集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

64
Intelligent System Design Lab. Doshisha Univ 集集集集集集集集集集 2集 集集集集集集集集集集集 集集集集集集集集 集集集集集 2003 集集 0713 集 集集 集集

Upload: radha

Post on 30-Jan-2016

63 views

Category:

Documents


1 download

DESCRIPTION

集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム. 同志社大学大学院 工学研究科 2003 年度 0713 番 勝﨑 俊樹. 研究背景. 最適化とは. 与えられた候補の中から最も良好な結果を探し出すこと. トラス構造物の最適化. 集積回路の配置. 利得透過フィルタの設計. 最適解に近い解を実用的な計算コストで探索する技法. 遺伝的アルゴリズム (Genetic Algorithm:GA). 遺伝的アルゴリズム. ・生物の進化を模倣した最適化手法. ・多点探索. ・遺伝的オペレータ ( 選択,交叉,突然変異 ) を繰り返し  個体 ( 解 ) を成長させる. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

集中多段交叉を用いた2個体分散遺伝的アルゴリズム

同志社大学大学院 工学研究科2003 年度 0713 番

勝﨑 俊樹

Page 2: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

研究背景

最適化とは与えられた候補の中から最も良好な結果を探し出すこと

トラス構造物の最適化

集積回路の配置 利得透過フィルタの設計

遺伝的アルゴリズム (Genetic Algorithm:GA)

最適解に近い解を実用的な計算コストで探索する技法

Page 3: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

遺伝的アルゴリズム

・生物の進化を模倣した最適化手法

・多点探索

・遺伝的オペレータ ( 選択,交叉,突然変異 ) を繰り返し 個体 ( 解 ) を成長させる

母集団個体

Page 4: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

長所

遺伝的アルゴリズムの特徴

・傾向の異なる個体を組み合わせて 解探索を行うので,広域な探索が可能

初期生成した個体を進化させることによる解探索手法

Page 5: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

遺伝的アルゴリズムの特徴

初期生成した個体を進化させることによる解探索手法

局所解から脱出できない ( 早熟収束 )

・個体同士の情報交換によって解探索を 行うため,世代が進むと個体の傾向が 同じになる・一度全ての個体が同じ傾向になって

 しまうと,他の傾向の個体を生み出す ことができない

短所

Page 6: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

早熟収束の回避

単一母集団の GA の短所

早熟収束によって局所解から脱出できなくなる

主な対処法

・母集団を複数のサブ母集団(島)に分割

・高い多様性を保つ世代交代モデル(選択方法)の利用

・ Distributed Genetic Algorithm ( DGA )

  Minimal Generation Gap ( MGG )

・ Dual individual DGA ( Dual DGA )

Page 7: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

分散遺伝的アルゴリズム( DGA)

・母集団を複数のサブ母集団に分割する

・一定世代ごとに各サブ母集団間で移住を行う

・部分解を組み合わせた解探索が可能

Page 8: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

2個体分散遺伝的アルゴリズム( Dual DGA)

・サブ母集団サイズを 2 個体に固定した DGA

・パラメータチューニングの負荷が低い

・ DGA よりも解探索の信頼性に優れる

( DGA と比べ,交叉率,突然変異率,移住率のパラメータが不要)

Page 9: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

ランダムに移住個体を選択

Dual DGAの遺伝的操作(移住)

移住・ 2 個体のうち,一方のコピ を他のサブ母集団ーへ送る・適合度の低い個体と移住個体を交換する

移住個体と適合度の低い個体を交換

Page 10: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

Dual DGAの遺伝的操作(交叉,突然変異)

交叉2 個体の親個体から 2 個体の子個体を生成

突然変異子個体の 1 ビットを対立遺伝子に変換

Page 11: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

Dual DGAの遺伝的操作(選択)

選択親個体,子個体からそれぞれ適合度の高い個体を選択する

低     高    低     高

次世代へ生き残る

Page 12: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

DGAにおける部分解の生成

サブ母集団で生成される良好な部分解を組み合わせることによる解探索

サブ母集団ごとに異なった傾向を持つ良好な部分解を生成することが重要

各サブ母集団における解探索に,部分解の生成に特化したメカニズムを組み込む

DGA , Dual DGA の特徴

Page 13: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

提案手法 Dual DGA/MX

・集中多段交叉を用いた集中的かつ多段の解探索

・サブ母集団サイズを 2 とした Dual DGA の構造

各サブ母集団で複数の子個体を生成

複数の子個体に対して突然変異を適用エリート+ランキングルーレット選択で次の交叉の親個体を決定

集中多段交叉

Dual DGA with Multiple Crossover(Dual DGA/MX)集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Page 14: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

集中多段交叉

・ 1 世代の交叉,突然変異で複数の子個体を生成

・複数の子個体から次の交叉の親個体を選択

・ Dual DGA に適用することで各サブ母集団で集中的な 局所探索が可能

Page 15: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

Dual DGA/MXの遺伝的操作(移住)

移住・ 2 個体のうち, 1 個体を他のサブ母集団へ送る・無条件で移住個体は新たなサブ母集団の個体となる

ランダムに移住個体は決定

Page 16: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

Dual DGA/MXの遺伝的操作(交叉,突然変異)

交叉2 個体の親個体から複数の子個体を生成

突然変異生成された全ての子個体に突然変異を適用

Page 17: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

Dual DGA/MXの遺伝的操作(選択)

選択親個体と複数の子個体から評価値の最も高い個体と,ランキングルーレット選択で選ばれた個体を次世代に残す

Page 18: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

テスト問題による性能検証

対象問題・連続問題 (Griewank関数, Schwefel関数 :30次元 )・部分だまし問題 (4bit 部分だまし問題, 10bit 部分だまし問題 )

比較手法

・ Simple GA [Goldberg 1989]

・ Dual DGA [ 廣安 2002]

・世代交代モデル MGG [ 佐藤 1997]

・提案手法 Dual DGA/MX

Page 19: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

テスト問題の導入(連続問題)

n

i

n

i

ii

i

xxxF

1 1

2

cos4000

1

Griewank関数

512512 ix 30n 次元

n

iii xxxF

1

)sin(

Schwefel関数

512512 ix 30n 次元

Page 20: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

パラメータ(連続問題)

Page 21: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

連続問題における解の信頼性

Griewank関数

Schwefel関数・・・ 他手法と同等以上の解の信頼性・・・ 他手法より良好な解の信頼性

Page 22: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

連続問題に要する評価計算回数

提案手法 Dual DGA/MX に要する評価計算回数は他手法よりも多い

対象問題: Griewank関数

Page 23: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

テスト問題の導入(部分だまし問題)

bit”1”が全て揃った状態以外では bit”0”が多いほど評価値は高いため, bit”0”が全て揃った状態は局所解となる

4bit 部分だまし問題

n

iiyxF

1100n 次元

iy は設計変数の評価値)(

評価値

Page 24: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

テスト問題の導入(部分だまし問題)

10bit 部分だまし問題

n

iiyxF

140n 次元

iy は設計変数の評価値)(

Page 25: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

パラメータ(部分だまし問題)

Page 26: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分だまし問題における解の信頼性

提案手法 Dual DGA/MX で得られる評価値は他手法と比較して非常に高い

対象問題: 4bit 部分だまし問題

Page 27: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分だまし問題における解の信頼性

対象問題: 10bit 部分だまし問題

提案手法 Dual DGA/MX で得られる評価値は他手法と比較して非常に高い

Page 28: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分だまし問題に要する評価計算回数

対象問題: 4bit 部分だまし問題

提案手法 Dual DGA/MX に要する評価計算回数は他手法よりも多い

Page 29: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分最適解による検証

設計変数における部分最適解の合計の履歴

部分最適解あり 部分最適解あり 部分最適解なし

・部分最適解の生成に関する性能

・部分最適解の維持に関する性能

Page 30: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分最適解による検証結果

対象問題: 4bit 部分だまし問題

提案手法 Dual DGA/MX は他手法と比較して部分最適解の維持の性能に優れている

Page 31: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分最適解による検証結果

対象問題: 10bit 部分だまし問題

提案手法 Dual DGA/MX は他手法と比較して部分最適解の維持および生成の性能に優れている

Page 32: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

結論

提案手法 Dual DGA/MX

・高い解探索の信頼性・問題に対する汎用性

部分最適解を用いた検証

テスト問題による解探索性能の検証

・部分最適解を維持する性能に優れる

・部分最適解を生成する性能に優れる

Dual DGA/MX は部分最適解の生成と維持の性能に優れた,高い解探索性能と問題に対する汎用性を持つ手法

Page 33: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

発表論文リスト

三木光範,廣安知之,勝崎俊樹,水田伯典:離散最適化のための大域的交叉メカニズムを持つ分散遺伝的アルゴリズム日本計算工学会論文集, No. 20040001 ( 2004.01 )

三木光範,廣安知之,勝崎俊樹,森隆史:分散遺伝的アルゴリズムにおける多様性を考慮した世代交代モデルの効果同志社大学理工学研究報告,第 45巻,第 3号( 2004.10)三木光範,廣安知之,勝崎俊樹:リフレッシュ型分散遺伝的アルゴリズム第 17回人工知能学会全国大会,新潟県・朱鷺メッセ( 2003.06)

三木光範,廣安知之,勝崎俊樹:リフレッシュ型分散遺伝的アルゴリズムの組み合わせ最適化問題への適用第 46回数理化と問題解決(MPS )研究会,広島市立大学( 2003.09)

Page 34: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

Page 35: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

参考資料

Page 36: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分最適解の生成に関する検証

各設計変数での部分最適解の組み合わせ

Page 37: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分最適解の組み合わせを用いた検証

各設計変数での部分最適解の組み合わせ

① 部分最適解同士の組み合わせ

② 部分最適解と部分最適解でないものの組み合わせ

③ 部分最適解でないもの同士の組み合わせ

割合が増えるほど最適解に近づく

割合が高ければ,設計変数間に有効な多様性が存在する

割合に変化が見られれば,設計変数内の多様性が高い(部分最適解の生成が期待できる)

Page 38: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分最適解の組み合わせを用いた検証

検証対象: Simple GA

対象問題:4bit 部分だまし問題

Page 39: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分最適解の組み合わせを用いた検証

検証対象:Minimal Generation Gap

対象問題:4bit 部分だまし問題

Page 40: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分最適解の組み合わせを用いた検証

検証対象: Dual DGA

対象問題:4bit 部分だまし問題

Page 41: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分最適解の組み合わせを用いた検証

検証対象:提案手法 Dual DGA/MX

対象問題:4bit 部分だまし問題

Page 42: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

検証結果のまとめ

・他手法と比較して,部分最適解と部分最適解 でないものの組み合わせから新たな部分最適解同士の 組み合わせが生まれやすい

・早い世代から部分最適解でないもの同士の組み合わせ から他の組み合わせが長い世代で生まれている

解探索に有効な多様性を設計変数間で保つことができる

設計変数内でも有効な多様性を保ち,新たな部分最適解を生み出すことができる

提案手法 Dual DGA/MXの特徴

Page 43: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

結論

提案手法 Dual DGA/MX

・高い解探索の信頼性・問題に対する汎用性

部分最適解を用いた検証

テスト問題による解探索性能の検証

・設計変数間に有効な多様性を保つことができる

・設計変数内に有効な多様性を保つことができる

Dual DGA/MXはサブ母集団間で有効な解の組み合わせを行うことができるため,高い解探索性能と問題に対する汎用性を持つ

Page 44: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

世代交代モデル

毎世代 2 個体のみ更新

・ Simple GA ( sGA )

・ Minimal Generation Gap ( MGG )

毎世代すべての個体を更新

[佐藤 ,1996 ]

[ Goldberg,1989 ]

s GA早熟収束

MGG多様性の維持

Page 45: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

Minimal Generation Gap( MGG)

局所的な世代交代を実現する世代交代モデル [佐藤 1997]≫初期収束の回避,探索終盤の多様性維持に優れている

Page 46: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

テスト問題の導入(連続問題)

n

i

n

i

ii

i

xxxF

1 1

2

cos4000

1

Griewank 関数( F2)

512512 ix 30n 次元

n

iii xxnxF

1

2 ))2cos(10(10

Rastrigin 関数( F1)

12.512.5 ix 30n 次元

Page 47: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

テスト問題の導入(連続問題)

n

iii xxxF

1

)sin(

Schwefel 関数( F4)

512512 ix 30n 次元

n

i

i

jjxxF

1

2

1

)(

Ridge 関数( F3)

6464 ix 30n 次元

Page 48: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

パラメータ(連続問題)

Page 49: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

連続問題における解の信頼性( F1,F2)

世代交代モデル MGG に DGA を適用しても,解の信頼性の向上はほとんど見られない

Page 50: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

連続問題における解の信頼性( F3,F4)

世代交代モデル MGG に DGA を適用しても,解の信頼性の向上はほとんど見られない

Page 51: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

連続問題における解収束速度( F1)

世代交代モデル MGG に DGA を適用した場合,解探索速度は遅くなってしまう

Page 52: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

テスト問題の導入(部分だまし問題)

bit”1” が全て揃った状態以外では bit”0” が多いほど評価値は高いため, bit”0” が全て揃った状態は局所解となる

4bit だまし問題( F5)

n

iiyxF

1100n 次元

iy は設計変数の評価値)(

評価値

Page 53: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

テスト問題の導入(部分だまし問題)

10bit だまし問題( F6)

n

iiyxF

140n 次元

iy は設計変数の評価値)(

Page 54: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

パラメータ(だまし問題)

Page 55: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

だまし問題における解の信頼性( F5)

世代交代モデル MGG に DGA を適用することで,はっきりと解の信頼性の向上を確認できる

Page 56: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

だまし問題における解の信頼性( F6)

世代交代モデル MGG に DGA を適用することで,はっきりと解の信頼性の向上を確認できる

Page 57: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

だまし問題における解収束速度( F5)

世代交代モデル MGG に DGA を適用した場合,解探索速度は遅くなってしまう

Page 58: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

だまし問題における解収束速度( F6)

世代交代モデル MGG に DGA を適用した場合,解探索速度は遅くなってしまう

Page 59: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

だまし問題に対するまとめ

だまし問題に対して世代交代モデル MGG を DGA に適用

・解探索性能の信頼性は MGG を単一母集団 GAに 適用した場合よりも高い

・解探索速度は世代交代モデル SGA を用いた場合より 劣ってしまう

・サブ母集団サイズに関しては,多い方が良好な結果が 得られるが,解探索速度は落ちる

だまし問題に対して世代交代モデル MGG を DGA に適用することにより,解探索の信頼性を向上できる

Page 60: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

部分最適解形成の履歴 (補足 )

部分最適解あり 部分最適解あり 部分最適解なし

Page 61: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

連続関数の部分解形成の履歴 (Griewank)

Page 62: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

連続関数の部分解形成の履歴 (4bit)

Page 63: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

MGGを Dual DGAに適用する意味

・世代交代モデルMGG +単一母集団 GA

・世代交代モデルMGG + 2 個体分散 GA(Dual DGA)

選択による淘汰を減らすことに効果

サブ母集団内の集中的かつ多段の探索+ Dual DGA による部分解の組み合わせに効果

Page 64: 集中多段交叉を用いた 2 個体分散遺伝的アルゴリズム

Intelligent System s Design Lab. Doshisha University

ランキングルーレット選択