◆ abstract

1
Investigation on magnetocaloric effect of La 0.8 Ce 0.2 Fe 11.4- x Ni x Si 1.6 compounds Zhiping Lin, Shandong Li*, Meimei Liu, Jianglin Fang, and Jenq-Gong Duh Department of Physics, Fujian Normal University, Fuzhou 350007, P.R.China Abstract The effect of Ni doping into Magnetocaloric effect (MCE) material La 0.8 Ce 0.2 (FeSi) 13 has been studied. It is interesting to find that Curie temperature (Tc) of La 0.8 Ce 0.2 (FeSi) 13 compounds can be adjusted by the substitution of Ni for Fe. With the increase of Ni content, a reduction of thermal lag and magnetic hysterisis was observed, while working temperature span improved obviously. La 0.8 Ce 0.2 Fe 10.9 Ni 0.5 Si 1.6 remains a larger MCE value of 6J.Kg -1 .K -1 and an enhancement over 20 K at Tc under 3T. The compounds exhibit a magnetic transition from first-order to second-order. 2009 IEEE Magnetic Society Summer School Result and discussion g T x T m T l T x T / g m T T / g l T T Fig. 4 The magnetic entropy change plot for La 0.8 Ce 0.2 Fe 11.4-x Ni x Si 1.6 (a)x=0.0, (b) x=0.5 under 1, 2, 3T applied field Fig. 1 X-ray diffraction patterns of the annealed La 0.8 Ce 0.2 Fe 11.4-x Ni x Si 1.6 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) Fig. 2 The thermomagnetic M-T curves for La 0.8 Ce 0.2 Fe 11.4-x Ni x Si 1.6 (x=0, 0.1, 0.2, 0.3, 0.4,0.5)compounds under 0.1 T Fig. 3 M-H curve for (a) La 0.8 Ce 0.2 Fe 11.4 Si 1.6 (b) La 0.8 Ce 0.2 Fe 11 Ni 0.5 Si 1.6 And Arrott plots for (c) La 0.8 Ce 0.2 Fe 11.4 Si 1.6 and (d) La 0.8 Ce 0.2 Fe 11 Ni 0.5 Si 1.6 ◆Conclusions The compounds of La 0.8 Ce 0.2 Fe 11.4-x Ni x Si 1.6 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) hold a large maximum △S and amplificatory temperature span, which suggests a great refrigeration capacity. Ni addition induce an enhancement of Tc in NaZn 13 -type compounds as reported in Co doping, and dramatical reduction in thermal lag and hysteresis loss. In conclusion, the substitution of Ni for La 0.8 Ce 0.2 Fe 11.4-x Ni x Si 1.6 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) exihibits a fantastic application preview in magnetic refregaration, and possibly adjust the working temperature to room temperature. ◆Acknowledgements Supported by NCET-08-0631, NSFC (10504010 and 50501008), and 2009H0019. *Corresponding author: Prof. Shandong Li, Tel:86+0591-28198956 Email: [email protected] 20 30 40 50 60 70 80 1:13 phase In ten sity(a.u ) 2 degree a-F e LaFeSi x= 0.0 x= 0.1 x= 0.2 x= 0.3 x= 0.4 x= 0.5 140 150 160 170 180 190 200 210 220 230 240 0 10 20 30 40 50 M ag n etizatio n (em u /g ) T em p eratu re(K ) x= 0.0 x= 0.1 x= 0.2 x= 0.3 x= 0.4 x= 0.5 170 175 180 185 190 0 10 20 30 40 50 60 70 80 135 150 165 180 195 210 225 240 0 1 2 3 4 5 6 7 - S(J/K g.K ) Tem perature(K ) - S(J/K g.K ) T em p eratu re(K ) (a) (b ) 1T 2T 3T 1T 2T 3T 0 10000 20000 30000 100 200 300 400 500 600 700 0 2000 4000 6000 8000 10000 12000 14000 M 2 (em u /g) 2 185K 250K 0 10000 20000 30000 0 20 40 60 80 100 120 M ag n etizatio n (em u /g ) A p p lied field (O e) 185K 190K 200K 208K 215K 225K 250K 100 200 300 400 500 600 700 800 900 165K 200K A p p lied field (O e) 170K 175K 178K 185K 187K 190K (a) (b ) (c) (d )

Upload: gaerwn

Post on 14-Jan-2016

26 views

Category:

Documents


0 download

DESCRIPTION

2009 IEEE Magnetic Society Summer School. ◆ Result and discussion. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ◆ Abstract

Investigation on magnetocaloric effect of La0.8Ce0.2Fe11.4-xNixSi1.6 compounds

Zhiping Lin, Shandong Li*, Meimei Liu, Jianglin Fang, and Jenq-Gong Duh

Department of Physics, Fujian Normal University, Fuzhou 350007, P.R.China

◆AbstractThe effect of Ni doping into Magnetocaloric effect (MCE) material La0.8Ce0.2(FeSi)13 has been studied. It is interesting to find that Curie temperature (Tc) of La0.8Ce0.2(FeSi)13 compounds can be adjusted by the substitution of Ni for Fe. With the increase of Ni content, a reduction of thermal lag and magnetic hysterisis was observed, while working temperature span improved obviously. La0.8Ce0.2Fe10.9Ni0.5Si1.6 remains a larger MCE value of 6J.Kg-1.K-1 and an enhancement over 20 K at Tc under 3T. The compounds exhibit a magnetic transition from first-order to second-order.

2009 IEEE Magnetic Society Summer School

◆Result and discussion

gTxTmTlT xT /g mT T/g lT T

Fig. 4 The magnetic entropy change plot for La0.8Ce0.2Fe11.4-xNixSi1.6

(a)x=0.0, (b) x=0.5 under 1, 2, 3T applied field

Fig. 1 X-ray diffraction patterns of the annealed La0.8Ce0.2Fe11.4-xNixSi1.6 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5)

Fig. 2 The thermomagnetic M-T curves for La0.8Ce0.2Fe11.4-

xNixSi1.6 (x=0, 0.1, 0.2, 0.3, 0.4,0.5)compounds under 0.1 T

Fig. 3 M-H curve for (a) La0.8Ce0.2Fe11.4Si1.6 (b) La0.8Ce0.2Fe11Ni0.5Si1.6 And Arrott plots for (c) La0.8Ce0.2Fe11.4Si1.6 and (d) La0.8Ce0.2Fe11Ni0.5Si1.6

◆ConclusionsThe compounds of La0.8Ce0.2Fe11.4-xNixSi1.6(x=0, 0.1, 0.2, 0.3, 0.4, 0.5) hold a large maximum S and amplificatory temperature △span, which suggests a great refrigeration capacity. Ni addition induce an enhancement of Tc in NaZn13-type compounds as reported in Co doping, and dramatical reduction in thermal lag and hysteresis loss. In conclusion, the substitution of Ni for La0.8Ce0.2Fe11.4-xNixSi1.6 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) exihibits a fantastic application preview in magnetic refregaration, and

possibly adjust the working temperature to room temperature.

◆Acknowledgements Supported by NCET-08-0631, NSFC (10504010 and 50501008), and 2009H0019.

*Corresponding author: Prof. Shandong Li, Tel:86+0591-28198956 Email: [email protected]

20 30 40 50 60 70 80

1:13 phase

Inte

ns

ity

(a.u

)

2degree

a-FeLaFeSi

x=0.0

x=0.1

x=0.2

x=0.3

x=0.4

x=0.5

140 150 160 170 180 190 200 210 220 230 2400

10

20

30

40

50

Ma

gn

eti

zati

on

(em

u/g

)

Temperature(K)

x=0.0 x=0.1 x=0.2 x=0.3 x=0.4 x=0.5

170 175 180 185 1900

10

20

30

40

50

60

70

80

135 150 165 180 195 210 225 2400

1

2

3

4

5

6

7

-S

(J/K

g.K

)

Temperature(K)

-S

(J/K

g.K

)

Temperature(K)

(a) (b)

1T

2T

3T

1T

2T3T

0 10000 20000 300000

20

40

60

80

100

120

140

100 200 300 400 500 600 700

0

2000

4000

6000

8000

10000

12000

14000

M2(e

mu

/g)2

H/M(Oe.g/emu)

185K

250K

0 10000 20000 300000

20

40

60

80

100

120

Mag

neti

zati

on

(em

u/g

)

Applied field(Oe)

185K190K

200K

208K215K225K

250K

100 200 300 400 500 600 700 800 900

0

2000

4000

6000

8000

10000

12000

14000

16000

M2(e

mu

/g)2

H/M(Oe.g/emu)

165K

200K

Applied field(Oe)

170K175K

178K 185K187K

190K

(a) (b)

(c) (d)