocation.363364TheinvoluntarydisplacementofpopulationsasaresultofextremeeventshasmajorhealthandpolicyconsequencesasevidencedrecentlyintheUK.

355. TheIPCCconcludesthatclimatechangewilldirectlyaffectpoverty,resourceuncertaintyand

volatility,andtheabilityofgovernmentstofulfiltheirobligationstoprotectsettlementsandpeoplefromweatherextremes.365366

358Grace,K,Davenport,F,Funk,C,andLerner,AM.ChildmalnutritionandclimateinSub-SaharanAfrica:AnanalysisofrecenttrendsinKenya.ApplGeogr.2012;35:405–413359Porter,JR,Xie,L,Challinor,AJetal.Foodsecurityandfoodproductionsystems.in:CBField,VRBarros,DJDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014:485–533360TaylorRG,ScanlonB,DollPetal.Groundwaterandclimatechange.NatureClimChange.2013;3:322–329361Schewe,J,Heinke,J,Gerten,Detal.Multimodelassessmentofwaterscarcityunderclimatechange.ProcNatlAcadSciUSA.2014;111:3245–3250362WattsN,AdgerWN,AgnolucciPetal,2015.Healthandclimatechange:policyresponsestoprotectpublichealth.TheLancet,Vol.386,No.10006,p1861–1914363Ahern,M,Kovats,RS,Wilkinson,P,Few,R,andMatthies,F.Globalhealthimpactsoffloods:epidemiologicevidence.EpidemiolRev.2005;27:36–46364Paranjothy,S,Gallacher,J,Amlôt,Retal.Psychosocialimpactofthesummer2007floodsinEngland.BMCPublicHealth.2011;11:145365Adger,WN,Pulhin,JM,Barnett,Jetal.Humansecurity.in:CBField,VRBarros,DJDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelofClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014:755–791366Olsson,L,Opondo,M,Tschakert,Petal.Livelihoodsandpoverty.in:CBField,VRBarros,DRDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY;2014:793–832

84

356. Thecontinuedmovementofmigrantpopulationsintocities,thepotentialforclimatehazardsinhigh-densitycoastalmega-cities,andimpairedairqualitycreatesignificantpublichealthchallenges,notleastformigrantsthemselves.367368Theeffectsoffoodandresourceinsecurity,migration,displacement,uncertaintyandpovertyallcombinetomakeclimatechangeathreattopeaceandhumansecurity.369

357. Scientistsarealsohighlyconfidentthatclimatechangeisbleachingcoralonreefs

worldwide;affectingriverflows;forcingplantandanimalspeciestowardsthepolesandtohigherelevationsaroundtheworld;andnegativelyimpactingthoselivingintheArctic.Therehasbeenanegativeeffectonthegrowthinproductivityofsomekeycrops,includingforwheatandmaize.

358. Althoughthemagnitudeandnatureoffuturehealthimpactsarehardtopredictwith

precision,unlessactionistakentostopthenetincreaseinGHGemissions,allplausiblefuturesresultingfromanticipatedemissionstrajectorieswillexposetheglobalpopulationtoserioushealthconsequences.

359. Furthermore,thereisarealriskofunforeseeninteractionsandtheamplificationofknownclimaterisks.Ofgreatconcernistheriskofcrossingthresholdsandtippingpointswhichwouldproduceaccelerationsinwarmingandlarger-than-expectedchancesofcatastrophicoutcomes.370371

360. AccordingtotheLancet-UCLCommissiononClimateChangeandHealth,climatechange

couldbe“sufficienttotriggeradiscontinuityinthelong-termprogressionofhumanity”372andthatonthebasisofcurrentemissiontrajectories,“temperaturerisesinthenext85yearsmaybeincompatiblewithanorganisedglobalcommunity”.373

361. Whilstinitiallycertainregionsandcommunitieswillsufferdisproportionately,the

interconnectedandglobalnatureofclimatesystems,ecosystemsandhumansocietywillmeanthatallpartsoftheworldwillbeaffected.374Regionsthatmightbelessaffectedbythedirect

367McMichael,C,Barnett,J,andMcMichael,AJ.Anillwind?Climatechange,migration,andhealth.EnvironHealthPerspect.2012;120:646–654368Black,R,Arnell,NW,Adger,WN,Thomas,D,andGeddes,A.Migration,immobilityanddisplacementoutcomesfollowingextremeevents.EnvironSciPol.2013;27:S32–S43369Gleditsch,NP.Whithertheweather?Climatechangeandconflict.JPeaceRes.2012;49:3–9370Rockström,J,Steffen,W,Noone,Ketal.Planetaryboundaries:exploringthesafeoperatingspaceforhumanity.EcolSoc.2009;14:32371Lenton,TM,Held,H,Kriegler,Eetal.TippingelementsintheEarth'sclimatesystem.ProcNatlAcadSciUSA.2008;105:1786–1793372WattsN,AdgerWN,AgnolucciPetal,2015.Healthandclimatechange:policyresponsestoprotectpublichealth.TheLancet,Vol.386,No.10006,p1861–1914373Anderson,KandBows,A.Beyond‘dangerous’climatechange:emissionscenariosforanewworld.PhilosTransAMathPhys.EngSci.1934;2011:20–44374SmithKR,WoodwardA,Campell-LendrumDetal.Humanhealth—impactsadaptationandco-benefits.Climatechange2014:impacts,adaptation,andvulnerabilityWorkingGroupIIcontributiontotheIPCC5thAssessmentReport.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014

85

effectsofclimatechangewillbenegativelyaffectedbytheeconomicandsocialdisruptioninthoseregionsthataremoredirectlyaffected.375

362. Althoughthereissomeuncertaintyinunderstandingtheearth’sfutureclimatesystemand

howfurtherglobalwarmingwillimpactonweatherpatterns,biodiversity,foodproductionandwaterstress,therisksoutlinedaboveindicatetheneedtotakeclimatechangeasaseriousandpotentiallyexistentialthreattoorganisedandpeacefulcivilisation.

O.GlobalGHGemissionsandcarbonbudgets

363. WhileweknowthatGHGemissionsareunequivocallylinkedtoanincreaseinsurfacetemperature,itisdifficulttoforecastwithanycertaintythefuturepatternofGHGemissions,energyuseorglobaltemperaturerise.However,climatescientistshaveconstructedvariousriskmodelsthatrelateGHGemissiontargetstofuturetemperaturerise.These‘integratedassessmentmodels’arehighlycomplexandincorporatemultipleassumptionsaboutcosts,markets,humanbehaviour,populationgrowthandthephysicsofclimatechange.

364. Akeyoutputoftheiranalyseshasbeentheconstructionof‘globalcarbonbudgets’thatareassociatedwithvariousprobabilitiesforlimitingtheriseinglobaltemperaturestobelowadefinedlimit.Thetablebelowshowstheestimatedcarbonbudgetfortheperiod2011to2100thatwouldbeconsistentwithvariousprobabilitiesoflimitingglobalwarmingtolessthan1.5°Cand2°C.

CumulativecarbondioxideemissionsconsistentwithwarmingtargetsatdifferentlevelsofprobabilityNetanthropogenicwarming <1.5oC <2oCProbability 66% 50% 33% 66% 50% 33%CumulativeCO2emissionsfrom2011-2100(GtCO2e) 400 550 850 1000 1300 1500CumulativeCO2emissionsfrom1870(GtCO2e) 2250 2250 2550 2900 3000 3300(Source:IPCCFifthAssessmentReport,2014)

365. Tohaveabetterthan66%chanceoflimitingglobalwarmingtobelow2°C,cumulativeGHGemissionsfrom2011onwardswouldneedtobelimitedtoaround1,000(630–1180)GtCO2e.376Tohaveabetterthan50%chanceoflimitingglobalwarmingtobelow1.5°C,cumulativeGHG

375AdgerWN,PulhinJM,BarnettJetal.Humansecurity.in:CBField,VRBarros,DJDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014:755–791376ClarkeL,JiangK,AkimotoKetal.Assessingtransformationpathways.InEdenhofer,Pichs-Madruga,Sokona(Eds.)Climatechange2014:MitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIPCC.CambridgeUniversityPress;2014

86

emissionsfrom2011onwardswouldneedtobelimitedtoaround500GtCO2e.377Aglobalcarbonbudgetofabout850GtCO2efortheperiod2011-2100wouldequatewithan“unlikely”(<33%)chanceofstayingbelow1.5°C.

366. Estimatesaboutfutureemissionstrajectories,includingcarboncyclefeedbacks,andtheirimpactontherateandscaleofglobaltemperaturerisesareuncertain,beingbasedonmultipleassumptionsandlimitsinknowledge.However,manymodelsusedmaybeoptimisticbecausetheytendtoassumerelativelyearlypeaksinglobalemissionsandthat‘negativeemissiontechnologies’willbepracticallyandeconomicallyviableinremovingCO2fromtheatmosphere.378379

367. The850to1000GtCO2ebudgetrangeiscommonlyusedinpolicycircles.Thisreferstothe

globalbudgetwehaveforallemissionsfromallsectorsfortheperiod2011to2100.Tounderstandwhatemissionsareavailablefrom2016onwards,itisnecessarytosubtractthoseemissionsreleasedbetween2011and2016.BasedonCDIACdata,thisisatleast150GtCO2whichleavesabudgetof700-850GtCO2efortheperiod2016-2100.

368. AlthoughenergyproductionisamajorsourceofGHGemissions,agriculture,deforestation,

andcementusearealsoimportantsources.Anoptimisticestimateofemissionsfromdeforestationandcementprocessfor2016to2100wouldbeintheregionof60GtCO2and150GtCO2respectively,leavingan‘energy-only’globalbudgetof490-640GtCO2efortheperiod2016to2100.380

369. Combiningoptimisticassumptionsaboutcurtailingdeforestationandcementemissionswith

theIPCC’sheadlinebudgetof1,000GtCO2wouldequatewithglobalreductionsinenergy-relatedemissionsofatleast10%perannumfrom2025,transitioningrapidlytowardszeroemissionsby2050.381382

370. CurrentGHGemissionstrendsarenotreassuring.Globally,since2000,GHGemissionshavebeenrisingataround2%everyyear,poweredlargelybygrowthinChinaandotheremergingeconomies.383Overallglobalenergydemandgrewby27%from2001to2010,largelyconcentratedinAsia(79%),theMiddleEastandAfrica(32%),andLatinAmerica(32%)onthe

377ClarkeL,JiangK,AkimotoKetal.Assessingtransformationpathways.InEdenhofer,Pichs-Madruga,Sokona(Eds.)Climatechange2014:MitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIPCC.CambridgeUniversityPress;2014378AndersonK,2015.OntheDualityofClimateScientists.NatureGeoscience,DOI:10.1038/ngeo2559.379Fuss,S.etal.Bettingonnegativeemissions.Nature.4.850-853(2014)380AndersonK,2015.OntheDualityofClimateScientists.NatureGeoscience,DOI:10.1038/ngeo2559.381Krey,V,Masera,G,Blanford,Tetal.AnnexII:metrics&methodology.in:OEdenhofer,RPichs-Madruga,YSokona,(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIPCC.CambridgeUniversityPress;2014382EvenstabilisingCO2econcentrationstobetween450–650ppm(whichwouldbeconsistentwith2-4°Cofwarming),theglobalemissionratewouldneedtofallby3–6%peryear,aratethatsofarhasonlybeenassociatedwithmajorsocialupheavalandeconomiccrisis.See:Beyond‘dangerous’climatechange:emissionscenariosforanewworld.PhilosTransAMathPhys.EngSci.2011(1934):20–44383Summaryforpolicymakers.In:Edenhofer,Pichs-Madruga,Sokona(Eds.)Climatechange2014:MitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIPCC.CambridgeUniversityPress;2014.

87

basisofterritorialaccounting.384However,consumption-basedaccountingshowsthatmostoftherecentgrowthinenergyexpenditurehasbeendrivenbyconsumptioninhigh-incomeregions.385

371. Accordingtooneassessment,energyexpenditureinnon-OECDcountrieswilldoubleby2035from2010levels,withOECDcountriesseeinga14%increaseoverthesameperiod.386Whilemostoftheincreaseinprimaryenergydemandoccursinemergingeconomies,mostofthefutureprojectedgrowthinenergyexpenditureisexpectedtobedrivenbyconsumptioninhigh-incomeregions.

372. Atthecurrentglobalemissionrate,the‘carbonbudget’describedabovecouldbedepletedwithinaslittleas24years,possiblysooner.Thewindowofopportunitytopreventpotentiallycatastrophicclimatechangeisthereforesmall.

373. TheParisAgreement(December2015)hasbeenheraldedasmarkinganewlevelofinternationalcommitmenttoaddressingthethreatofglobalwarming.TheprincipalaimoftheAgreementistohold“theincreaseintheglobalaveragetemperaturetowellbelow2°Cabovepre-industriallevelsandtopursueeffortstolimitthetemperatureincreaseto1.5°Cabovepre-industriallevels,recognizingthatthiswouldsignificantlyreducetherisksandimpactsofclimatechange”.

374. TheParisAgreementalsonotesthatcountrieswillaimtoreachglobalpeakingofGHGemissions“assoonaspossible”,whilstrecognisingthatpeaking“willtakelongerfordevelopingcountryparties”.

375. However,thevoluntarypledgesmadebyindividualcountriestoreducetheirGHGemissions

donotmatchtheambitionoftheAgreement’sgoal.TheUS,forexample,hasonlypledgedtoreduceitsemissionsby12-19%from1990levels.Evenifallcountriesdeliverontheircurrentpledges,thepredictedlevelofglobalwarmingarisingfromcumulativeemissionswouldbebetween2.8oCand4oCabovepre-industriallevels.

376. AnalysisofthelatestUNpledgesbyClimateActionTrackersuggeststhatglobalemissions

areontracktoreach53-59GtCO2ein2030,whichissignificantlyabovepresentglobalemissionsofabout48GtCO2e.Furthermore,therearegapsbetweencurrentpolicyprojectionsandcountrypledgesmeaningthatcurrentpoliciesarenotstrongenoughtoachievetheseconservativepledges.387

384Bruckner,T,Bashmakov,I,Mulugetta,Yetal.EnergySystems.in:OEdenhofer,RPichs-Madruga,YSokona,(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY;2014385BarrettJ,LeQuéré,LenzenM,PetersG,RoelichK,andWiedmannT,2011.Consumption-basedemissionsreporting.MemorandumsubmittedbyUKERC(CON19).http://www.publications.parliament.uk/pa/cm201012/cmselect/cmenergy/writev/consumpt/con20.htm;.386InternationalEnergyAgency(IEA).Worldenergyoutlook2013.IEA,Paris;2013387See:http://climateactiontracker.org/global/173/CAT-Emissions-Gaps.html

88

377. ThegapbetweentheclimatescienceandtheactualpoliciesandplanstoreduceGHG

emissionsisthereforeconsiderable.Thispartlyreflectsareluctancetoabandonourdependenceonbothfossilfuelsandunsustainableconsumptionpatterns.ItalsoreflectsafaithinfuturetechnologiesbeingdevelopedtosequesterGHGsfromtheatmosphere.388

Theroleofnaturalgasinmitigatingglobalwarming

377. Proponentsofnaturalgasarguethatitisacleanformofenergywhencomparedtocoalandoilandthatitsuseforelectricitygenerationinsteadwillhelpreducetherateatwhichthecarbonbudgetisdepleted.Inordertoassessthepotentialfutureimpactofnaturalgasoncarbonbudgetsandglobalwarming,lifecycleanalyses(LCAs)areconductedtodeterminetheamountofGHGsemittedacrossallstagesofgasproductionandend-use.389

378. TheseLCAsareinevitablyinfluencedbyanumberofvariableswhichproduceawiderangeofmeasuresoftheglobalwarmingpotentialofnaturalgas.Thevariablesinclude:i)theamountoffugitiveemissionsreleaseddirectlyintotheatmosphere;ii)whetherthegasproducedisliquefiedandtransportedbeforeuse(becausebothliquefactionandtransportationrequiredenergy);iii)theefficiencyofthepowerstationsusedtoconvertgasintoelectricity;iv)theuseofCCStechnologies;andv)thetimehorizonoverwhichtheglobalwarmingpotentialofmethaneandcarbondioxideareassessed.Whencomparingtheglobalwarmingpotentialofgasagainstotherenergysources,therelativeefficienciesofcoalpowerstationsandtheimpactofgasoncoal,oilandrenewableenergyarealsorelevant.

379. AkeyfactorinLCAsofnaturalgasisfugitiveemissions.AccordingtoHowarth,whilefora

givenunitofenergyproduced,carbondioxideemissionsarelessforshalegasandconventionalnaturalgasthanthoseforoilandcoal,thetotalGHGfootprintofshalegasmaybegreaterthanotherfossilfuelswhenmethaneemissionsareincluded.390

380. SanchezandMays(2015)modelledwhatleakagerateofnaturalgasinelectricitygeneration

wouldcauseCO2eemissionsofnaturalgastobecomeequivalenttothoseofcoal,andfoundthattheleakageratemustbelowerthan3.9%inthelife-cycleofitsproduction,distributionand

388Inparticular,biomassenergycarboncaptureandstorage(BECCS)hasbecomeprominentafterParis.BECCSinvolvescoveringlargeareasoftheplanetwithbio-energycropsthatwillabsorbcarbondioxidethroughphotosynthesis.Periodicallythesecropswouldbeharvested;processedforworldwidetravel;andeventuallycombustedinthermalpowerstations.Thecarbondioxidewouldthenbeextractedfromthewastegases,compressed(almosttoaliquid);pumpedthroughlargepipes(potentiallyoververylongdistances);andfinallystoreddeepundergroundinvariousgeologicalformations(e.g.exhaustedoilandgasreservoirsorsalineaquifers).389NotethatLCAsdonotincludemeasuresof“indirectfugitiveemissions”,i.e.thegeologicalseepsinducedbyfracking,whichmaybelargeenoughtonegatetheclaimthatfrackingiscleanerthancoal.390HowarthR,2015.Methaneemissionsandclimaticwarmingriskfromhydraulicfracturingandshalegasdevelopment:implicationsforpolicy.EnergyandEmissionControlTechnologies2015:345–54

89

use,whenlookedatovera20-yeartimehorizon.AbovethisthresholdtheGHGfootprintadvantageofnaturalgasiseliminated.391

381. TheGWPofshalegasrelativetoconventionalnaturalgasiscontentious.Burnhametal’s

analysisoflifecycleGHGemissionsconcludedthatshalegaslife-cycleemissionswere6%lowerthanconventionalnaturalgas(23%lowerthangasolineand33%lowerthancoal).However,therangeinvaluesforshaleandconventionalgasoverlap,sothedifferenceisnotstatisticallysignificant.392Keyfactors,highlightedbythisstudy,aretheassumptionsmadeabouttheuseof‘greentechnologies’andtherateofupstreamfugitiveemissions,aswellastherelativeefficiencyofpowerstations.

382. LaurenziandJersey’s(2013)LCAofshalegasfromtheMarcellusshaleforpowergeneration

foundthatatypicalgaslifecycleyields466kgCO2eq/MWh(80%confidenceinterval:450−567kgCO2eq/MWh)ofGHGemissions.Theirresultswereinfluencedstronglybytheestimatedultimaterecovery(EUR)ofthewellandthepowerplantefficiency(theirresultswerebasedonelectricitygenerationatacombinedcyclegasturbinepowerplantanda100yeartimehorizon).TheyfoundthatthecarbonfootprintofMarcellusgasis53%(80%CI:44−61%)lowerthancoal,andcomparabletothatofonshoreconventionalnaturalgas.393Operationsassociatedwithhydraulicfracturingconstitutedonly1.2%ofthelifecycleGHGemissions.

383. WeberandClavin’sreviewoftheLCAliteratureconcludedthattheupstreamcarbon

footprintsofdifferenttypesofgasproductionarelikelytobesimilar.However,theyfoundthattheupstreamfootprintislessthan25%ofthetotalcarbonfootprintofgas,andnotethattheefficiencyofproducingheat,electricity,andtransportationservicesisofequalorgreaterimportancewhenidentifyingemissionreductionopportunities.Theyalsonote,asdomostotherauthors,thatbetterdataareneededtoreducetheuncertaintyinnaturalgas’scarbonfootprint,andthatunderstandingsystem-levelclimateimpactsofshalegasthroughshiftsinnationalandglobalenergymarketsisalsoimportantandrequiresmoredetailedenergyandeconomicsystemsassessments.394

384. RegardlessofanymeasureoftheGWPofnaturalgasperunitofenergyservice(e.g.electricityorheating),thetotalvolumeofgasproductionandconsumptionisalsoimportant.Forexample,accordingtoMcLeodatel’s(2014)model,ifgaspricesarekeptlow(asanticipated)

391SanchezN&MaysD,2015Effectofmethaneleakageonthegreenhousegasfootprintofelectricitygeneration,ClimaticChangeNovember2015,Volume133,Issue2,pp169-178392Burnham,A.eta,2012.Life-cyclegreenhousegasemissionsofshalegas,naturalgas,coal,andpetroleum.Environ.Sci.Technol.46,619–627.393LaurenziIJ.AndJerseyGR,2013.LifecyclegreenhousegasemissionsandfreshwaterconsumptionofMarcellusshalegas.Environ.Sci.Technol.47,4896–4903.394WeberCandClavinC.Lifecyclecarbonfootprintofshalegas:Reviewofevidenceandimplications.Environ.Sci.Technol.2012,46,5688−5695.

90

aglobalwarmingpotentialofmethaneof72over20yearsgeneratesoverallenergysystemGHGemissionsin2050thatare6%higherthanin2010.395

385. Usingsimulationsoffivestate-of-the-artintegratedassessmentmodelsofenergy–

economy–climatesystems,McJeonetal(2014)indicatethatafuturescenarioofgloballyabundantgaswouldleadtoanoverallincreasein‘climateforcing’.396Themodelsfoundthatwhilegassubstituteslargelyforcoal,italsosubstitutesnuclearandrenewableenergy,andtendstoincreaseeconomicactivity.Thisfindingechoesthe‘GoldenAgeofGas’scenariopresentedbytheIEAwhichindicatedaprojected3.5°Cwarmingasaconsequence.397

386. ThereisevidencethatwhileUSshalegasdisplacedcoaluseforelectricitygeneration(andhelpedreduceGHGemissionsfromtheenergysectorby12%between2005and2012),thedisplacedUScoalwasexportedandburntabroad.398Asaresult,CO2eemissionsfromthecombustionofallfossilfuelsgeneratedfromtheUSactuallyrosebyapproximately10%.399

387. Thepointaboutnewgasreservesincreasingthethreatofglobalwarmingbysimplyadding

totheavailablestockoffossilfuelwasmadebyDECC’sformerChiefScientificAdvisorwhonoted:“Ifacountrybringsanyadditionalfossilfuelreserveintoproduction,thenintheabsenceofstrongclimatepolicies,webelieveitislikelythatthisproductionwouldincreasecumulativeemissionsinthelongrun.Thisincreasewouldworkagainstglobaleffortsonclimatechange.”400TheEnvironmentalReportpublishedbyDECCinrelationtothe14thonshorelicensingroundalsopointstothedangersofshalegasmerelydisplacingcoalandoilratherthanreplacingthemaltogetherasasourceofenergy.401

388. Fossilfuel‘reserves’areknownfossilfuelsthatareeconomically‘extractable’.Thevolumeoffossilfuelreservesisthereforepartlyafunctionofthefossilfuelpricewhichishighlyvolatile.Somereportsdistinguishbetweentheconceptsof‘carbonbubble’beingafinancialissue,and‘unburnablecarbon’beingatechnologicalissue.

389. Theestimatedamountof‘unburnablecarbon’rangesfrom49%to80%ofoverallreserves.402McGladeandEkins(2015)concludedthat50%ofexistingglobalgasreservesare

395McLeodetal,2014,EmissionsImplicationsofFutureNaturalGasProductionandUseintheUSandintheRockyMountainRegion,EnvironSciTechnol2014;48,13036-13044396McJeon,Hetal(2014)Limitedimpactondecadal-scaleclimatechangefromincreaseduseofnaturalgas,Nature514,482–485,doi:10.1038/nature13837397IEA,WorldEnergyOutlook2011SpecialReport:AreWeEnteringAGoldenAgeofGas?,InternationalEnergyAgency,Paris,France,2011398BroderickandAnderson,2012.HasUSShaleGasReducedCO2Emissions?ExaminingrecentchangesinemissionsfromtheUSpowersectorandtradedfossilfuels,TyndallManchester,UniversityofManchester399USEIADecember2014MonthlyEnergyReview400DJMacKay&TJStonePotentialGreenhouseGasEmissionsAssociatedwithShaleGasExtractionandUse(DECC,2013)401StrategicEnvironmentalAssessmentforFurtherOnshoreOilandGasLicensingEnvironmentalReport(December2013)–p.88.402Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute

91

‘unburnable’(including>80%ofglobalpotentialunconventionalgasreserves),inadditiontoathirdofoiland80%ofcoalreserves.403

390. McGladeandEkins(2015)notethatCCShasthelargesteffectofanytechnologyoncumulativefossilfuelproductionlevels.CCScouldenablecountriestocontinuetoincludefossilfuelsintheirenergymixandthereforecanunlockassetsthatwouldotherwisebestranded.404AccordingtotheWorldEnergyOutlook(2012),withoutCCS,lessthanathirdofglobalcarbonreservescanbeburntinthe2°Cscenario.405OnestudyestimatedthatCCScouldenable65%ofreservestobeusedinsteadof33%.406

391. TheUKEnergyResearchCentreconcludedthatwhilethereisapotentialfornaturalgastosupportatransitiontowardsalow-carbonenergysystem,thebridgingperiodisstrictlytime-limitedandonlyholdstrueifanyabsoluteandrelativeincreaseingasconsumptionoccursalongsideamuchgreaterreductionincoalconsumptioninbothabsoluteandrelativeterms.407Furthermore,itmustbeaccompaniedbyamuchlargerincreaseinlow-carbonenergysources.Importantly,theabilityforgastoplayabridgingrolevariesfromoneregiontoanotherandisdependentalsoontheavailabilityofCCS.Of13regionsstudied,gashadlimitedornopotentialtoactasatransitionfuelinsixregions(Africa,Canada,CentralandSouthAmerica,theMiddleEastandMexico);goodpotentialinthree(Australia,OtherDevelopingAsia,andtheUS),andstrongpotentialinfour(China,Europe,IndiaandJapanandSouthKorea)ifCCSisavailable.IfCCSisnotavailable,naturalgasmayactasastrongbridgeinonlyChina.

392. TheLancet-UCLCommissiononClimateChangeandHealthwasmorecautiousandnotedthatthetimewhenfuelswitchingcoulddecarbonisetheglobaleconomysufficientlyquicklytoavoiddangerousclimatechangehasalmostcertainlypassed.

393. RegardlessoftheavailabilityandaffordabilityofsafeandeffectiveCCStechnologies,thereisstillalimitedcarbonbudgetandatimeframewithinwhichtheworldneedstoachievenetzeroGHGemissions.AccordingtoHowarth(2015),theimperativetoreducemethaneemissionstoslowglobalwarmingoverthecomingfewdecadesmeansthattheonlypathforwardistoreducetheuseofallfossilfuelsasquicklyaspossible.Thereisnobridgefuel,andswitchingfromcoaltoshalegasisacceleratingratherthanslowingglobalwarming.

394. Akeyargumentagainstthedevelopmentofmoreshalegasreservesisthatinvestmentinefficiencyandrenewableswouldbeamorecost-effectivesolutionthancoal-to-gassubstitution.

403McGladeCandEkinsP(2015)Thegeographicaldistributionoffossilfuelsunusedwhenlimitingglobalwarmingto2°C,Nature517,187—190,doi:10.1038/nature14016404IPCC(2005).IPCCSpecialReport:Carboncaptureandstorage.Availableonline:www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf405IEA(2012).WorldEnergyOutlook2012.www.worldenergyoutlook.org/publications/weo-2012/406Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute407McGladeC,BradshawM,AnandarajahG,WatsonJandEkinsP.(2014)ABridgetoaLow-CarbonFuture?ModellingtheLong-TermGlobalPotentialofNaturalGas-ResearchReport(UKERC:London).

92

395. Oneconcernisthatthedeploymentofnaturalgasrisksdelayingthedeploymentofrenewableenergysystems.AccordingtoZhangetal(2016),thiscouldoffsetallthepotentialclimatebenefitsderivedfromreplacingcoalenergysystemswithnaturalgasenergysystems.408Theynotethattherisksarehigherwhenthenaturalgasenergysystemisinefficientandthecoalenergysystemisefficient.Inaddition,theyhighlighttheimportanceofthechoiceoftimehorizonbecausemethaneisamuchstrongerGHGthancarbondioxidebutwhichactsforamuchshortertime.409

396. Zhangetal’sanalysisshowsthatnaturalgascanprovideclimatebenefitasa‘bridgingfuel’if

thecoalenergysystemisinefficient;thenaturalgasenergysystemisefficient;thenaturalgasleakagerateislow;andtheevaluationtimehorizonfortheglobalwarmingpotentialofmethaneislongerthan40years.However,intheabsenceofCCS,naturalgasusecannotprovidethedeepreductionsinGHGemissionsneededtopreventdangerousclimatechange.Theywarnthat“Iftheintroductionofnaturalgassubstantiallydelaysthetransitiontonear-zeroemissionsystems,thereispotentialthattheintroductionofnaturalgascouldleadtogreateramountsofwarmingthanwouldhaveoccurredotherwise.

Q.TheUK:GHGemissionsandenergypolicy

TheUK’scarbonbudgets

397. Government’spolicyonGHGemissionsisbasedonrecommendationsmadebytheCommitteeonClimateChange(CCC).TheCCC’sfirstreport,whichbuiltontheIPCC’sfourthassessmentreport(2007),concludedthateconomicandpoliticalconstraintsmadeitimpossibletoensure“withhighlikelihood”thatatemperatureriseofmorethan2°Ccanbeavoided.410Instead,itofferedtwonationalandcentury-widecarbonbudgets:onegavea56%chanceofexceeding2°Cwhiletheothergavea63%chanceofexceeding2°C.Thegovernmentchosethelatter,alongwithanobligationtoreduceemissionsin2050by80%comparedto1990levels.

398. TheCCChassubsequentlypublishedaseriesofcarbonbudgetsforasetofsequentialfive-

yearperiods.Thefourthcarbonbudget(2023-2027)cappedemissionsat1,950MtCO2e,whichisequivalenttoanaverage52%below1990levels.Thefifthcarbonbudget(2028-2032)of1,765MtCO2e(includingemissionsfrominternationalshipping),whichwouldlimitannualemissionstoanaverage57%below1990levels,hasrecentlybeenenactedintolaw.411

399. Thepastandprojectedemissionstrajectoryisshowninthediagrambelow.ThetrajectoryproposedbytheCCCinvolvesasmoothandincrementalreductioninemissionsacrossthe

408ZhangX,MyhrvoldN,HausfatherZ,CaldeiraK(2016)Climatebenefitsofnaturalgasasabridgefuelandpotentialdelayofnear-zeroenergysystems,AppliedEnergy167(2016)317–322409AccordingtoHowarth,theGWPofmethaneis86morethanthatofcarbondioxidewhenaveragedover20years(fortwoequalmassesofthegasesemittedintotheatmosphere).410CCC,2008.Buildingalow-carboneconomy-theUK'scontributiontotacklingclimatechange.411CCC,2015.TheFifthCarbonBudget–Thenextsteptowardsalow-carboneconomy

93

economyofaround13MtCO2e(3%)peryearfrom2014to2030.Thetargetsetforthefirstcarbonbudget(2008-2012)hasbeenmet,andthetargetforthesecondbudget(2013-2018)isoncoursetobemet.412

Source:DECC(2015)FinalUKgreenhousegasemissionsnationalstatistics:1990-2013;DECC(2015)ProvisionalUKgreenhousegasemissionsnationalstatistics;DECCEnergyModel;CCCanalysis.Notes:Datalabelsshowreductionsinannualemissionsrelativeto1990.Historicalemissionsareona‘gross’basis(i.e.actualemissions).Projectionsandcarbonbudgetsareonthecurrentbudgetaccountingbasis:netcarbonaccountexcludinginternationalaviationandshipping(IAS),butallowingforIAStobeincludedinthe2050target.

400. AlthoughtheUK’sstatutorytargettoreduceGHGemissionsin2050by80%comparedto

1990soundsambitious,therearereasonswhythetargetisinadequate.

401. First,thetargetsarebasedontheintegratedassessmentmodelsoftheIPCCwhichare(asexplainedearlier)believedtobeover-optimistic.

402. Second,thebudgetisbasedonadangerouslevelofriskthatacceptsa63%chanceof

exceeding2°C.

403. Third,thebudgetrepresentsanunfairshareoftheglobalcarbonbudget,makinglittleallowanceforhistoricalresponsibilityforGHGemissions,ortheconsiderablysuperiorfinancialandtechnicalcapabilityoftheUKcomparedtomostothercountries.413

404. Fourth,theGHGemissionstargetsarecalculatedas‘territorialemissions’anddonottake

intoaccounttheGHGsemittedelsewheretoproducegoodsandcommoditiesthatare412Thecarbonbudgetfor2014was520MtCO2e,excludingemissionsfrominternationalaviationandshipping.413FriendsoftheEarth,2015.WhytheUKmustcommittoitsfairshareofemissionscutsaheadoftheParisclimatetalks.November.

94

eventuallyimportedintotheUK.IntheUK,whileterritorial-basedemissionshaveshowna19%reductionbetween1990and2008,consumption-basedemissionshaveincreasedby20%inthesameperiod(drivenbyGHGsembodiedinimportedproducts,particularlyfromChina).414

405. Fifth,theplannedreductionofemissionsisspreadacrosstheperiodto2050ratherthanfront-loaded.ThisrunscountertotheclearmessagefromclimatescientiststhatweneedtofrontloadasmuchofourGHGemissionsreductionsaspossible.415

406. Earlyemissionsreductionwilldelayclimatedisruptionandreducetheoverallcostof

abatementbyavoidingdrasticandexpensivelast-minuteaction.Furthermore,itallowsthewindowofopportunityforthedevelopmentanddeploymentofnewtechnologiestobeheldopenforlonger.Delayedemissionreductioncouldalsoforcetheuptakeofriskierandunprovenmitigationtechnologieswithincreasedriskofunintendedconsequencesforhumanwellbeingandecosystems.416

Trendsinenergyuse407. Thepatternofenergyproductionandconsumptionhaschangedconsiderablysince1990in

termsofGHGemissions,energymixandenergyuse.ThefigurebelowshowsthepatternofUKGHGemissionsbysectorsince1990,andindicatesasteadyfallinGHGemissionssince1990.

Source:DECC(2015)FinalUKgreenhousegasemissionsnationalstatistics:1990-2013;DECC(2015)ProvisionalUKgreenhousegasemissionsnationalstatistics;CCCanalysis.

414http://www.publications.parliament.uk/pa/cm201012/cmselect/cmenergy/1646/1646vw13.htm415Edenhofer,Pichs-Madruga,Sokona(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIPCC.CambridgeUniversityPress;2014.416Mills,E.Weighingtherisksofclimatechangemitigationstrategies.BullAtSci.2012;68:67–78

95

408. ThefallinGHGemissionsisduetoacombinationoffactors:amoveawayfromcoalandoiltowardsgasandrenewablesingeneratingelectricity;contractionofenergy-intensiveindustries(includingironandsteel);improvedefficiencyofboilersandbuildings;economicrecessionpost-2008;areductionincattlenumbers,syntheticfertiliserapplicationandbiodegradablewastesenttolandfill;andtheimplementationofmethanerecoverysystems.

409. Importantly,thegraphabovedenotesthepatternforterritorialGHGemissionsanddoesnotreflecttheGHGemissionsofgoodsandproductsproducedelsewherebutconsumedintheUK.SoaproportionoftheUK’sreductioninGHGemissionshasessentiallyresultedfromGHGemissionsbeingexportedoevrseas.

410. Inspiteofimprovementsintheaveragefuelefficiencyofvehicles,transportsectoremissions(excludingemissionsfrominternationalaviationandshipping)havenotdecreasedsubstantiallyandactuallyincreasedby1.1%between2013and2014.417

411. In2014,directdomesticenergyconsumptionintheUKwas142.8milliontonnesofoilequivalent(Mtoe).Thetwolargestsourcesoffuelwerepetroleumliquids(86%ofwhichwereusedfortransport)andnaturalgas(60%ofwhichwasusedinthedomesticsector).Overall,fossilfuelsaccountedfor84.5%oftheUK’senergysupply.418

412. UKemissionsfor2014weresplitbetweensixsectorsbytheCCCasfollows:power/electricitygeneration(23%),industry(21%),buildings(16%),transport(23%),agricultureandland-use,land-usechangeandforestry(9%),andwasteandfluorinatedgases(7%).

413. ThepatternofprimaryfuelsusedtogenerateelectricityintheUKhaschangedsignificantly

overtheyears,reflectingalowerdependenceoncoalandgreaterrelianceongasandrenewableenergy.Thesubstitutionofcoalbygashasbeenoccurringsincethemajorreductionsincoaluseover1970-1980;andtheso-called‘dashforgas’inthe1990s.Inthefourthquarterof2015,themixoffuelstogenerateelectricitywas:gas(29.7%),renewables(26.9%),coal(19.9%),nuclear(15.6%),andoilandothersources(2.3%).419

414. TheshareofcoalinUKprimaryenergyconsumptionhasfallenfrom40%in1970to16%by2014,whilegasuseincreasedfrom5%to47%.Ofthecoalusedin2014,nearly80%wasusedtogenerateelectricity.420Projectionsto2030showthatcoal-basedelectricitygenerationwillfallby

417DECC,2015.https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/416810/2014_stats_release.pdf418DECC,2015.EnergyConsumptionintheUK.https://www.gov.uk/government/statistics/energy-consumption-in-the-uk419Statistics-NationalStatistics.EnergyTrendsSection5:Electricity.Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/437802/Electricity.pdf420DECC,2015.EnergyConsumptionintheUK.https://www.gov.uk/government/statistics/energy-consumption-in-the-uk

96

63%from2015levelsin2020.Thegovernmenthascommittedtophaseoutallcoaluseforelectricitygenerationby2025.

415. Becausemostcoalplantswillhavebeenretiredbeforeanysubstantialproductionofshale

gasoccurs,theGHGfootprintofshalegasrelativetocoalisnotrelevant.Rather,shalegasneedstobecomparedwithotherpotentialsourcesofelectricityandheatingincludingbiogas,conventionalgas,biomassandrenewables.

416. Ofthetotalnaturalgasconsumedin2011,about52%wasusedtoprovideheatforbuildingsandindustry,while34%wasburnedinpowerstationstogenerateelectricity.421In2010,85%ofhomeswereheatedbygas.422

417. In2013,11.2Mtoeofprimaryenergyusewasaccountedforbyrenewables,75%ofwhichwastogenerateelectricity,and15%wasusedtogenerateheat.423In2013,70%ofrenewableenergycamefrombioenergy(includingwood,woodwasteandagriculturalby-products),whileaboutafifthcamefromwind.Hydro-electricandsolarPVcontributedlessthan10%.

AchievingtheUK’s2050targetforGHGemissionsreductions

418. Threeaspectsofdecarbonisationarecrucial:energyefficiency,energyconservation,andashifttolow-carbonelectricity.

419. ThecurrentpatternofGHGemissionssourcesin2014andthestatutorytargetfor2050areshowninthediagrambelow.

421DepartmentofEnergyandClimateChange.(2013).TheFutureofHeating:MeetingtheChallenge.[Online]Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/190149/16_04-DECCThe_Future_of_Heating_Accessible-10.pdf422NationalGrid.(2014).UKFutureEnergyScenarios;UKGasandElectricityTransmission.[Online]Availableat:http://www2.nationalgrid.com/uk/industry-information/future-ofenergy/future-energy-scenarios/423DepartmentofEnergyandClimateChange.(2014c).UKEnergyinBrief2014.[Online]Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/350941/UK_Energy_in_Brief_2014_revised.pdf

97

Source:DECC (2015) Final UK greenhouse gas emissions national statistics: 1990-2013; DECC (2010) Final UK greenhouse gas emissions national statistics: 1990-2008; CCC analysis. Notes:International aviation and shipping data are for 2013.

420. AprojectionfromOctober2015suggeststhatGHGemissionswillfallby15%between2014

and2020,drivenlargelybyasignificantreductioninpowersectoremissionsduetothe2020renewablestargetandtheshiftawayfromcoal.FurtherreductionsarealsoexpectedintransportduetotheimpactoftheEUnewcarandvanCO2targetsfor2020,andapartialreplacementofoil-basedfuelswithbiofuels.424

421. TheUKissettomeetitsthirdcarbonbudgettargetin2022.However,maintainingprogressbeyondthistowardsthe2050targetwillbecomeincreasinglydifficult.AccordingtoDECC,achievingthetargetsetfor2027andbeyond“willbemuchmorechallenging”.Althoughprimaryenergydemandisprojectedtofall11%overthenext10years,demandmaystarttoincreaseagainbecausefurtherimprovementsinenergyefficiencymaybeunabletooffsettheimpactofeconomicandpopulationgrowth.

422. WhileDECC’sfutureprojectionsassumethatcurrentpoliciestoreduceemissionsaredeliveredinfull,theCCCnotedintheir2014and2015ProgressReportsthatanumberofpoliciesareatriskoffailureduetodesignanddeliveryproblems,orbecausetheyareunfunded.TheseincludetheAgriculturalActionPlan,policiestoimprovethefuelefficiencyofHGVs,theRenewableHeatIncentivepost-2016,ZeroCarbonHomesandtheRenewableTransportFuelsObligation.

424ItremainstobeseenwhatimpacttherecentreferendumresultonEuropewillhaveintermsofEUdirectivesthatunderpintheUK’semissionsreductionstargets.

98

423. TheCCChighlightsthatreachingthe2050targetwouldrequire:a)continuedtake-upofultra-lowemissionvehiclesandlow-carbonheat(e.g.heatnetworksandheatpumps);b)improvedhomeinsulation;andc)deepreductionsinemissionsfromelectricitygeneration.425

424. Theearlydecarbonisationofthepowergenerationsectorandtheelectrificationofend-usesectorsfrom2030aredeemedcriticalbytheCCCandwillrequireastrongpolicyframework,includingelectricitymarketreform426andradicalchangesinenergyvectorsincludingswitchingfromgastoheatpumpsforheating.427Industrywillalsoneedtobedecarbonisedthroughincreasedelectrificationorcombustionofhydrogenfromlow-carbonsources.

425. TheCCCalsoemphasisestheneedforinvestmentindevelopingheatnetworks,electricvehiclechargingnetworksandpotentially,infrastructureforhydrogenapplications.Electricitynetworkswillalsoneedtobestrengthenedtocopewithnewdemands(e.g.fromheatpumps)andincreasinggenerationfromlow-carbonsources.Optionsdeemedtorepresentgoodvalueinvestmentsbefore2030includeonshoreandoffshorewind,ground-mountedsolar,andnuclear.428

426. AccordingtotheCCC,carboncaptureandstorageis“veryimportantinmeetingthe2050targetatleastcost,givenitspotentialtoreduceemissionsacrossheavyindustry,thepowersectorandperhapswithbioenergy,aswellasopeningupnewdecarbonisationpathways(e.g.basedonhydrogen)”.

427. OtherthemesintheCCC’sscenarioplanningformeetingthe2050targetinclude:agricultureemissionsfallingduetochangedfarmingpractices(e.g.on-farmefficiencies,improvedanimalfertility),reducedfoodwasteandadjustmentofdiettowardslesscarbon-intensivefoods;andaswitchtosustainablebioenergyprovidingaround10%ofprimaryenergyin2050.TheCCCassumesthatdemandforinternationalaviationislikelytogrowconsiderablyandthattherewillthereforeneedtobestrongefficiencyimprovementsinthatsector.

Theroleofgasingeneratingelectricity428. TheCCC’sscenariosforthepowersectorin2030includesaroleforunabatedgasgeneration

tocontinue.IntheCCC’scentralscenarioforthepowersector,unabatedgas-firedpowergenerationincreasestoabout38%ofsupplyinthemid-2020sbeforereducingto22%by2030,asCCSstartstoplayabiggerrole.However,accordingtotheCCC,thisbriefincreaseingasconsumptionforpowergenerationdoesnotrequireUKshalegasproduction,asit“couldbemetthroughatemporaryincreaseingasimports,forwhichtheUKalreadyhasadequateinfrastructure”.

425TheCommitteeonclimatechange.FourthCarbonBudgetReview–technicalreport–Chapter2426Dependingontheextentofelectrificationintransport,heatandotherapplications,thelevelofelectricityconsumptionin2050couldbe50-135%abovethelevelin2014.427CCC,2015.TheFifthCarbonBudget–Thenextsteptowardsalow-carboneconomy428CCC,2015.Powersectorscenariosforthefifthcarbonbudget

99

429. Toeffectivelydecarbonisepower,transportandheatgenerationby2050,itwillbe

necessarytodecarboniseallnewinvestmentby2020forpowerwiththeexceptionofnewgaspowerstationsforback-upandasbalancingplant.ThismakesitimportantthattheUKdoesnotbuildtoomanynewgaspowerstations.

430. AccordingtotheCCC,tomeetthecarbonbudgettargets,themeancarbonintensityforelectricitygenerationneedstobebelow100gCO2/kWhby2030,andprobablyaslowas50gCO2/kWh.429

431. Meancarbonintensityforelectricitygenerationwasabout450gCO2/kWhin2014andprojectedtodropto200-250gCO2/kWhby2020.ProjectionsfromDECC,releasedinNovember2015,haveacentralscenarioof100g/kWhin2030430,whichisattheupperendoftheCCC-recommendedrange.TheCCC’sownscenarioforenergyproductionhavealsomovetowardstheupperendofthe50-100gCO2/kWhrangebecauseofdelaystonewnuclearandCCSprojects.431

432. TwocrucialfactorsdeterminingthefutureroleofgasaretheavailabilityofCCSandtheefficiencyofgas-firedpowerstations.

433. Currently,anefficientnew-buildgas-firedelectricitypowerstation(combinecyclegasturbines,CCGT)emitsaround345gCO2/kWh(thisfigurecanbehigherdependingontheefficiencyoftheparticularplantandwhetherlife-cycleemissionsaretakenintoaccount).Toputthisinperspective,thelife-cycleemissionsformaturerenewablesandnuclearcanbeintheregionof5-30gCO2/kWh.432However,ascenarioofefficientgaspowerstationscombinedwithCCScouldproducelifecycleemissionsof50-80gCO2/kWh.433434435

434. AccordingtoUKERC,theriskofcarbonlock-inneedstobeconsideredwithmodernCCGTplantshavingatechnicallifetimeofatleast25yearsandpolicymeasuresareneededtoensurethatanyCCGTsstillrequiredby2040areeitherfittedwithCCSoroperateatmuchlowerloadfactors.436

429TheCommitteeonclimatechange.FourthCarbonBudgetReview–technicalreport–Chapter2430DECC,2015.Updatedenergyandemissionsprojections:2015.Nov18th431CCC,2015.PowerSectorScenariosfortheFifthCarbonBudget.432TurconiR,BoldrinA,AstrupT(2013)Lifecycleassessment(LCA)ofelectricitygenerationtechnologies:overview,comparabilityandlimitations.RenewSustEnergRev28:555–565433Odeh,HillandForster,2013.CurrentandFutureLifecycleEmissionsofKey‘LowCarbon’TechnologiesandAlternatives.Seehttps://www.theccc.org.uk/wp-content/uploads/2013/09/Ricardo-AEA-lifecycle-emissions-low-carbon-technologies-April-2013.pdf434HammondGR,HowardHRandJonesCI,2013.TheenergyandenvironmentalimplicationsofUKmoreelectrictransitionpathways.EnergyPolicy52,103-116435CCC,2015.PowerSectorScenariosfortheFifthCarbonBudget.436McGladeC,PyeS,WatsonJ,BradshawMandEkinsP,2016.ThefutureroleofnaturalgasintheUK.London:UKEnergyResearchCentre

100

Theroleofgasingeneratingheat

435. Intermsofheat,gasemitsapproximately200gCO2/kWhofheat,alevelwhichalsocannotbereconciledwiththeUK’scarbonbudget.Consequently,gashasamarginalandrapidlydecliningroleingeneratingelectricitypost-2030.

436. NeitherDECCnortheCCChavebeenabletodeveloplow-carbon(~2°C)post-2030scenariosthatmaintainasignificantroleforgasinsupplyingdomestic,commercialandindustrialheat.437

Thefutureroleofgas

437. Followingrecentmodellingwork438designedtoanalysearangeofpossiblefutureenergyscenariostheUKEnergyResearchCentre,concludedthatgasisunlikelytoactasacost-effective‘bridge’toadecarbonisedUKenergysystemexceptforashortperiodoftimefrom2015tillabout2020.Forthisreason,theysuggestthatitismoreappropriatetocharacterisegasas“ashort-termstop-gapuntillow-orzero-carbonenergysourcescancomeonstream”andthatwithoutCCS,“thescopeforUKgasusein2050islittlemorethan10%ofits2010level”.439

438. CCSemergesasacriticaltechnologyifgasistohaveasignificantrole,consistentwithUKcarbonreductiontargets,outto2050.ButevenwithCCS,becauseanynewgas-firedpowerstationswouldneedtooperateonrelativelylowloadfactors,theeconomicviabilityofinvestmentsinsuchnewgas-firedpowerstationsisquestionableandtheremaybelimitedcost-effectivescopeforgasuseinpowergenerationbeyond2030.

439. TheCCChasalsoexaminedthepotentialrolethatshalegasmayplaywithinfutureenergy

scenariosthatarecompatiblewiththeUK’scarbonbudgets.InJuly2016,itpublishedareportwhichconcludedthat“onshorepetroleumextractiononasignificantscaleisnotcompatiblewithUKclimatetargetsunlessthreetestsaremet”.440Thethreetestswere:

• Welldevelopment,productionanddecommissioningemissionsmustbestrictlylimited.• Gasconsumptionmustremaininlinewithcarbonbudgetsrequirements.• Emissionsfromshalegaswellswillneedtobeoffsetthroughreductionselsewherein

theUKeconomy440. TheCCC’sheadlineconclusionsmerelystatethatSGPissafetodevelopifitdoesn’tbreach

theUK’semissionstargets.However,theanalysisconductedbytheCCCtoassessthepotentialimpactofSGPonGHGemissionsisworthdiscussinginsomedetail.

437AEAfortheCCC.Decarbonisingheatinbuildings:2030–2050438Twomodelswereused.Onewasusedtogeneratealargenumberofsensitivityscenariosincorporatingavarietyoftechnological,resourceandpriceassumptionsandkeyuncertaintiesaboutthedevelopmentofthefutureenergysystem.AsecondwasusedtoprojectfutureUKenergyuse.439McGladeC,PyeS,WatsonJ,BradshawMandEkinsP,2016.ThefutureroleofnaturalgasintheUK.London:UKEnergyResearchCentre440CCC,2016.ThecompatibilityofUKonshorepetroleumwithmeetingtheUK’scarbonbudgets.

101

441. InordertoestimatethepossibleimpactofSGPonGHGemissions,theCCCconstructedamodelbasedonanumberofscenariosandassumptionsthatinvolvedanumberofvariables:

• Globalwarmingpotential(GWP)ofmethane• Productionscenarios(numberofwellsandrateofwellconstruction)• Wellproductivity• Fugitiveemissionsrates

442. MethanewasassumedtohaveaGWP100of25whichequatestoatonneofmethanehavingthesameeffectas25tonnesofCO2overaperiodof100years.

443. Toestimatetherateoffugitiveemissions,theCCCconstructedfourregulatoryscenarios:• A‘noregulation’scenariowhichactsasabaseline.• A‘currentposition’scenariowhichreflectsthestatedpositionoftheEAregarding

theuseofRECs.• A‘minimumnecessaryregulation’scenariowhichinvolvesdeploymentoflowcost

mitigationoptionsincludingliquidunloadingtechnologiesandsemi-annualmonitoringoffugitiveemissions.

• A‘fullertechnicalmitigation’scenariowhichinvolvesdeploymentofadditionalmitigationoptionsincludingelectrificationofcontrolvalvesandsomecompressors.

443. TheCCCthenproducedlow,centralandhighestimatesofemissionsthatmightoccurunder

eachofthesefourregulatoryscenariosbasedonvariousrecentbottom-upstudiesfromtheUS,notingthatthereisalargerangeinresultsandthattheapplicabilityoftheseratestotheUKarequestionable.441Thesewerecalculatedforthefourregulatoryscenariosasfollows:

441ThepreciseestimatesusedintheCCC’sanalysisandhowtheserelatetodataintheliteratureareoutlinedinasupportingannex.

102

444. TheCCCthendevelopedproductionscenariosbasedonthenumberofwellsdrilledandtheproductivityofwellsintheUK.442Highlevelsofproductivitymeanloweremissionsperunitofenergyproduced(andalsolowercostsperunitenergy),buthigheroveralllevelsofemissions.

445. Theamountofactualmethaneemittedisinfluencedbythetypeofregulatoryframeworkadopted(anditsactualeffectivenessinthefield),aswellastheassumptionsmadeaboutfugitiveemissionrates.Thediagrambelowshowstheactualamountsofmethaneemittedintotheatmosphereforthefourregulatoryscenarioswithhigh,centralandlowassumptionsaboutemissionsratesundera‘central’scenarioofwellproductivity.

446. Underhighproductionscenarios,theincreaseinGHGemissionsduetoSGPwasestimatedbe24MtCO2e/yearunderthe‘currentregulation’scenario,17Mtinthe‘minimumnecessaryregulation’scenario;andabout10Mtinthe‘fullertechnicalmitigation’scenario.Undercentralestimatesofproductiontheemissionswereestimatedtobe11Mtunderthe‘Minimumnecessaryregulation’scenarioand7Mtinthe‘fullertechnicalmitigation’scenario.

447. Undercentralestimatesforthe‘minimumnecessaryregulation’caseitwasestimatedthat

additionalemissionscouldbearound27Mtand52Mtoverthefourthandfifthcarbonbudgetsrespectively.

442Someemissionsscalewiththenumberofwellsdrilled(e.g.wellpreparation,completion,liquidunloadingandworkover),whileothersscalewiththeamountofgasproduced(e.g.processingandnormaloperation).

103

448. TheCCCthenexaminedtheextenttowhichtheseadditionalGHGemissionscouldbeaccommodatedwithintheUK’scarbonbudgetsupto2030,andconcludesthataccommodatingadditionalemissionsfromSGP“maybepossible,althoughitwouldrequiresignificantandpotentiallydifficultoffsettingeffortelsewhere”.However,theroomformanoeuvreislimitedandshouldemissionsinothersectorsextendbeyondtheproposed‘central’futurescenariosdevelopedbytheCCC(e.g.uncontrolledexpansionofaviation,littleornoCCS,orfailuretodecarboniseheat),itbecomes“veryunlikelythattherewouldbescopeforadditionalemissionsfromshalegasexploitationconsistentwithmeetingcarbonbudgetsorthe2050target”.

449. TheCCCalsostatethatshouldtheemissionsimpactofSGPin2050besimilartothatin

2030,itwouldbe“considerablymoredifficultandexpensivetofindwaystooffsetthis”.AndaswiththeUKEnergyResearchCentre,theCCCunderlinesthecriticalimportanceofCCSbynotingthat“evenwithoutadditionalemissionsfromonshorepetroleumextraction,theabsenceofCCSislikelytorequirenear-fulldecarbonisationofsurfacetransportandheatinbuildingsby2050.

450. TheCCCconcludesthatwhiletheGHGfootprintofSGPissubjecttoconsiderableuncertainties,itisclearthat“tightregulationwithastronglegalfoundation”wouldbeneededtoshifttheestimatedrangeforemissionsdownwards.However,evenifGHGemissionscouldbereduced,thereremainuncertaintiesaboutwhetherSGPiscompatiblewiththeUK’sGHGemissionsreductiontargets.

451. Thecurrentevidencebasesuggeststhatwell-regulateddomesticproductioncouldhaveanemissionsfootprintslightlysmallerthanthatofimportedliquefiednaturalgas(LNG).

452. Ontopofthis,itshouldbenotedthatcertainaspectsoftheCCC’sanalysismaybebiasedinfavourofSGP.ForexampletheCCC’suseofaGWP100of25formethanehasnotusedthemoreupdatedformulaoftheIPCC’sFifthAssessmentwhichgivesmethaneaGWP100of28and34toaccountforthefeedbackeffectofwarmingindecreasingtheeffectivenessofnaturalCO2sinks.

453. TheCCChasalsodidnotmodeltheimpactofSGPoverashortertimehorizonwhichisrelevantbecausemethaneisashortlivedGHGwhoseglobalwarmingeffectismoreconcentratedacrossashorterperiod.WhileaGWP100formulaoverplaystherelativeimportanceofmethaneemissionsoveracentury-scale,itunderplaysitseffectinthenearterm.SomescientistsadvocateusingaGWP20formulawhichwouldgivemethaneaGWPthatis72timesgreaterthanCO2over20years.Giventheconcernsaboutpositivefeedbackloopsassociatedwithglobalwarming,thismaybeamoreappropriateapproachtotake,oronethatshouldhavebeenusedaswellasGWP100.

454. TheCCC’suseofbottom-upstudiestoestimatefugitiveemissionsratesmayalsoerrontheconservativesidegiventhattop-downstudieshaveconsistentlycalculatedhigherfugitiveemissionsrates.

104

455. Finally,whiletheCCC’sreportwasfocusedonthepotentialimpactofSGPontheUK’scarbonbudgets,itisimperativethattheimpactofSGPisassessedatthegloballevel.ThepossibilitythatincreasedfossilfuelproductionintheUKmightleadtohigheroverallemissionsgloballywasnotexploredintheCCC’sreport(althoughitplanningtodosolaterin2016).443

456. AfinalpointworthnotingisthattheCCC’sanalysisincludedexaminingtheemissionsassociatedwithland-usechangesarisingfromSGP.TheynotedalifecycleanalysisconductedfortheScottishGovernmentwhichsuggestedthatland-usechangeemissionsarisingfromSGPinareaswithdeeppeatsoilcouldbeveryhigh444andledtheCCCtorecommendthatthedevelopmentofwellsinareaswithdeeppeatsoils”shouldnotbeallowed”.

Q.CarbonCaptureandStorage(CCS)

444. UncertaintyremainsoverwhetherCCScanbedeployedatthescalerequired,atreasonablecost,andwiththerequiredlevelofeffectiveness.Thegovernment’swithdrawalofsupportforthedevelopmentofCCS,maythereforecompromisetheUK’sdecarbonisationambitions.

445. AccordingtotheCCC,thegovernment’scancellationoftheCCSCommercialisationProgrammehasraiseddoubtsaboutthefutureroleofCCSandimpliesasubstantialdelayinitsdeploymentatscale.A“significantdelaycouldleadtolessfeasibleCCSdeploymentovertheperiodto2050,reducingitsroleindecarbonisationandimplyingalowerleveloffossilfuelconsumptioncompatiblewithmeetingthe2050target”.TheCCCstatethat“aUKapproachtodeliveryofcarboncaptureandstorage(CCS)isurgentlyneeded”.

446. CCSreferstoaprocessinvolvingthreemainsteps:1)theseparationofCO2fromagasstream;2)CO2compressionandtransport(viapipelineorshipping);and3)CO2storageinasuitablegeologicalsite(e.g.salineaquifersanddepletedoilandgasreservoirs).

447. CCStechnologiesarecategorisedaccordingtotheclassofcaptureprocess(post-

combustion,pre-combustion,andoxy-combustion)andtypeofseparationtechnology(absorption,adsorption,membranes,cryogenicdistillation,gashydrates,andchemicallooping).445

443Otherissueslinkedtoongoinggasconsumptionandcarbonbudgets,butnotspecifictoSGP,suchasfugitiveemissionsfromthestorageandtransportationofgasandthefutureuseofthegasgrid,werealsonotconsideredintheCCCreportbutwillbeinfuturereports.444Bondetal.(2014),Life-cycleAssessmentofGreenhouseGasEmissionsfromUnconventionalGasinScotland,http://www.climatexchange.org.uk/files/2514/1803/8235/Life-cycle_Assessment_of_Greenhouse_Gas_Emissions_from_Unconventional_Gas_in_Scotland_Full_Report_Updated_8.Dec.14.pdf445Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute.

105

(Source:Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute).

448. Post-combustioncaptureinvolvestheseparationofCO2fromafluestreamafterafossilfuel

hasbeencombusted.Pre-combustionCCSseparatesCO2fromahydrogen-richgascalledsyngaspriortocombustion.Thesyngasisobtainedbygasificationofafuel.Oxy-combustioncaptureischaracterisedbythecombustionofafossilfuelwithenrichedoxygenwhichgeneratesafluestreamwithoutimpurities,whereCO2canbeseparatedmoreeasilybycondensingthewatervapour.

449. CCScanalsobecombinedwithNegativeEmissionTechnologies(NETs)suchasreforestation,

afforestation,agriculturalsoilcarbonstorage,biocharandbioenergywithcarboncaptureandstorage(BECCS).BECCStechnologieswhichcombinebiomasswithCCScanbedeployedforprocessesinthebio-refiningsector,biofuelsector,powerandheatsector,andinindustrialprocessesforthecement,steelandpapersector.

450. ThetechnicalpotentialofNETshasbeenestimatedtobe120GtCO2until2050.Thiswould

representanextensionofthe2050carbonbudgetby11–13%fora50–80%probabilityofremainingbelowa2°Ctemperatureincrease.446AnotherhigherendprojectionofthefuturepotentialofBECCSseesnegativeGHGemissionsbeinggeneratedbyupto10.4GtCO2e/yrby2050.447

451. AkeyissueaboutCCSandBECCSistheextenttowhichitisviableandaffordable,andthe

speedatwhichitcanbedeployedinlightoftheshrinkingcarbonbudgetavailable.

452. TheInternationalEnergyAlliance(IEA)whichconsidersCCSakeyoptionformitigatingCO2emissions,highlightstheuncertaintyofitspaceofdeploymentandconcludesthatitseffect

446Caldecott,B.,etal.(2015).StrandedCarbonAssetsandNegativeEmissionsTechnologies.Availableonline:www.smithschool.ox.ac.uk/research-programmes/stranded-assets/Stranded%20Carbon%20Assets%20and%20NETs%20-%2006.02.15.pdf447Koornneef,J.,etal.(2012).Globalpotentialforbiomassandcarbondioxidecapture,transportandstorageupto2050.InternationalJournalofGreenhouseGasControl,11,117–132.

106

before2050islikelytobemodest.448AproposedIEAroadmaptoassistgovernmentsandindustrytointegrateCCSintotheiremissionsreductionstrategiessuggestsCCSbeingabletostoreatotalcumulativemassofapproximately120GtCO2between2015and2050.Thisisequivalenttoabout3.5GtCO2/yr(whichislessthan10%ofthecurrentannualamountofCO2eemissions).

453. QuestioningthevalidityofmanyprojectionsaboutthefutureofCCSandBECCSisimportant

giventhevastandpowerfulvestedinterestsinvolvedinmaintainingandprolongingtheroleoffossilfuelsinenergysystemsworldwide.

454. KeybarrierstotheuptakeupofCCSarecost,energypenalty,andlocationaswellascapacityofstoragesites.449Severalbarriersarenon-technical,including:

• Lackofmarketmechanism/incentive• FeweffectivemechanismstopenalisemajorCO2emittingsources• Inadequatelegalframeworkallowingtransportandstorage(bothinlandandoffshore)• Publicawarenessandperception.

455. Majorpotentialsupplychainconstraintsincludehydrogenturbinesforthecapturestep,

pipelinesforthetransportstep,geo-engineersanddrillingrigsforthestoragestepaswellasashortageofpetroleumengineersacrossthefullCCSchain.450PrivateinvestmentinCCSishamperedbyvariousrisksincludingtechnologyandconstructionissues,highup-frontcapitalcosts,infrastructurebarriers,andoperatingcosts(alsoaffectedbyafuelpricerisk).

456. AccordingtotheGlobalCCSInstitute,onemajorbarriertoCCSinthepowerindustryisthe

highcapitalcostand‘energypenalty’comparedtotraditionalfossilfuelfiredgenerators.Atthemoment,aplantwithCCSismoreexpensive(intermsofcapitalandoperatingcosts)thanthesameplantwithoutCCS.

457. ReportsofthecostofCCSshowagreatvariability,withalackofdataforspecificprocesses

orcapturetechnologies.ThecapturestepisthemostexpensivestepoftheCCSchain,withacostofcarbonequivalentto20–110$2015/tCO2.Transportcostrangesbetween1.3and15.1$2015/tCO2/250km,dependingonthelocationandlengthofthepipeline.Storagecostdependsonthetypeofstoragesiteandthepossiblereuseofexistingfacilitiesandisbetween1.6and31.4$2015/tCO2.451

448IEA(2013).TechnologyRoadmap:CarbonCaptureandStorage2013.Online.Availableonline:www.iea.org/publications/freepublications/publication/technology-roadmap-carbon-captureand-storage-2013.html449GlobalCCSInstitute(2014).Summaryreport.http://hub.globalccsinstitute.com/sites/default/files/publications/180928/global-statusccs-2014-summary.pdf450IEAGHG(2012).BarrierstoimplementationofCCS:capacityconstraints,ReportIEAGHG2012/09.451Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute

107

458. BudinisetalhypothesisethattheconstraintonCCSisnotcostrelatedorsupplychainrelated(particularlyinlateryears)butthatCCSisnotadequatelyeffectiveinreducingresidualemissionstomakeitafavourableoptioninclimatechangemitigationscenarios.Developershavesofarfocussedon85–90%capturerateswhichwouldnotbesufficientwithtighterglobalemissionlimits.However,highercaptureratesfrom2050onwards(evengreaterthan95%)mayleadtonaturalgasbecomingviableagainasasafefossilfuel.

459. Factorsdeterminingthefeasibilityoflocationandcapacityofstoragesitesinclude:a)

cumulativecapacityofcarbonstorage;b)ratesofreleaseanduptake;c)connectionfromsourcetostore;andd)climateimpactofstoragetimescale.

460. Globalgeo-storagecapacityisbelievedtobelargerthantheCO2embodiedinpresent-day

fossilfuelreserves.452However,reservoirpressurisationinsalineaquiferswilllimittheaccessibleCO2geo-storagecapacityintheabsenceofpressuremanagementstrategies.Theexactfractionofavailablespacehascomplexdependenciesonreservoir,rock,andfluidproperties.

461. Itisestimated1,000Gtofstoragecapacityisavailableinoilandgas(hydrocarbon)

reservoirsalonewhichwouldmeanlittleinthewayofstoragecapacitylimitsaffectingthefirstgenerationofcommercialCCSdeploymentinscenariosinvolvinglessthan500GtofCO2.

462. AstudyofsourcesandsinksshowsthatCCSwillnotbeconstrainedbylocalavailabilityof

storageresourcesinNorthAmerica,EuropeandBrazil.Outsidetheseareas,storageavailabilityisuncertain,althoughtheglobaldistributionofsedimentarybasinsissuchthatitispossiblethattherewillbefewlocationswherelocalstorageavailabilitywillbealimitingfactor.453

463. TechnologyReadinessLevels(TRLs)isametricusedtoassessthestageofdevelopmentof

newtechnologies.TRLsrangefrom1to9,whereTRL1means“basicprinciplesobservedandreported”andTRL9means“actualsystemflightproventhroughsuccessfulmissionoperations”.Accordingtoonestudy,post-combustioncaptureprocessesliebetweenTRL1andTRL5(duetotheearlystagesoftechnologydevelopmentforthiscaptureprocess);pre-combustioncaptureprocessesare“likely(tobe)decadesawayfromcommercialreality”;andoxy-combustionprocessesare“attheearlystagesofdevelopment”,withoutaclearpossibilitytounderstanditsfuturedevelopment.454

464. Whilepost-combustionandpre-combustioncapturetechnologiesarewidelyused,atthe

momentthereisonlyonefull-scaleinstallationofacoal-powerplant,theBoundaryDamCarbonCaptureProject.455AccordingtotheGlobalCCSInstitute,therearecurrently55large-scaleCCS

452IEAGHG(2016).Cancarboncaptureandstorageunlock‘unburnablecarbon’?,ReportIEAGHG2016/05.453KoelblBS,etal,2014.UncertaintyinCarbonCaptureandStorage(CCS)deploymentprojections:across-modelcomparisonexercise.ClimaticChange,123,461–476.454RubinESetal,2012.Theoutlookforimprovedcarboncapturetechnology.ProgressinEnergyandCombustionScience,38,630–671.455Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute

108

projectsworldwideineither‘identify’,‘evaluate’,‘define’,‘execute’or‘operate’stage.However,thetotalnumberhasreducedfrom75(2012)to65(2013)to55currently(2014).456

465. PolicyoptionstoincreasethedeploymentofCCSinclude:carbontradingortaxation;

targetedinvestmentsupport;feed-inschemeswhichguaranteeafixedfee;aguaranteedcarbonpriceforCCS;andminimumstandards,suchasaCCSobligationfornewinstallations.

466. IntheUK,governmentencouragementofCCShaswaned.In2007,thegovernment

launchedacompetitionfordemonstratingpost-combustioncaptureofCO2onacoal-firedpowerplant.In2010,thecompetitionwasopenedtogasandin2013,twobidderswereannounced:theWhiteRoseproject(acoal-firedpowerplant)andthePeterheadproject(afull-scalegasCCSproject).However,inNovember2015,the£1billionring-fencedcapitalbudgetfortheCCSCompetitionwaswithdrawnbythegovernment.

467. AlthoughCCSappearsimportantinunderpinninganyroleforfossilfuelsinthefuture,CCS

hasnotbeenadoptedtoagreatextent.Forsomepeople,BECCSandreforestationareattractiveoptionsforcreatingnegativeemissions.457However,EstimationsofNETspotentialuntil2100areaffectedbygreatuncertainties,especiallywithregardtotheavailabilityandaccessibilityofgeologicalstorage,andarethereforedifficulttoestimate.Theyalmostcertainlydonotofferaviablealternativetomitigationinthecomingdecades.458

RenewableEnergy

468. FuturescenariosoutlinedbytheCCCincludesomecontinuedroleforfossilfuelinthemediumtolongtermfuture.ButthisisheavilydependentonCCSandnegativeemissionstechnologies(NETs).Thescenariosalsohighlightthecentralimportanceofrenewableenergy,andnuclearpower.459460

469. ThenotespresentedheredonotcoverthesubjectofnuclearenergywhichproducesfewerGHGemissionsthanfossilfuels,butwhichcarriesrisksintermsofradioactivewaste,accidentsandtheproliferationofnuclearweapons.TheexorbitantcostsassociatedwithHinckleyCalsopointtonuclearenergypresentingconsiderableeconomicandfiscalthreatstosociety.

470. ThecontributionofREtothetotalenergymixintheUKisgrowing.TheUKhasincreaseditsgenerationfromrenewablesfrom25TWhin2010to73TWhin2015.461Currentlyrenewablessupplyaround20-25%ofUKelectricityandDECCestimatesthattheywillsupplymorethan40%

456GlobalCCSInstitute(2014).Summaryreport.http://hub.globalccsinstitute.com/sites/default/files/publications/180928/global-statusccs-2014-summary.pdf457vanVuurenD,etal,2013.TheroleofnegativeCO2emissionsforreaching2°C-insightsfromintegratedassessmentmodelling.ClimaticChange,118,15–27.458McLarenD,2012.Acomparativeglobalassessmentofpotentialnegativeemissionstechnologies.ProcessSafetyandEnvironmentalProtection,90,489–500.459InternationalEnergyAgency.Energytechnologyperspectives2012.IEA,Paris;2012460InternationalEnergyAgency.Coalmedium-termmarketreport2012.IEA,Paris;2012461DECC,2015.Updatedenergyandemissionsprojections.AnnexJ

109

by2030.462IntheNationalGrid’s2015projectionoftheUK’sFutureEnergyScenarios,REsupplies11-30%oftheannualpowerdemandby2030.463[Note:MorerecentFESsarenowavailable.]

471. However,groupssuchasFriendsoftheEarthbelievethatanelectricitymixcomprisingover75%renewablesby2030wouldbeafeasibleandmoreappropriatetarget.

367. Theindustry-fundedTaskForceonShaleGashasarguedthatweshouldembrace“alongtermevolutionaryapproach”towardsrenewableenergy,ratherthan“ashorttermrevolution”.Thereasonstheygiveforthisslowapproachinclude:a)inadequategridinfrastructureforabsorbingwind,tidalandwaveenergy;b)publicdisapprovalofbiggeronshoretransmissionpylons;c)investorshavinglimitedfunds;d)renewableenergybeingeconomicallyunviable;e)theintermittencyofRE;f)REtechnologybeingunder-developedandsociallyunacceptable.

472. However,accordingtotheCCC,itwillbepossible“toensuresecurityofsupplyinadecarbonisedsystemwithhighlevelsofintermittentandinflexiblegeneration”.464Partsofthesolutionincludeachievinggreaterinter-connectiontosystemsbeyondtheUK;makingiteasierforenergydemandtorespondmoreeffectivelyandefficientlytoshort-termpricesignals;increasingthecapacityforelectricitystorage;andensuringthatback-upcapacityisflexibleenoughtoincreasegenerationwithouthavingtorunpart-loaded.

473. TwostudiesusedbytheCCCindicatethattheUKcouldgenerateover80%ofelectricitydemandfromrenewableswithoutjeopardisingsecurityofsupply,throughtheuseofstorage,interconnectorsanddemandsidemanagement.465466

474. Renewablesareprovidingelectricityatincreasinglylowercosts.Recentagreedcontractsforfuturepower(ContractsforDifference)signedbyonshorewindandsolar(£79/MWhfor15years),andoffshorewind(£115/MWhfor15years)arealreadycheaperthannewnuclear(£92.50/MWhfor35years).467Offshorewind’scostisalsofallingfast;andprojectedtocostlessthan£100/MWhby2020.468TheCCCsayonshorewindandlarge-scalesolarwillbecheaperthannewgaswhichpaysitspollutioncostsbefore2025.469Furthermore,sincewindandsolarproduceelectricityatzeromarginalcost,theyhavethepotentialtolowerelectricityprices.470

462DECC,2015.Updatedenergyandemissionsprojections.AnnexJ463NationalGrid.(2015).UKFutureEnergyScenarios;UKGasandElectricityTransmission.Availableat:http://investors.nationalgrid.com/~/media/Files/N/National-Grid-IR/reports/future-energy-scenarios-2015.pdf464CCC,2015.Powersectorscenariosforthefifthcarbonbudget465GarradHassan,2011.UKgenerationanddemandscenariosfor2030.March.466Poyry,2011.Analysingtechnicalconstraintstorenewablegenerationto2050.467CCC,2015.PowerSectorScenariosforthe5thCarbonBudget.Box4.1468Catapult,2015.Costofwindenergyfallssharply.Feb26th469CCC,2015.PowerSectorScenariosforthe5thCarbonBudget.egFigure2470GoodEnergy,2015.Windandsolarreducingconsumerbills.

110

475. TheCCCnotesthattherateandextentofchangeneededtostaywithinourcarbonbudgetindicatesaneedformuchgreatereffortstoreduceourconsumptionofenergyaswellasrapidlyexpandingonthedeliveryofrenewableenergy.

476. Thefeasibilityofmovingrapidlytowardsadecarbonisedenergysystemhasbeen

substantiatedbyotherstudies.TwostudiesforthestatesofNewYork471andCalifornia472havedemonstratedthepossibilityofmovingtowardsaneconomydriventotallybyREsources(largelysolarandwind)inacost-effectivewayusingtechnologiesthatarecommerciallyavailabletodaywithinthenext15-35years.

Overallenergyconsumptionandenergyefficiency477. Giventhecontextofclimatechange,consuminglessenergymaybebetterthanseekingnew

sourcesoffossilfuels.

478. Reducedlevelsofenergyconsumptionmaybeachievedinpartthroughimprovementsinenergy,althoughthismaynotbethecaseifmoney‘saved’throughenergyefficiencyisthenspentonfurtherenergyservices.Thisisaphenomenonreferredtoas“Jevons’paradox””orthe‘reboundeffect.’

479. Nonetheless,thereareclearlyopportunitiesforreducingbothoverallenergyconsumption

andimprovingefficiency.

480. Mostenergyservicesarehighlyinefficient.Forexample,carsintheUKstreethaveemissionsofover160gCO2/kmonaverage,eventhoughthereareover200modelvariantsofstandard-enginecars(i.e.notelectricorhybrid)withemissionsofunder100gCO2/kmbeingsoldatlittletonopricepremium.TelevisionsandITequipmenthavehugevariationsinenergyconsumptionforessentiallythesamelevelofservice.AnAratedrefrigeratorconsumesintheregionof80%moreenergythananA+++alternative;againatverylittlepricepenalty.AvastamountoftheUKhousingstockhasanEnergyPerformanceCertificateratingofDorbelow.

481. AGreenAlliancereportthatdescribesthefailureoftheUKtoharnessthepotentialfor

savingelectricityproposesastrategytocreateincentivesforcompaniestobenefitfromenergyefficiencymeasuresbymakingtwochangestotheelectricitymarket:a)a‘negawattsfeed-intariff’paidonthebasisofavoidedenergyconsumption,withrecipientscompetinginanauctiontodeliverenergysavingsinhomesandbusinessesatlowestcost;andb)openingthecapacitymarkettocompetitionfromdemand-sideresponseandenergydemandreductiononanequalbasiswithelectricitygeneration.473

471JacobsonMZ,HowarthRW,DelucchiMA,etal.ExaminingthefeasibilityofconvertingNewYorkState’sall-purposeenergyinfrastructuretooneusingwind,water,andsunlight.EnergyPolicy.2013;57:585–601472JacobsonMZ,DelucchMA,IngraffeaAR,etal.AroadmapforrepoweringCaliforniaforallpurposeswithwind,water,andsunlight.Energy.2014;73:875–889.473GreenAlliance,2015.Gettingmorefromless

111

Energysecurity

477. OneoftheimportantargumentsinfavourofSGPisthatitwillimprovetheUK’senergysecurity.Thisisacomplextopicwhichisdealwithhereinincompletelyandbriefly,andwillbeexpandedinduecourse.

478. Energysecuritytypicallyhastwodimensions:havingenoughenergytomeetneedanddemand;andavoidingbeingoverly-reliantonothercountriesforenergy.

479. Since1999,therehasbeenasharpriseinfossilfuelimportsintheUK.Thehighestlevelofimportedenergysince1974wasreportedin2013duetoanongoingdeclineindomesticoilandgasproduction.NearlyhalfoftheUK’snetenergysupplycamefromimports.474

480. Currently,about46%oftheUK’snaturalgascomesfromtheNorthSea.TheremainderisimportedfromNorway(about30%),theNetherlands(about8%)andBelgium(about4%).Theremaining20%ofimportedgasisliquefiednaturalgas(LNG),mainlyfromQatar.475476

481. Accordingtoestimatesofrecoverableshalegasreserves,SGPcouldhelpeliminatetheUK’s

relianceongasimports.However,thiswouldrequirealargeonshoregasindustry:BloombergNewEnergyFinanceestimatedin2013thateliminatingimportswouldrequirethedrillingofaround10,000wellsovera15-yearperiod,basedonoptimisticassumptionsforflowrates.Alowerflowratemightmeanupto20,000wells,draininganareatwicethesizeofLancashire.477

482. Oneaspectof‘energysecurity’istheaffordabilityofenergy.ThehopethatSGPintheUK

willreducegasprices,asitdidintheUS,hasbeenshowntobeunlikelybecauseoftheintegratednatureofthegasmarketinEurope.However,adomesticgasindustrycouldreducedependenceonimports(ifsufficientquantitiesofgascanbeproduced)andimpactpositivelyonnationalbalanceofpaymentsissues.

Theeconomicsoftheenergysectormoregenerally483. Theeconomicsoftheenergysectorisanimportantdimensionofanydebateaboutthe

energymixofthefuture,hereintheUKandelsewhere.

474DepartmentofEnergyandClimateChange.(2014c).UKEnergyinBrief2014.[Online]Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/350941/UK_Energy_in_Brief_2014_revised.pdf475DepartmentofEnergyandClimateChange.(2014c).UKEnergyinBrief2014.[Online]Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/350941/UK_Energy_in_Brief_2014_revised.pdf476DepartmentofEnergyandClimateChange.(2014d).UKEnergyStatistics.[Online]Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/296183/pn_march_14.pdf477BloombergNewEnergyFinance,2013.UKshalegasno“getoutofjailfreecard”.Feb21st

112

484. Crucially,thefossilfuelindustryisheavilysubsidised.478AccordingtotheIMF,pre-taxsubsidiestothefossilfuelsectorhavedeclinedfromabout0.7%ofglobalGDPin2011toabout0.4%in2015.Thisstillamountstoalargesubsidyofabout333billion.Theestimatedpost-taxsubsidytofossilfuelsismuchlargerandwascalculatedtobeabout6.5%ofglobalGDPin2015($5.3trillion).Aboutthree-quartersofthepost-tax-subsidyarefromtheexternalisationofthecostsofairpollutionandaquarterisfromtheexternalisationofthecostsofglobalwarming.479

485. Forpetroleum,totalsubsidieswerebrokendownasfollows:externalisedcostsofcongestion,accidentsandroaddamage(39%);pre-taxsubsidies(17%);globalwarming(13%),airpollution(18%),andforegoneconsumptiontaxrevenue(14%).Fornaturalgas,totalsubsidieswerebrokendownasfollows:globalwarming(53%),pre-taxsubsidies(26%),andforgoneconsumptiontaxrevenue(10%).480

486. Energysubsidiesforthefossilfuelsectorcurrentlydamagetheenvironment;causeprematuredeaththroughlocalairpollution;exacerbatecongestionandotheradversesideeffectsofvehicleuse;increaseGHGconcentrations;imposelargefiscalcostsontaxpayers;discourageinvestmentsinenergyefficiency,renewables,andmoreefficientenergyinfrastructure;andincreasethevulnerabilityofcountriestovolatileinternationalenergyprices.

487. AccordingtotheIMF,theremovalofpost-taxenergysubsidiescouldreducepremature

deathsfromlocalairpollutionbymorethan50%andgenerateasubstantialfiscaldividendingovernmentrevenues,estimatedat$2.9trillion(3.6%ofglobalGDP)in2015.481

488. TheSternReviewcalledthemarketexternalityofGHGemissionsintheglobaleconomy“the

greatestandwidest-rangingmarketfailureeverseen”.482Inaddition,itdescribeshowitwouldbecheapertopreventGHGemissionsthantomanagetheeffectsofglobalwarming.

489. Anotheraspectofmarketfailureintheenergysectoristhelackoflarge-scale‘positiveinvestment’inacleanenergysystem.

490. Fornewtechnologiesintheearlierstages,concertedR&Deffortsarerequired.483SucheffortsmaybeanalogoustotheManhattanProjectfornucleartechnology,theApolloProgramforspaceflight,ortheMarshallPlanforthepost-warreconstructionofEurope.

478Victor,D.Thepoliticsoffossil-fuelsubsidies:globalsubsidiesinitiative&theinternationalinstituteforsustainabledevelopment.GlobalSubsidiesInitiative,InternationalInstituteforSustainableDevelopment,Geneva;2009479CoadyD,ParryI,SearsLandShangB,2015.HowLargeAreGlobalEnergySubsidies?WashingtonDC:IMF.480CoadyD,ParryI,SearsLandShangB,2015.HowLargeAreGlobalEnergySubsidies?WashingtonDC:IMF.481CoadyD,ParryI,SearsLandShangB,2015.HowLargeAreGlobalEnergySubsidies?WashingtonDC:IMF.482Stern,N.SternReviewontheeconomicsofclimatechange.HMTreasury,London;2006483Mazzucato,M.Theentrepreneurialstate:debunkingpublicvsprivatesectormyths.AnthemPress,London;2013

113

491. Manyclimateadaptationmeasuresthatrequirecapital-intensiveinvestmentsandwhichhaveuncertainprospectsfordirectandimmediatereturnsalsorequirepublicfinancebecauseprivatefinancewillnotbeinterested.484

492. TheIEAestimatedthattohavean80%chanceofremainingona2°Cstabilisationpathway,

additionalcumulativeinvestmentof$36trillionisrequiredby2050,roughly$1trillionperyear(intheorderof1%GDPundermoderategrowthassumptions),withlow-carbontechnologiesandenergyefficiencyaccountingforaround90%ofenergysysteminvestmentby2035(currently,thisvalueisaround23%).485Anotherestimatehassuggestedalowervalueof$270billionperyear.486

493. In2013,only0·1%ofinstitutionalinvestorassets(excludingsovereignwealthfunds)werein

low-carbonenergyinfrastructureprojects($75billion).487

494. Therearemanypolicyoptionsavailableforcorrectingmarketfailuresintheenergysector.

Taxesonenergyproducts(suchastransportfuels)canappliedtoshapethepatternofenergydemandsothatitisalignedtocarbonbudgets.CorrectivetaxationthatinternalisesCO2emissions,airpollution,andtransport-relatedexternalities(suchascongestionandaccidentalinjury)arisingfromfossilfuelcouldalsoraiseadditionalrevenuesof2·6%GDPglobally,whilstsimultaneouslyreducingCO2emissionsby23%andpollution-relatedmortalityby63%.488

495. Carbonpricingcanalsobetterinternalisethecostsofsocialandenvironmentaldamageoffossilfuelsandhelpestablishthemarketsignalsrequiredtodisincentivisecontinuedfossilfueluse.

496. Byincreasingtheburdenoftaxationonenvironmentallydamagingactivitiesandreducingit

ondesiredinputs,suchaslabour,anincreaseinenergypricescouldinprinciplebeneutralisedfromamacroeconomicperspective.Althoughfossil-fuelsubsidiesandthepresenceofexternalitiestenddisproportionatelytobenefitthewealthiestinsociety(inbothnationalandinternationalcontexts),theintroductionofcarbonpricingandtheremovaloffossilfuelsubsidiesmayberegressive,asthepoorestinsocietyspendagreaterproportionoftheirdisposableincomeonenergy.Additionalfiscalinterventionswillthereforeberequiredtoprotectlow-incomeorvulnerablehouseholds.

484See,forexample:MarianaMazzucato,2013.TheEntrepreneurialState:debunkingpublicvs.privatesectormyths.London:AnthemPress.485InternationalEnergyAgency.Worldenergyoutlook.IEA,Paris;2012486TheNewClimateEconomy.Bettergrowth,betterclimate.TheGlobalCommissionontheEconomyandClimate,NewYork;2014487Kaminker,C,Kawanishi,O,Stewart,F,Caldecott,B,andHowarth,N.Institutionalinvestorsandgreeninfrastructureinvestments:selectedcasestudies.OrganizationforEconomicCo-operationandDevelopment,Paris;2013488Parry,IWH,Heine,D,andLis,E.Gettingthepricesright:fromprincipletopractice.InternationalMonetaryFund,Washington,DC;2014

114

497. Additionally,feed-intariffs(FiTs),usedintheelectricitysectortoprovideaguaranteedrateofreturntolow-carbongenerators,havebeenshowntobeaneffectivepolicyinstrumentthathashelpedinstallalargeproportionofexistingglobalrenewablepowercapacity.

498. Otherinterventionstocorrectmarketfailureintheenergysectorincludedemand-sideregulationsuchasmandatoryenergyefficiencystandardsandsupply-sideprohibitionsuchastheprohibitionofunabatedcoalburning.ExamplesoftheformerincludeacaponCO2emissionsfrompassengercarsperkilometredriven,orontheannualenergyconsumptionofanewbuildingperunitoffloorarea.Otherexamplesofthelatterincludetechnologystandardscanalsobeemployedtoproscribetheuseofcertaincomponentsinproducts,orpreventthesaleoftheleastefficientmodelsofaproducttype.

499. Theglobalpictureofheavysubsidisationoffossilfuelandunder-investmentincleanenergy

isapparentintheUK.Nationalpre-taxsubsidiestofossilfuelproductionhavebeenestimatedatanannualaverageof$9billionin2013and2014.489Inthe2015Budget,ChancellorGeorgeOsborneawardedafurther£1.3bintaxcutstotheoilindustry.490ThismakestheUKoneofthefewG20countriesthatisincreasingitsfossilfuelsubsidies.491

500. Atthesametime,theUKiscuttingbackonincentivesforprivateinvestmentinrenewable

energyinvestments,whilstimplementingtaxreformsthatwouldmakerenewableenergygeneratorspaymoretax.492Asnotedearlier,thegovernmentlargelyremovedsupportfromsolarpowerin2015(causingthelossofupto18,700jobs).493

501. Thelargesubsidisationoffossilfuelcontinuesdespitethegovernmentagreeingwiththe

IPCCandotherinternationalbodiesthattheremovalofsubsidiesfromthefossilfuelindustryisimportant.Atthe2014climatesummitinNewYork,DavidCameronhimselfdescribedfossilfuelsubsidiesas“economicallyandenvironmentallyperverse",asthey“distortfreemarketsandripofftaxpayers”.494

502. Atthesametime,oilcompaniesintheUKNorthSeathathavemadevastprofits(33%rate

ofreturn)from2008and2014havepaidrelativelylittleinthewayoftax.AccordingtoPlatform,489BastE,DoukasA,PickardS,vanderBurgLandWhitleyS,2015.Emptypromises:G20subsidiestooil,gasandcoalproduction.London:OverseasDevelopmentInstituteandandOilChangeInternational.490Seehere:http://platformlondon.org/wp-content/uploads/2016/03/NorthSea_Oil_Tax_Facts.pdf491See,forexample,here:

• https://www.theguardian.com/environment/2015/nov/12/uk-breaks-pledge-to-become-only-g7-country-increase-fossil-fuel-subsidies

• http://www.telegraph.co.uk/finance/newsbysector/energy/10189932/George-Osborne-pledges-most-generous-tax-regime-for-shale-gas.html

• http://www.neweconomics.org/blog/entry/the-looking-glass-world-of-fossil-fuel-subsidies492Seehere:http://www.ey.com/Publication/vwLUAssets/EY-RECAI-47-May-2016/$FILE/EY-RECAI-47-May-2016.pdf493Calculationsshowthatindustrieslikewind,waveandtidalandcouldemploy40,000moreNorthSeaworkersthantheexistingfossileconomy.494Seehere:http://blueandgreentomorrow.com/2014/09/24/un-climate-summit-cameron-calls-for-ending-fossil-fuel-subsidies-and-a-strong-climate-deal-in-paris/

115

theUKtakesalowershareofrevenuefromitsoilresourcesthanmostothercountries.Onaverage,governmentsreceive72%ofnetrevenuefromoilproduction,comparedto50%frommostUKfields.Norway,operatinginthesamefieldsintheNorthSea,takes78%.495

T.BroaderDevelopmentPolicyandCo-BenefitsofCCMitigation

503. Transformingtheglobaleconomywithintherequiredtimescaledemandsunprecedentedactioninbothindustrialisedanddevelopingcountries.AccordingtotheLancet-UCLCommission,industrialisedcountriesneedtoembarkimmediatelyonCO2reductionprogrammes“withahighlevelofambition”.Putanotherway,transitiontoalow-carbonenergyinfrastructureimpliesaradicaltransformationofnotjusttheenergysector,butthebehavioursandconsumptionpatternsthatfeedoffourburningoffossilfuel.

504. TheLancet-UCLCommissiononClimateChangeandHealthalsonotedthattransitiontoa

low-carboninfrastructure“requireschallengingthedeeplyentrencheduseoffossilfuels”.Decarbonisationandreducingenergydemandisnotasimplechallengeofcleaninguppollutantsorinstallingnewequipment:itrequiressystemictransformationsofenergyinfrastructuresandassociatedsystems.

505. Acollectivepolitical,policyandscientificfailureisexemplifiedbytherecentexpansionof

coaluseacrosstheworldthatreversedtheglobalpatternthroughmostofthe20thcenturyofshiftingtowardslesscarbonintensiveandlesspollutingfossilfuels.

506. Thefactthatglobalemissionshaverisenoverthepastdecadedemonstratesaremarkable

inabilitytorespondeffectivelyandcollectivelytothethreatofclimatechange.Italsodemonstratesthatmostofourinstitutionsarebuiltaroundnarrow,short-termhorizons,andvestedinterests;andthatwearelockedintoamodelofeconomicgrowththatiscentredaroundmaterialconsumptionandtiedtofossilfuel.496

507. Otherreasonswhyeffectiveactionhasbeenpreventedincludethefactthatclimatescience

iscomplexandunavoidablyinvolvesadegreeofuncertaintywhichcreatesroomforequivocationandmisunderstanding,497andthatclimatechangeispsychologicallydistantintemporal,socialandgeographictermsformanypeoplewhichdampensconcernandwillingnesstoact.498

495Seehere:http://platformlondon.org/wp-content/uploads/2016/03/NorthSea_Oil_Tax_Facts.pdf496Unruh,GC.Understandingcarbonlock-in.EnergyPol.2000;28:817–830497Hulme,M.Whywedisagreeaboutclimatechange:understandingcontroversy,inactionandopportunity.CambridgeUniversityPress,Cambridge;2009498Spence,A,Poortinga,W,andPidgeon,N.Thepsychologicaldistanceofclimatechange.RiskAnal.2012;32:957–972

116

508. Finally,asnotedbytheLancet-UCLCommission,“theactivepromotionofmisinformation,motivatedbyeitherideologyorvestedeconomicinterests”hashinderedeffectiveaction.

509. Inthepasttwodecades,muchoftheboldandinnovativepolicy-makingtoaddressclimate

changehavebeendrivenatthelevelofcities,whichhavecreatedtheplatformfornewadvocacycoalitionsandevenfornewcross-borderpara-diplomaticlinks(e.g.throughLocalGovernmentsforSustainability,theWorldMayorsCouncilonClimateChangeandtheClimateLeadershipGroup).499500,501502Theseexperiencespointtotheemergingimportanceofsub-nationalleadersinglobalenvironmentalgovernance.503

510. Asawealthynationwithaskilledworkforceandaworld-leadingrenewableenergyresourcebase,choosingtodevelopanewfossilfuelindustrywouldnotonlythreatentobreakournationaltargetstoreduceGHGemissions,butalsodamagetheUK’sinternationalreputationandunderminethedelicatenegotiationsbeingundertakentostrengtheninternationalresolvetopreventrunawayglobalwarmingandclimatecollapse.

511. Althoughtheprimaryreasonfordecarbonisingofourenergysystemistomitigateclimatechange,variouspositivesocial,ecologicalandhealthdividendscouldalsoarise.

512. Severallinksbetweenclimatemitigationpracticesandtechnologiesandimprovedhealthandwellbeinghavebeenestablished.504505Fromaglobalperspective,cropyieldshavemuchtogainfromthemitigationofshortlivedclimatepollutantssuchasmethane,blackcarbon,hydrofluorocarbons,andtroposphericozone.506

513. ThehealthbenefitsofreducedairpollutionintheEUalone(tomitigateclimatechange)havebeenvaluedat€38billionayearby2050.507AnotherestimatesuggeststhatadoublingofREusefrom2010to2030couldavoidupto$230billionofexternalhealthcostsannuallyby

499Roman,M.Governingfromthemiddle:theC40CitiesLeadershipGroup.CorpGov.2010;10:73–84500Bulkeley,H.Betsill.M.Citiesandclimatechange:urbansustainabilityandglobalenvironmentalgovernance.Routledge,NewYork;2003501Boutiligier,S.Cities,networks,andglobalenvironmentalgovernance.Routledge,London;2013502Curtis,S.GlobalCitiesandtheTransformationoftheInternationalSystem.RevIntStud.2011;37:1923–1947503Gordon,DJ.Betweenlocalinnovationandglobalimpact:cities,networks,andthegovernanceofclimatechange.CanForeignPolJ.2013;19:288–307504Proust,K,Newell,B,,Hetal.Humanhealthandclimatechange:leveragepointsforadaptationinurbanenvironments.IntJEnvironResPublicHealth.2012;9:2134–2158505Shaw,MR,Overpeck,JT,andMidgley,GF.Cross-chapterboxonecosystembasedapproachestoadaptation—emergingopportunities.in:CBField,VRBarros,DJDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelofClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014:101–103506Scovronick,N,Adair-Rohani,H,Borgford-Parnell,Netal.Reducingglobalhealthrisksthroughmitigationofshort-livedclimatepollutants:scopingreportforpolicymakers.WorldHealthOrganizationandClimateandCleanAirCoalition,Geneva;2015507EuropeanCommission.CommunicationfromtheCommissiontotheEuropeanParliament,theCouncil,theEuropeanEconomicandSocialCommitteeandtheCommitteeoftheRegions:aroadmapformovingtoacompetitivelowcarboneconomyin2050.EuropeanCommission,Brussels;2011

117

2030globally.508Similarly,ithasbeenestimatedthatthehealthbenefitsofreducingmethaneemissionsinindustrialisednationswouldexceedtheabatementcostsevenundertheleastaggressivemitigationscenario.509

514. Clearly,therearepotentialrisksfromdecarbonisationandpoliciesandtechnologiesaimedatreducingenergyconsumptionsuchasreducedaccesstoenergyandunintendedconsequencescausedbypoorlydesignedhomeinsulationimprovements.510

515. Policiesthatencourageactivetravel(eg,walkingandcycling)wouldproducesignificantreductionsincardiovasculardisease,dementia,obesity,diabetes,severalcancers,andinthedurationandseverityofdepressiveepisodes.511512OnestudyestimatesthatincreasedlevelsofactivetravelcoupledwithincreasedfuelefficiencyintheUK'surbanareascouldleadtoacumulativenetsavingtopublicfundsofmorethan£15billionby2030,whilstachievingGHGreductionsofover15%intheprivatetransportsector.513

516. IntheUK,retrofitsaimedatimprovingtheenergyperformanceofhousescouldoffersubstantialhealthbenefitprovidedadequateventilationtocontrolindoorpollutantsisinstalled.Increasedenergyefficiencywillalsohelpreducefuelpoverty,limitexcesswintermortalityrates,andreducerespiratoryillnessinchildren.514NicolandcolleaguesestimatedthatimprovedhousinginEnglandalonecouldsavetheNHSmorethan€700millionperyearintreatmentavoidance.515

517. AccordingtoCopenhagenEconomics,improvementsinhousingenergyefficiencyinEuropewouldproducebothenergyandhealthcaresavings,andreducepublicsubsidiesforenergyconsumptionby€9–12billionperyear.516AmodellingstudybyHamiltonetal.assessesthepotentialhealthbenefitsof5.3mloftinsulations,6.5msolidwallinsulations,5.7mcavitywall

508InternationalRenewableEnergyAgency.REmap2030:arenewableenergyroadmap.IRENA,AbuDhabi;2014509West,J,Fiore,A,andHorowitz,L.Scenariosofmethaneemissionreductionsto2030:abatementcostsandco-benefitstoozoneairqualityandhumanmortality.ClimChange.2012;114:441–461510Davies,MandOreszczyn,T.Theunintendedconsequencesofdecarbonisingthebuiltenvironment:aUKcasestudy.EnergyBuild.2012;46:80–85511Woodcock,J,Edwards,P,Tonne,Cetal.Publichealthbenefitsofstrategiestoreducegreenhouse-gasemissions:urbanlandtransport.Lancet.2009;374:1930–1943512Patz,JA,Frumkin,H,Holloway,T,Vimont,DJ,andHaines,A.Climatechange:challengesandopportunitiesforglobalhealth.JAMA.2014;312:1565–1580513Jensen,HT,Keogh-Brown,MR,Smith,RDetal.Theimportanceofhealthco-benefitsinmacroeconomicassessmentsofUKgreenhousegasemissionreductionstrategies.ClimChange.2013;121:223–237514Liddell,CandMorris,C.Fuelpovertyandhumanhealth:Areviewofrecentevidence.EnergyPol.2010;38:2987–2997515Nicol,S,Roys,M,Davidson,M,Ormandy,D,andAmbrose,P.Quantifyingtheeconomiccostofunhealthyhousing—acasestudyfromEngland.in:MBraubach,DEJacobs,DOrmandy(Eds.)Environmentalburdenofdiseaseassociatedwithinadequatehousing:amethodguidetothequantificationofhealtheffectsofselectedhousingrisksintheWHOEuropeanRegion.WorldHealthOrganizationRegionalOfficeforEurope,Copenhagen;2011:197–208516CopenhagenEconomics.Multiplebenefitsofinvestinginenergyefficientrenovationofbuildings:impactonpublicfinances.RenovateEurope,Copenhagen;2012

118

insulations,2.4mdouble-glazinginstallations,10.7mhigh-efficiencycondensingboilerinstallationsandseveralventilationsysteminstallations.517

518. Whileatransitiontoadecarbonisedenergyandeconomicsystemwouldaffectemploymentinfossilfuel-relatedandemission-intensiveindustries,low-carbontechnologyindustrieswould,overtime,expandandincreaseemployment.IRENAestimateanetglobalincreaseof900 000jobsincoreactivitiesalone(i.e.notincludingsupplychainactivities)ifthelevelofrenewableenergyinglobalfinalenergyconsumptiondoublesfrom18%in2010to36%ofby2030.518

517HamiltonIG,MilnerJ,ChalabiZ,etal.ThehealtheffectsofhomeenergyefficiencyinterventionsinEngland:amodellingstudy.BMJOpen2014;5(4). 518InternationalRenewableEnergyAgency.REmap2030:arenewableenergyroadmap.IRENA,AbuDhabi;2014

119

Acknowledgements

ThesenoteswerecompiledbyDavidMcCoyandAliceMunroofMedact.

ThankstoPatrickSaunders(independentPublicHealthspecialist),DavePowell(NewEconomicsFoundation,JoHawkins(SheffieldUniversity),GrantAllen(UniversityofManchester)andMichaelBradshaw(UKEnergyResearchCouncil)formakinghelpfulcommentsandobservations.

Responsibilityforthemanuscript,includingerrorsandomissions,lieentirelywiththeprimaryauthors.