第 18 章 无铅化技术与工艺

48
LOGO 第 18 第 第第第第第第第第 现现现现现现现现现现现

Upload: red

Post on 12-Jan-2016

92 views

Category:

Documents


0 download

DESCRIPTION

第 18 章 无铅化技术与工艺. 现代印制电路原理和工艺. 1. 5. 7. 电子产品实施无铅化的某些规范与标准. 电子产品实施无铅化的提出. 实施无铅化对 CCL 的基本要求. 2. 无铅化焊料及其特性. 3. 无铅焊料的焊接. 4. 6. 电子元器(组)件无铅化. 实施无铅化对 PCB 基板的主要要求. 第 18 章 无铅化技术与工艺. §1 电子产品实施无铅化的提出. 铅及其合金具有优良的机械、化学和电气特性,在 PCB 加工、焊接与组装等领域广泛应用 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 第 18 章 无铅化技术与工艺

LOGO

第 18 章 无铅化技术与工艺第 18 章 无铅化技术与工艺现代印制电路原理和工艺

Page 2: 第 18 章 无铅化技术与工艺

第 18 章 无铅化技术与工艺

电子产品实施无铅化的提出1

无铅化焊料及其特性2

无铅焊料的焊接3

电子元器(组)件无铅化4

实施无铅化对 CCL 的基本要求5

实施无铅化对 PCB 基板的主要要求6

电子产品实施无铅化的某些规范与标准7

Page 3: 第 18 章 无铅化技术与工艺

§1 电子产品实施无铅化的提出

铅及其合金具有优良的机械、化学和电气特性,在 PCB 加工、焊接与组装等领域广泛应用

废弃电子产品中的铅元素的污染在 20 世纪 90 年代前后充分引起了人们的重视

美国首先提出了无铅工艺并相应制定了一个标准来限制电子产品中的铅的含量

无铅化是目前和未来推动 CCL 材料、 PCB 生产和电子组装等行业变革与发展的热点

Page 4: 第 18 章 无铅化技术与工艺

§ 2 无铅化焊料及其特性

2.1 无铅化焊料的基本条件

⑴ 无铅焊料组成的合金低共(晶)熔点

⑵ 无铅焊料组成合金的可焊性

⑶ 无铅焊料的焊接点可靠性:

焊点焊料的耐热疲劳强度 焊点焊料的结合强度 金属间互化物( IMC )的影响 焊点焊接的完整性(润湿性的表现)

Page 5: 第 18 章 无铅化技术与工艺

2.2 无铅焊料类型与主要特点

表 1 无铅焊料的类型、合金组成和低共(晶)熔点

二元体系 低共(晶)熔点(℃) 回(再)流焊接温度(℃)

95Sn/5Sb (锑) 238 260 ~ 280

99.3Sn/0.7Cu 227 250 ~ 270

96.5Sn/3.5Cu 221 250 ~ 270

96.5Sn/3.5Ag 217 240 ~ 260

91Sn/9Zn 198 220 ~ 240

97In/3Ag 143 170 ~ 190

42Sn/58Bi 139 160 ~ 180

48Sn/58In 118 140 ~ 160

63Sn/37Pb (属有铅系) 183 210 ~ 240

三元或四元体系

95Sn/3.5Ag/1.5In 223 250 ~ 270

96.5Sn/3.0Ag/0.5Cu 217 240 ~ 260

95.2Sn/3.5Ag/0.8Cu/0.5In 212 235 ~ 255

91.8Sn/4.8Bi/3.4Ag 210 230 ~ 250

77.2Sn/20In/2.8Ag 192 220 ~ 240

Page 6: 第 18 章 无铅化技术与工艺

表 2 二元体系无铅焊料的基本特性

无铅焊料合金组成 低共(晶)熔点 基本优点 主要缺点

Sn/0.7Cu 227℃ 机械强度好、抗热疲劳强度好、成本低

合金熔点高、焊接温度高、润湿性较差

Sn/3.5Cu 221℃ 机械强度好、抗热疲劳强度较好、成本较

合金熔点高、焊接温度高、润湿性较差

Sn/3.5Ag 217℃ 机械强度好、抗热疲劳强度较好

合金熔点高、焊接温度高、润湿性较差、成本较高

Sn/9.0Zn 198℃ 机械强度好 润湿性差、易氧化、脆性

Sn/58Bi 139℃ 低熔点、润湿良好 机械强度低、易形成空洞、脆性大

Page 7: 第 18 章 无铅化技术与工艺

性能 类别 SAC305 63Sn/37Pb 备注

低共(晶)熔点 217℃ 183℃ 前者高出 34℃ ,则焊接温度需提高 20 ~ 40℃

表面张力(达因 /厘米)

550 ( 230℃ ); 471.8( 240℃ );

460 ( 260℃ )

470 ( 230℃ ); 396 ( 240℃ ); 380 ( 260℃ )

前者表面张力高出约 80 达因 / 厘米,则润湿性较差,易生裂缝缺陷等

熔融焊料与 Cu 面接触角

44° 11° 前者接触角大三倍,因此润湿性差,易露铜等缺陷

焊接前预热温度 接近 200℃ 150℃ 左右 前者预热高 50℃ 左右,这对元器件和基板皆不利

高温焊接温度 250 ~ 270℃ 220 ~ 250℃ 前者至少≥ 20℃ ,特别不利于元器件与基材的可靠性(见下述各项)

熔融态停留时间 90 秒 60 秒 前者不仅焊接温度高,而且停留时间长,这也是对 PCB 基板和元器件造成损

害的重要原因

焊料助焊剂 焊接时挥发大、稳定性差,形成焊渣多

焊接时稳定性好,挥发少,焊渣也少

应开发大于 260℃ (或 300℃ 左右)的助焊剂体系

湿润时间 2 秒 0.6 秒 前者润湿性差,要延长高温焊接时间,才能得到较满意的焊点

焊接温度曲线 升温速度 3℃/S ;降温速度6℃/S

升温和降温速度相同为 3℃/S 前者冷却速度太快,易造成焊点微裂缝、气泡等

焊点特性 抗热疲劳良好,但焊点不易饱满、结合力较差、各种缺陷多,可靠性较差

抗热疲劳较差,但焊点饱满、结合力良好、各种缺陷少,

可靠性高

前者虽耐疲劳强度良好,但表面张力大、润湿性差等造成各种缺陷多

表 3 无铅焊料与有铅焊料的比较

Page 8: 第 18 章 无铅化技术与工艺

§ 3 无铅焊料的焊接

传统而通用的电子产品的焊接方法主要有三种:

波峰焊接、回(再)流焊接(红外焊接、热风焊接、汽相焊 接等)、手工焊接(现在还兴起激光焊接等)

目前无铅焊料的焊接还必须延续这些焊接方法,最关键的有三大问题:

( 1 )是无铅焊料合金组成的低共(晶)熔点偏高 ( 2 )是无铅焊料合金润湿性差,焊接需要有更高的焊接温 度、更长的高温停留时间和更快的冷却速度 ( 3 )是无铅焊料焊接后的焊点(或焊接)的可靠性问题

Page 9: 第 18 章 无铅化技术与工艺

3.1 无铅焊料合金的低共(晶)熔点

从目前的无铅焊料可实用性角度来看,大多数的无铅焊料合金组成的低共(晶)熔点是很高的。现在最佳的 SAC305 低熔(晶)点为217℃ ,比起传统的 63Sn/37Pb 有铅焊料的低共熔(晶)点( 183℃ )高出 34 ℃

无铅焊料的焊接要求有更高的预热温度和焊接温度、更长的高温焊接时间和更快的冷却速度等,对热敏感大的元器(组)件、 PCB 基板等都将带来新的考验与挑战。

Page 10: 第 18 章 无铅化技术与工艺

3.2 无铅焊料合金的润湿性能 无铅焊料合金在高温熔融焊接时,由于表面张力比传统 Sn-Pb 焊

料来得大,因而其润湿性能较差,要求润湿时间更长

图 1 传统 63Sn/37Pb焊料和无铅SAC305焊料的表面张力随温度变化情况

图 2 传统 Sn-Pb焊料与两种无铅焊料的润湿时间与温度的关系

Page 11: 第 18 章 无铅化技术与工艺

3.3 无铅焊料焊接的可靠性 ⑴无铅焊料的焊接点可靠性 无铅焊料的焊接点在抗热疲劳性能较优于传统 Sn-Pb 焊料外,其它的性

能皆劣于传统 Sn-Pb 焊料所形成的焊接点

无铅焊料形成的焊接点比起传统 Sn-Pb 焊料主要有如下不足与缺陷: 无铅焊接易于形成微空洞 微空洞的存在导致焊接处焊料与焊 盘虚(假)焊、剥离、断裂等现象 降低无铅焊料的表面张力、降低 铜表面粗糙度和提高清洁度有利 于减少微空洞。

图 3 无铅焊料与焊盘界面处的微空洞

Page 12: 第 18 章 无铅化技术与工艺

⑵无铅焊料在焊接时 PCB的可靠性 无铅焊料在焊接时影响常规 PCB 基板的可靠性,

主要在有五个方面:

(一)基板分层、裂缝、变色等

(二)层间连接的导通孔发生裂缝、断开,甚至剥离(类似凹缩)

(三)焊盘(连接盘)翘起、脱落

(四) PCB 基板扭曲、翘曲

(五)更易于发生 CAF 现象

Page 13: 第 18 章 无铅化技术与工艺

3.4 无铅焊料焊接的类型与注意点表 4 无铅焊料的焊接类型与注意点

焊接类型 无铅焊料类型与组成 注意点波峰焊接 Sn-Cu 系: 99.3Sn/0.7Cu

(可加入微量 AgAuNiGeIn等)Sn-Ag 系: 96.5Sn/3.5Ag; 96.5Sn/3.0Ag/0.5Cu

焊接温度高,易于产生焊盘剥离,损伤基材(分层、起泡裂缝、变色等);如为单面板可添 Bi ,降低焊接温度。

再流焊接

高温系 Sn-Ag 系: 96.5Sn/3.5Ag ; 96.5Sn/3.0Ag/0.5Cu ; 92 ~ 95Sn/2 ~ 4Ag/1~ 6Bi

焊接温度较高,注意:再流焊温度的管理;Bi 与镀层的兼容性。

中温系 Sn-Zn 系: 91Sn/9Zn ; 89Sn/8Zn/3Bi 。Sn-Ag-In 系: 89 ~ 92Sn/3.0Ag/6 ~ 8In

较适用于 NiAu 的焊盘,与铜表面兼容性较差(即润湿性较差)

低温系 Sn-Bi 系: 42.5 ~ 42Sn/57Bi/0.5 ~ 1Ag

脆性大,机械强度低,空洞多,适用于低档次场合

手工焊接

大多采用高温系

Sn-Ag 系: 96.5Sn/3.0Ag/0.5Cu

注意:不同焊料焊接与检修的匹配(兼容)性

Page 14: 第 18 章 无铅化技术与工艺

目前无铅焊料存在的问题主要有: 最佳的无铅焊料( SAC305 )还没有达到有铅焊料( Sn/Pb )

性能(特别是表面张力、湿润性和可焊性等方面)的等级;

无铅焊料焊接的焊点,其润湿性差、各种缺陷较多,这些问题严重威胁着电子产品的可靠性;

目前最佳的无铅焊料( SAC305 )的焊接温度偏高 20 ~ 40℃之多,高温焊接的停留时间偏长(约增长 30%以上),这对元器件、 CCL 基材、 PCB 基板、焊接条件等都带来了新的冲击与要求

电子产品实施无铅化的相关的规范和标准必须相应跟上

Page 15: 第 18 章 无铅化技术与工艺

§ 4 电子元器(组)件无铅化

4.1 元器(组)件的耐热性能

无铅化焊料与焊接的最本质的问题是需要有更高的焊接温度、更长的高温焊接时间,这就决定了用于无铅化的元器(组)件需要有更好的耐热性能,特别是对于热敏感的元器(组)件必须改进其耐热性能,否则会损害其特性,

甚至产生可靠性问题

Page 16: 第 18 章 无铅化技术与工艺

4.2 电子元器(组)件引脚表面涂(镀)层无铅化⑴电子元器(组)件引脚表面涂(镀)覆可焊性金属与合金

目前,电子元器(组)件引脚(线)表面涂(镀)可焊性金属或合金层有:Sn 、 Ag 、 Au 、 Sn-Pb 、 Sn-Ag 、 Sn-Cu 、 Sn-Bi 、 Au-Sn 等。它们除了起着引脚(线)表面保护(不被氧化等)作用外,还起着与无铅焊料的焊接作用,或者还与焊料在焊接时形成界面合金( IMC )作用

⑵电子元器(组)件引脚(线)的焊接可靠性 在元器(组)件引脚表面的各种涂(镀)覆层进行 SAC305 无铅焊料焊接中,

发现含铅的 Sn-10Pb层会形成熔融性剥离。 其它各种表面涂(镀)层在 SAC305 焊料的焊接中仍然有较好可靠性。在引脚(端子)镀金的情况下,如果镀金层太厚,金会熔入熔融的焊料中,当金的含量超过 3% 时,会发生脆裂或断离等可靠性问题

Page 17: 第 18 章 无铅化技术与工艺

§ 5 实施无铅化对 CCL 的基本要求

决定着 PCB基板在焊接中的要求

无铅焊料:

1. 低共(晶) 熔点高

2. 润湿性差

•更高的预热温度 与更长的预热时间•更高的焊接温度•更长的焊接时间•焊接后需要有更快的冷却速度

需提高和改善 PCB 基板的耐热性能 最根本的是选用高耐热的 CCL 基材

Page 18: 第 18 章 无铅化技术与工艺

能适应无铅焊料焊接条件的 CCL 应具备如下要求:

高的热分解温度 Td 、

高的 Tg 温度、

低的温度膨胀系数 CTE

好的耐 CAF 特性等

Page 19: 第 18 章 无铅化技术与工艺

5.1 高的热分解温度( Td)

CCL 的耐热性能主要是取决于树脂的热分解温度 ,应选择低 Tg

和高分解温度 Td树脂组成的基材( LGHD )或高 Tg 和高 Td 的树脂组成的基材( HGHD ),才能得到更好的耐热的 PCB 可靠性性能

表 5 四种 FR-4 材料层压为 2.36mm ( 93mil )厚的十层板耐热性能情况

基材特性 LGLD HGLD LGHD HGHD

Tg ( DSC ),(℃)

140 172 142 175

Td (℃) 320 310 350 350

50 ~ 250℃ 的Z 向膨胀( % )

4.40 3.40 4.30 3.15

T260 ( min ) 4.5 2 12.5 15

Page 20: 第 18 章 无铅化技术与工艺

目前最佳的途径应是具有高分解温度的常规 FR-4 或耐热(高分解温度) FR-4 基材和先进的电镀(精细晶粒结构)技术相结合的方法。但是,在选择 FR-4 基材时,最好选用低玻璃化温度( LG )与高分解温度( HD ),或高玻璃化温度( HG )和高分解温度( HD )的材料

Page 21: 第 18 章 无铅化技术与工艺

5.2 采用高 Tg 的树脂基材

高 Tg树脂层压板基材具有较高的耐热特性,因而在无铅焊料焊接时具有更好的热尺寸稳定性。同时,较高的 Tg 温度也具有较低的CTE ,利于 PCB 无铅化加工或电子产品实施无铅化

表 6 各种基材树脂的 Tg 和 CTE

树脂名称 Tg 温度(℃) CTE ( ppm ) 备注常规环氧树脂 125 ~ 135 80 ~ 85

耐热(改性)环氧树脂 150 ~ 170 50 ~ 70

PPE/PPO树脂 180 ~ 240 40 ~ 45 聚苯醚

BT树脂 185 ~ 230 40 ~ 45 双马来酰胺 - 三嗪树脂

PI树脂 220 ~ 260 40 ~ 45 聚酰亚胺

Page 22: 第 18 章 无铅化技术与工艺

5.3 选用低热膨胀系数 CTE 的 CCL 材料 无铅焊料合金低共熔点更高,则无铅化焊接的 PCB 的 CTE 与元组件的 CTE之

间的 CTE会差别更大,这意味着其热残余应力会更大,为了保证无铅化焊接的PCB 的可靠性,两者的 CET 的允差要求比常规的 5ppm/℃更小,例如≤ 3ppm/℃从而,要求无铅化用的 PCB 的 CCL 的 X-Y向的 CTE进一步减小

表 7 PCB 高密度化发展要求 CCL 的 CTE ( X-Y 方向)越来越小

年份 1998 2002 2005 2010

ΔCTE ( ppm)

≤ 7 ≤ 5 ≤ 5 ≤ 3

X-Y 的CTE ( ppm )

13 ~ 15 12 ~ 13 10 ~ 12 8 ~ 10

Page 23: 第 18 章 无铅化技术与工艺

5.4 提高耐 CAF 特性

在 CCL 基材介质层中,提高耐 CAF 性能可以采取如下措施:

提高树脂对玻纤布的浸润性

选用新型结构玻纤布(开纤布或扁平布)为增强材料

降低树脂中的离子含量

降低 CCL 板的吸水率(性)

Page 24: 第 18 章 无铅化技术与工艺

§ 6 实施无铅化对 PCB 基板的主要要求

电子产品实施无铅化对 PCB 基板的主要要求是

进一步提高其耐热性能

除了提高基材 CCL 的耐热可靠性外,在 PCB 的生产加工过程中也必须提高耐热可靠性,主要是:

提高多层板的层之间粘接力、孔壁的光洁度、铜层之间结合力、铜镀层的延展性和板面清洁度等

同时,为了提高和改善 PCB 的耐热性能,需改进 PCB 板内外的导(散)热性能

Page 25: 第 18 章 无铅化技术与工艺

6.1 PCB 在制板的加工改进

除了 CCL 基材影响 PCB 耐热可靠性外,在 PCB 生产中也会影响其耐热可靠性、耐 CAF 性能,特别是孔内镀铜层的结合力、延展性和厚度均匀性对 PCB 产品耐热可靠性的影响是不可忽视的

⑴ 提高多层板的层间的粘接力 多数是采用“黑氧化”或“红(棕)氧化”的办法来达到目的 。 “黑氧化” 呈树枝结构,有较高的集合力,但工艺控制要求严格,熔融树脂

充填较难;“红(棕)氧化”是呈颗粒状结构的,容易控制而稳定,因此目前大多数采用“红(棕)氧化”的技术。

但是,它们都会产生“晕环(粉红圈)”,解决办法是“红(棕)氧化”后,经过处理除去氧化层或者经过化学工艺处理形成的铜表面粗糙度来达到目的。

Page 26: 第 18 章 无铅化技术与工艺

⑵ 提高基铜( CCL 上的铜)和电镀铜的结合力

采用“直接电镀”等工艺与技术,消除化学镀铜层结合力差的缺点,提高 PCB内层与孔壁的结合力

⑶ 提高镀铜层的延展性

其延展性不高主要原因是由于铜镀层中的晶粒过大、镀层中C 、 S (来自添加剂)含量较高等而造成的,从而使镀层结构内应力较大。因此,在镀铜过程中控制好“晶核形成大于‘结晶成长’的比率,可获得较小的晶粒和表面粗糙度(凹凸)的结构,可明显提高镀铜层的延展性( 18 ~ 20% ),因而可大大提高了 PCB ( Z

方向)导通孔的耐热可靠性。

Page 27: 第 18 章 无铅化技术与工艺

⑷ 提高镀铜层厚度均匀性 除了采用低电流密度和高分散能力镀液等条件外,目前已走向脉冲电镀技术而且是最理想并易于达到镀铜层的均匀厚度的,均匀的孔内铜镀层无疑可提高 Z 方向的耐热性能

⑸ 提高耐 CAF 性能

CAF 的发生主要在孔与孔、导线与导线、层与层、孔与导线等之间,尤其是孔与孔之间的 CAF问题占据着绝大多数

影响 PCB 的 CAF 性能,除 CCL 基材外,改善层间致密性和结合力、提高钻孔的对位度、改进钻孔参数、降低孔壁粗糙度、提高在制板表面清洁度等,这些措施皆能提高耐 CAF 性能

Page 28: 第 18 章 无铅化技术与工艺

6.2 改善 PCB导(散)热措施 PCB 中的介质层导热系数(热导率)很小,散热差,所以在

PCB使用过程中极易使 PCB内部温升过高、传热又太慢,从而变形过大,最后也会引起耐热可靠性问题

采取的措施: ⑴在 CCL 的介质层中加入高导热性的材料

⑵采用导热性能材料堵塞(充填)导通孔

⑶改进导通孔结构设计来改善和提高导热性能

⑷在 PCB内部夹入金属芯形成‘金属芯印制板’

⑸在 PCB 的表面形成散热片的结构

Page 29: 第 18 章 无铅化技术与工艺

图 4 已填孔的各种导通孔 图 5 盘内孔及其盘上叠孔

图 6 AGSP 技术:( a ) AGSP 制造工艺;( b )三阶 AGSP 积层板;( c )全积层板

Page 30: 第 18 章 无铅化技术与工艺

6.3 PCB 焊盘表面涂覆(镀)层的要求

表 8 PCB 表面涂(镀)覆材料的基本要求内容

1 生产成本低 原辅材料、设备仪器、废水处理、人力、产能、成品率等

2 可焊性好 耐热性能、焊料湿润性、保存期

3 可靠性高 焊接(点)内应力、缺陷、使用寿命

4 适用(范围)性大 无铅化、精细化、阻焊剂、刚挠性板

5 环保性良 易于处理,环境污染少

Page 31: 第 18 章 无铅化技术与工艺

目前 PCB 焊盘表面涂(镀)覆层的类型主要有:

热风焊料整平

化学镍 / 金

OSP (有机可焊性保护剂)

化学锡

化学银等五大工艺技术

Page 32: 第 18 章 无铅化技术与工艺

6.3.1 热风焊料整平( HASL )

HASL所遇到的挑战方面主要如下:

⑴ HASL 的熔融焊料( Sn-Pb 系和无 Pb 系)的表面张力大

——带来焊点(盘)的可焊(湿润)性和可靠性问题

⑵ HASL 使 PCB 在焊接前受到高温的热冲击——降低 PCB 的使用寿命

⑶ HASL使用的无铅焊料是 SnCuNi 系、 SnCuCo 和 SnCu 系

⑷ HASL 时熔融焊料耐热助焊(保护)剂应具有更高的热分解温度

Page 33: 第 18 章 无铅化技术与工艺

6.3.2 化学镀镍 / 金( ENIG ) 由于化学镀 Ni/Au 的镀层厚度均匀,平(共)面性好,表面金层是优良的耐腐蚀性、耐磨性和可搭接(线)焊( WB )性,因而广泛应用于移动电话、电脑等领域

⑴ 化学镀镍 化学镀镍是在酸性(也可在碱性)的次磷酸盐(还原剂)溶液中实现的。

① 化学镀镍层的厚度为 3 ~ 5µm ,并作为阻挡层而加入的,目的是用于阻止铜 / 金界面之

间互相扩散,保证焊(接)接点和产品使用的可靠性。

② 化学镀镍层,实际上是在 Cu 表面沉积着 Ni-P呈层状的无定形结构层。 Ni-P 中的磷含量

应控制在 7 ~ 11%之间。磷含量太少时,形成颗粒状结构,易于被腐蚀与氧化,磷含 量过多时,会使 Ni-P层产生内应力过大而产生脆裂,这些现象都会引起黑斑等

③ 化学镀镍的镀液的维护极为重要。化学镀镍的质量,不仅与镀液的组成、工艺操作参 数有关,而且与镀液使用周期有关,所以化学镀镍溶液的管理与维护是较困难的。

Page 34: 第 18 章 无铅化技术与工艺

⑵ 化学镀金

目前有三种类型镀金的要求与应用场合: 插头(金手指)镀金。由于是反复使用插拔,金层不仅要求耐磨,而

且要求有较高的厚度(目前规定应大于 0.5µm ,而过去要求≥ 2µm )。

焊接用镀金。由于焊接的实质是在镍表面进行,金层是为了保护新鲜镍表面(不被氧化)的,在保证镍表面不氧化条件下,金层应越薄越好。这不仅可降低成本问题,更重要的是保证焊点可靠性问题。

金属丝( WB )焊(搭)接用镀金。由于金属丝是直接焊接在金层上

的。因此,要求有较厚的金层,一般金层厚度应在 0.5µm 左右。

Page 35: 第 18 章 无铅化技术与工艺

⑶ 化学镀镍 / 金主要缺陷

① 黑点、黑(褐色)斑缺陷:主要是由于铜面处理、镍层太薄、缺镍镀、缺 金镀或金层气孔率以及 Ni 原电池反应或 Ni腐蚀等造成的。

② 浅白或颜色不一:主要是由于镍镀层薄或镍镀层厚度不同而引起的

③ 在焊接时,于镍表面上首先形成 Ni3Sn4平整针状表面形态。这层化合物能够降低焊料与 Ni-P层之间的反应,成为很好的阻挡层。但熔融的锡易于通过 NiSn 的空隙进入到 Ni3Sn4 的界面,形成 Ni3SnP 的 IMC ,引起Ni3Sn4破裂,造成可焊性问题。

④ 高温( 80℃以上化学镀镍)操作,反应时间长( 30 min ≒ 5μm ),高温也对阻焊剂(膜)尺寸稳定性不利。

⑤ 镍镀液寿命短。一般在 7 MTO 后,必须重新开缸。采用冷却或化学沉淀亚磷酸盐方法,可以延长镍镀液的使用寿命。

Page 36: 第 18 章 无铅化技术与工艺

6.3.3 化学镀锡

由于所有焊料是以锡为主体,所以锡镀层能与任何类型焊料相兼容,因而,化学镀锡可能是 PCB 表面涂(镀)覆技术最有发展前途的方法。

化学镀锡厚度为 0.8 ~ 1.2µm之间,常规镀锡会出现如下问题:

(一)经不起多次焊接,因为很薄锡层在一次焊接温度下就形成 Cu3Sn2 的 IMC

化合物而变成不可焊表面;

(二)在合适条件下会产生锡须,威胁可靠性;

(三)镀液易攻击阻焊膜,使阻焊膜溶解变色,并易对铜层产生侧蚀 ;

(四)操作温度高(≥ 60℃ ),时间长, 1µm 厚度需要 10min 。

Page 37: 第 18 章 无铅化技术与工艺

6.3.4 化学镀银

目前无铅化焊料的最佳选择是含银的 SAC305 体系,因此化学镀银便得到了快速的发展。

化学镀银是在 PCB 在制板连接盘表面 Cu 被 Ag—离子置换而沉积上 Ag层的。 从理论上讲,置换反应形成的银层应是一个 Ag 原子的厚度,但是,由于连接盘 Cu 表面是经过微蚀刻处理而形成粗糙的Cu 表面,使沉积的 Ag层呈多孔性结构,其结果导致置换反应继续进行,使 Ag 的沉积厚度持续增加,一般控制 Ag沉积厚度在 0.15 ~0.50µm之间,主要取决于 Cu 表面的粗糙度。

为了防止 Ag镀层腐蚀和银迁移问题,在化学镀银溶液中要加入特制的有机添加剂

Page 38: 第 18 章 无铅化技术与工艺

表 9 酸性化学镀银与碱性化学镀银主要特性比较

特性 酸性化学镀银 碱性化学镀银

沉银镀液 非络合物形式存在,含缓蚀剂、渗透剂,有机物多。

络合物形式存在,不含缓蚀剂、渗透剂,有机物少。

对 Cu 有明显腐蚀性(有硝酸成分) 没有腐蚀性

对阻焊膜 没有“攻击”性 PH≤9 ,稳定,

对硫化物、卤化物 很敏感,容变色 敏感低,变色慢

银镀层 含有机物多,焊接易起泡 纯 Ag层,可多次焊接

各种可靠性试验 一般 高

Page 39: 第 18 章 无铅化技术与工艺

6.3.5 有机可焊性保护剂( OSP )

⑴烷基苯并咪唑类的 OSP

⑵烷基苯基咪唑类的 HT-OSP

表 10 HT-OSP 与常规 OSP 主要性能比较

主要性能烷基苯并咪唑类(常规 OSP ) 烷基苯基咪唑类( HT-OSP )

溶液 含 Cu2+离子的水溶液 不含 Cu2+离子的水溶液涂膜厚度( µm)

0.3 ~ 0.6 0.1 ~ 0.2

分解温度(℃) 250 354

涂覆性能 全部( Au 、 Ag 、 Sn 、 Cu 和焊料)涂覆

选择性(仅 Cu )涂覆

对金属表面污染性

污染明显,影响外观、焊料伸展和残物,影响金接触电阻,

不污染或极小

无铅焊接可焊性 不适用,界面易起泡、微空洞等 好,可多次焊接无铅焊接可靠性 无铅焊接可靠性差 可靠

Page 40: 第 18 章 无铅化技术与工艺

6.3.6 五大表面涂(镀)覆膜应用与选择

项目HASL ENIG 化学镀锡 化学镀银 HT-OSP

制造成本 中高 高 中 中 低

处理温度 ≥ 240℃ ≥ 80℃ ≥ 60℃ 50℃ 常温至 40℃

处理时间 1 ~ 3 秒 40 分钟 6 ~ 10 分钟 60 ~ 120 秒 30 ~ 90 秒

表面状态 表面张力大 易黑斑、脆裂 锡须、攻击阻焊膜、黑 /灰

变色 稳定、防划伤

厚度( µm ) 3 ~ 5 3 ~ 5 (镍) 0.8 ~ 1.2 0.3 ~ 0.5 0.1 ~ 0.2

保存期 1 年 1 年 半年 半年(防硫、卤化物)

半年

表 11 五类表面涂(镀)覆层的主要特征与评价

Page 41: 第 18 章 无铅化技术与工艺

表 12 各种 PCB 铜焊盘表面涂覆(镀)层在 SAC305 无铅焊料焊接

涂(镀)层类型 焊接界面 IMC 焊接界面状态 可靠性评价HT-0SP Cu3Sn→Cu6Sn5 ,晶粒

小(约 3µm )。空洞极少 焊点结合力(强度)好

化学镀银 Cu3Sn→Cu6Sn5 ,晶粒较小约 5µm ,因Ag3Sn薄片结构阻挡作用。

空洞极少 焊点结合力好

化学镀锡 Cu3S→Cu6Sn5 ,树枝状结构、晶粒较大

空洞少 焊点结合力好

化学镀镍 -金 Au 熔入焊料成AuSn 、 AuSn2 、 AuSn3 ,界面为 Ni3Sn4 ,颗粒很小

空洞很少 焊点结合好。但 Au层要覆盖好 Ni 表面,以薄为宜,否则焊点发脆。

无铅焊料热风整平 Cu3Sn→Cu6Sn5 空洞少 需较厚涂覆层、表面张力大、平整性差, PCB受热伤害大

Page 42: 第 18 章 无铅化技术与工艺

§ 7 电子产品实施无铅化的某些规范与标准

从无铅焊料及其焊接的特性与要求来看,可以预计或理解到即将实施的无铅化规范与标准的最大变动(与传统Sn-Pb 系比较)或最突出的内容,除了 CCL 的热分解温度( Td )、 Tg 和 CTE外,主要是对 PCB 的热应力和热冲击的两大试验方法与要求上,或者再加上离子迁移( CAF )的试验。

Page 43: 第 18 章 无铅化技术与工艺

7.1 热冲击试验要求

热冲击试验指 PCB 产品在高、低温循环实验下的可靠性情况。 如果把高、低温(热)循环试验条件与使用(操作)温度条件之比定

为‘加速(老化)因子 f’ ,则有下述关系:

f= ( ΔT 试验 /ΔT 操作) ²

ΔT 试验为高、低温循环温度差; ΔT 操作为操作(使用)温度差, ‘加速因子’越大,

使用寿命越长,可靠性越高。 由于 PCB走向无铅化焊接和高密度化连接等带来焊接和使用(操作)

温度的提高,则原来规定的试验温度和条件等应加以拓宽或严格化

⑴拓宽热冲击的高 - 低温范围。

⑵增加了高低温(热冲击)循环次数要求

Page 44: 第 18 章 无铅化技术与工艺

7.2 热应力试验表 13 无铅化对 FR-4 覆铜板( CCL )的耐热要求

项目 IPC 标准—方案 1 IPC 标准—方案 2

Tg (℃) ≥ 170 ≥ 155

热分解温度(℃) ≥ 330 ≥ 340

热分层时间( T-260 ,分钟)

- ≥ 30

热分层时间( T-288 ,分钟)

≥ 30 ≥ 15

热分层时间( T-300 ,分钟)

≥ 30 ≥ 2

热分层时间( T-320 ,分钟)

≥ 10 -

Z 轴 CTE (小于Tg , ppm/℃ )

≤ 75 ≤ 60

Z 轴 CTE (≥ Tg , ppm/℃ )

≤ 300 ≤ 300

Page 45: 第 18 章 无铅化技术与工艺

表 14 无铅化对 PCB 的热应力试验要求

PCB 类型 浮(浸)焊温度(℃)

浮焊时间(秒) 浮焊次数 备注(能承受次数)

常规 PCB 288±5 10 1 5 ~ 7 次

耐热高可靠性PCB

288±5 10 30

耐热高可靠性PCB

299±5 10 30

耐热高可靠性PCB

320±5 10 10 或更多

Page 46: 第 18 章 无铅化技术与工艺

7.3 离子迁移试验

随着无铅化 PCB 的焊接温度和加工与使用温度的提高,加上PCB 高密度化的不断进步与发展,因而产生离子迁移的机率也明显增加了。所以加强 PCB离子迁移的可靠性试验突出起来了。

一般采用湿热试验方法,如在 85 /85%RH/30V/1000℃ 小时下,其绝缘电阻应大于 1*108Ω以上。

或者采用高压斧(压力锅)蒸煮( PCT , pressure cooker tes

t )试验

Page 47: 第 18 章 无铅化技术与工艺

§ 8 结 论

电子产品实施无铅化工程或者无铅焊料的焊接时代已经到来

最有希望取代传统 Sn-Pb 焊料的无铅焊料是 Sn-Ag-Cu 体系的 SAC305 焊料

组装的元器件必须无铅化。

提高 CCL 的耐热性能

改进(革) PCB制造工艺技术

制定实施无铅化相关的规范和标准

Page 48: 第 18 章 无铅化技术与工艺

LOGO

www.themegallery.com