偏極 drell-yan 実験による 核子構造の多次元的理解に向けて

81
January 8, 2011 1 偏偏 Drell-Yan 偏偏偏偏偏 偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏 核核核核核核核核核核 2011 @KEK 2011 核 1 核 8 核 ( 核 ) 核核核核 核核核 ()

Upload: theola

Post on 15-Jan-2016

55 views

Category:

Documents


0 download

DESCRIPTION

偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて. 「核子構造研究の新展開 2011 」 @KEK 2011 年 1 月 8 日 ( 土 ) 後藤雄二(理研). Outline of this talk. Introduction Transverse structure of the proton Drell-Yan measurement Polarized Drell-Yan experiments COMPASS GSI Fermilab RHIC J-PARC Summary. 2. Introduction. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 1

偏極 Drell-Yan実験による核子構造の多次元的理解に向け

「核子構造研究の新展開 2011」@KEK2011年 1月 8日 (土 )後藤雄二(理研)

Page 2: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 2

Outline of this talk• Introduction

– Transverse structure of the proton– Drell-Yan measurement

• Polarized Drell-Yan experiments– COMPASS– GSI– Fermilab– RHIC– J-PARC

• Summary

2

Page 3: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 3

Introduction• Transverse-spin asymmetry measurement

– Theoretical development to understand the transverse structure of the nucleon

• Sivers effect, Collins effect, higher-twist effect, …• Relation to orbital angular momentum inside the nucleon

FNAL-E704 s = 20 GeV RHIC-STAR s = 200 GeV

3

Page 4: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 4

Introduction• Transverse-spin asymmetry

– Sivers effect (Sivers function)• Transverse-momentum dependent (TMD) distribution function

– Collins effect (transversity & Collins fragmentation function)

– higher-twist effect– …

• Drell-Yan process– to distinguish Sivers effect– to separate initial-state and final-state interaction with

remnant partons

• Comparison with semi-inclusive DIS results

Page 5: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 5

Introduction• Transverse structure of the proton

– Transversity distribution function– Correlation between nucleon transverse spin and parton

transverse spin– TMD distribution functions

• Sivers function– Correlation between nucleon transverse spin and parton

transverse momentum (kT)• Boer-Mulders function

– Correlation between parton transverse spin and parton transverse momentum (kT)

Leading-twist transverse momentum dependent (TMD) distribution functions5

Page 6: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 6

Sivers function• Single-spin asymmetry (SSA)

measurement– < 1% level multi-points

measurements have been done for SSA of DIS process

• Valence quark region: x = 0.005 – 0.3• (more sensitive in lower-x region)

M. Anselmino, et al.EPJA 39, 89 (2009)

Sivers functionu-quark

d-quark

6

Page 7: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 7

Polarized Drell-Yan• Many new inputs for remaining proton-spin puzzle

– flavor asymmetry of the sea-quark polarization– transversity distribution– transverse-momentum dependent (TMD) distributions

• Sivers function, Boer-Mulders function, etc.

• “Non-universality” of Sivers function– Sign of Sivers function determined by SSA measurement of

DIS and Drell-Yan processes should be opposite each other

• final-state interaction with remnant partons in DIS process• Initial-state interaction with remnant partons in Drell-Yan process

– Fundamental QCD prediction– One of the next milestones for the field of hadron physics

Page 8: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 8

Goal of the experiment• Comparison with DIS data

– DIS data• < 1% level multi-points

measurements have already been done for SSA of DIS process

• 0.005 < x < 0.3– Comparable level measurement

needs to be done for SSA of Drell-Yan process for comparison

• Measure not only the sign of the Sivers function but also the shape of the function

• x region– Valence quark region: x ~ 0.2

• Expect to show the largest asymmetry

– … and explore larger x region

M. Anselmino, et al.EPJA 39, 89 (2009)

Sivers functionu-quark

d-quark

8

Page 9: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 9

Boer-Mulders function• Single transverse-spin asymmetry

– Transversity Boer-Mulders function measurement– Distinguished from Sibers function measurement by different angular

distribution

• Unpolarized measurement– Angular distribution– Violation of the Lam-Tung relation

2 21 31 cos sin 2 cos sin cos 2

4 2

d

d

,

L.Y. Zhu,J.C. Peng, P. Reimer et al.hep-ex/0609005

With Boer-Mulders function h1┴:

ν(π-Wµ+µ-X)~valence h1┴(π)*valence h1

┴(p)

ν(pdµ+µ-X)~valence h1┴(p)*sea h1

┴(p)

9

Page 10: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 10

Double-spin asymmetries• Double transverse-spin

asymmetry– transversity– quarkantiquark for p+p

collisions

• Double helicity asymmetry– flavor asymmetry of sea-

quark polarization• SIDIS data from HERMES and

COMPASS preliminary data available

• W data from RHIC will be available in the near future

• Polarized Drell-Yan data will be able to cover higher-x region

2

2

21112

21112

cos1

)2cos(sinˆ

))21()()((

))21()()((

ˆ

21

SSTT

qqqq

qqqq

TTTT

a

xfxfe

xhxhe

aA

10

Page 11: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 11

Future polarized Drell-Yan experimentsexperiment particles energy x1 or x2 luminosity

COMPASS + p 160 GeVs = 17.4 GeV

x2 = 0.2 – 0.3 2 × 1033 cm-2s-1

COMPASS(low mass)

+ p 160 GeVs = 17.4 GeV

x2 ~ 0.05 2 × 1033 cm-2s-1

PAX p + pbar colliders = 14 GeV

x1 = 0.1 – 0.9 2 × 1030 cm-2s-1

PANDA(low mass)

pbar + p 15 GeVs = 5.5 GeV

x2 = 0.2 – 0.4 2 × 1032 cm-2s-1

J-PARC p + p 50 GeVs = 10 GeV

x1 = 0.5 – 0.9 1035 cm-2s-1

NICA p + p colliders = 20 GeV

x1 = 0.1 – 0.8 1030 cm-2s-1

RHIC PHENIXMuon

p + p colliders = 500 GeV

x1 = 0.05 – 0.1 2 × 1032 cm-2s-1

RHIC InternalTarget phase-1

p + p 250 GeVs = 22 GeV

x1 = 0.2 – 0.5 2 × 1033 cm-2s-1

RHIC InternalTarget phase-2

p + p 250 GeVs = 22 GeV

x1 = 0.2 – 0.5 3 × 1034 cm-2s-1

11

Page 12: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 12

Page 13: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 13

Page 14: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 14

Page 15: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 15

Page 16: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 16

Page 17: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 17

Page 18: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 18

Page 19: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 19

Page 20: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 20

Page 21: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 21

Page 22: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 22

Page 23: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 23

Drell-Yan experiment• Fermilab E966/SeaQuest

– Dimuon spectrometer

– Main injector beam Ebeam = 120 GeV– Higher-x region: x = 0.1 – 0.45– Beam time: 2010 – 2013

Focusing magnetHadron absorberBeam dump

Momentumanalysis

23

Page 24: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 24

Page 25: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 25

Page 26: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 26

Page 27: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 27

Page 28: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 28

Page 29: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 29

Page 30: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 30

Polarized Drell-Yan experiments at RHIC• “Transverse-Spin Drell-Yan Physics at RHIC”

– http://spin.riken.bnl.gov/rsc/write-up/dy_final.pdf– Les Bland, et al., May 1, 2007– s = 200 GeV– PHENIX muon arm– STAR FMS (Forward Muon Spectrometer)

• Discussions at PHENIX and STAR underway in their decadal plan discussion with their upgrade plan

• Two new Letter-of-Intent submitted to BNL PAC– Collider experiment dedicated to the polarized Drell-Yan experiment

• “Feasibility Test of Large Rapidity Drell-Yan Production at RHIC”– Fixed-target experiment

• “Measurement of Dimuons from Drell-Yan Process with Polarized Proton Beams and an Internal Target at RHIC”

30

Page 31: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 31

Collider experiment LoI• http://www.bnl.gov/npp/docs/pac0610/Crawford_LoI.100524.v1.pdf

31

Page 32: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 32

Collider experiment LoI

32

Page 33: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 33

Fixed-target experiment LoI• Measurement of Dimuons from Drell-Yan Process with

Polarized Proton Beams and an Internal Target at RHIC– http://www.bnl.gov/npp/docs/pac0610/Goto_rhic-drell-yan.pdf– Academia Sinica (Taiwan): W.C. Chang– ANL (USA): D.F. Geesaman, P.E. Reimer, J. Rubin– UC Riverside (USA): K.N. Barish– UIUC (USA): M. Groose Perdekamp, J.-C. Peng– KEK (Japan): N. Saito, S. Sawada– LANL (USA): M.L. Brooks, X. Jiang, G.L. Kunde, M.J. Leitch, M.X.

Liu, P.L. McGaughey– RIKEN/RBRC (Japan/USA): Y. Fukao, Y. Goto, I. Nakagawa, K.

Okada, R. Seidl, A. Taketani– Seoul National Univ. (Korea): K. Tanida– Stony Brook Univ. (USA): A. Deshpande– Tokyo Tech. (Japan): K. Nakano, T.-A. Shibata– Yamagata Univ. (Japan): N. Doshita, T. Iwata, K. Kondo, Y.

Miyachi33

Page 34: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 34

Internal target position

IP2 (overplotted on BRAHMS)

DXDOQ1

DX

20 TON

CRANE LIMIT

20 TON

CRANE LIMITCRANE LIMIT

20 TON

CRANE LIMIT

20 TON

POWER PANELS

C

SCALE

0 5' 10'

CRYOGENIC PIPINGCRYOGENIC PIPING

DO Q1 Q2 Q3DO

1EF3

1EF4

2XAV12XAV2

2XEF1

C.O.D.P .

6 each Blocks

3'W X 4'-6 "H X 4'L

3/ 8Ty p

3/ 8Ty p

3/ 8Ty p

3/ 8Ty p

36X80 Man D oorKeyed B B11 &

Card R eader Ac cess

48 X 54 F resh AirInl et G ravity D amper

Q03 Q02 Q01 D0 DXIP

Q03 Q02 Q01 D0 DXIP

36X80 Man D oor

Keyed B B11 &

Card R eader Ac cess

48 X 54 F resh Air

Inl et G ravity D amper

F MAG3.9 mMom.kick2.1 GeV/c

KMAG 2.4 mMom.kick0.55 GeV/c

St.4MuID

14 m18 m

St.1St.2 St.3

34

Page 35: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 35

Experimental sensitivities• PYTHIA simulation

– s = 22 GeV (Elab = 250 GeV)– luminosity assumption 10,000 pb-1

• Phase-1 (parasitic operation) 10,000 pb-1

• Phase-2 (dedicated operation) 30,000 pb-1

– 4.5 GeV < M < 8 GeV– acceptance for Drell-Yan dimuon signal is studied

all generateddumuon fromDrell-Yan

accepted byall detectors

35

Page 36: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 36

Experimental sensitivities• About 50K events for 10,000pb-1 luminosity

• x-coverage: 0.2 < x < 0.5

Mass(GeV/c2) Total

Rapidity 45 – 50 50 – 60 60 – 80 45 – 80

-0.4 – 0 3.1 K 3.1 K 1.4 K 7.6 K

0 – 0.4 6.2 K 6.1 K 3.0 K 15.3 K

0.4 – 0.8 7.6 K 6.4 K 2.3 K 16.3 K

0.8 – 1.2 4.4 K 2.5 K 0.4 K 7.3 K

x1: x of beam proton (polarized)x2: x of target proton

36

Page 37: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 37

Experimental sensitivities• Phase-1 (parasitic operation)

– L = 2×1033 cm-2s-1

– 10,000 pb-1 with 5×106 s ~ 8 weeks, or 3 years (10 weeks×3) of beam time by considering efficiency and live time

• Phase-2 (dedicated operation)– L = 3×1034 cm-2s-1

– 30,000 pb-1 with 106 s ~ 2 weeks, or 8 weeks of beam time by considering efficiency and live time

10,000 pb-1 (phase-1)40,000 pb-1 (phase-1 + phase-2)

Theory calculation:U. D’Alesio and S. Melis, private communication;M. Anselmino, et al., Phys. Rev. D79, 054010 (2009)

Measure not only the sign of the Sivers function but also the shape of the funcion

37

Page 38: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 38

J-PARC Drell-Yan proposals• P04: measurement of high-mass dimuon production at the 50-GeV

proton synchrotron– spokespersons: Jen-Chieh Peng (UIUC) and Shinya Sawadas (KEK)– collaboration: Abilene Christian Univ., ANL, Duke Univ., KEK, UIUC, LANL,

Pusan National Univ., RIKEN, Seoul National Univ., TokyoTech, Tokyo Univ. of Science, Yamagata Univ.

– including polarized physics program, but not discussed– “deferred”

• P24: polarized proton acceleration at J-PARC– contact persons: Yuji Goto (RIKEN) and Hikaru Sato (KEK)– collaboration: ANL, BNL, UIUC, KEK, Kyoto Univ., LANL, RCNP, RIKEN, RBRC,

Rikkyo Univ., TokyoTech, Tokyo Univ. of Science, Yamagata Univ.– polarized Drell-Yan included as a physics case– “no decision”

• Next proposal for the polarized physics program– not yet submitted

Page 39: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 39

Dimuon experiment at J-PARC (P04)– based on the Fermilab spectrometer for 800 GeV– length to be reduced but the aperture to be increased– two bending magnets with pT kick of 2.5 GeV/c and 0.5 GeV/c– tracking by three stations of MWPC and drift chambers– muon id and tracking

tapered copper beam dump and Cu/C absorbers placed within the first magnet

Page 40: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 40

Polarized Drell-Yan experiment at J-PARC• Single transverse-spin

asymmetry– Sivers effect measurement

• Experimental condition– higher beam intensity is possible

for unpolarized liquid H2 target, or nuclear target

• 51012 ppp = 2.510122sec in 1pulse (5sec) possible?

– PYTHIA simulation• 75% polarization beam• 120 days, beam on target 51017

(with 50% duty factor)• ~5% liquid H2 target

– 10000 fb-1 luminosity• ~20% nuclear target

– 40000 fb-1 luminosity• mass 4 – 5 GeV/c2

4040

red liquid H2 targetblue nuclear target

analyzingmagnet

127cm51cmpolarizedbeam

4 < M+- < 5 GeVintegrated over qT

Page 41: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 41

pQCD studies of Drell-Yan cross section• pQCD correction can be controlled at J-PARC energy

NNLO calculationHamberg, van Neerven, Matsuura,Harlander, Kilgore

NLL, NNLL calculationYokoya, et al...

Page 42: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 42

Polarized proton acceleration (P24)• Polarized beam feasible in discussions with J-PARC and BNL

accelerator physicists• How to keep the polarization given by the polarized proton

source– depolarizing resonance

• imperfection resonance– magnet errors and misalignments

• intrinsic resonance– vertical focusing field

– weaken the resonance• fast tune jump• harmonic orbit correction

– intensify the resonance and flip the spin• rf dipole• snake magnet

• How to monitor the polarization– polarimeters

Page 43: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 43

Polarized proton acceleration at AGS/RHIC • Proposed scheme for the polarized proton acceleration at J-

PARC is based on the successful experience of accelerating polarized protons to 25 GeV at BNL AGS

BRAHMS& PP2PP

STAR

PHENIX

AGS

LINACBOOSTER

Pol. H- Source

Spin Rotators

200 MeVPolarimeter

AGS InternalPolarimeter

rf Dipole

RHIC pCPolarimeters

Absolute Polarimeter(H jet)

AGS pC PolarimetersCold PartialHelical Siberian Snake

Warm PartialHelical Siberian Snake

PHOBOS

Spin Rotators

Full HelicalSiberian Snakes

Partial Solenoidal Snake

Page 44: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 44

Polarized proton acceleration at J-PARC

BRAHMS& PP2PP

STAR

PHENIX

AGS

LINACBOOSTER

Pol. H- Source

200 MeVPolarimeter

AGS InternalPolarimeter

rf Dipole

RHIC pCPolarimeters

Absolute Polarimeter(H jet)

AGS pC PolarimetersCold PartialHelical Siberian Snake

Warm PartialHelical Siberian Snake

PHOBOSPol. H- Source

180/400 MeV Polarimeter

rf Dipole

30% PartialHelical Siberian Snakes

pC CNI Polarimeter

Extracted BeamPolarimeter

Page 45: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 45

Accelerating polarized protons in the MR• AGS 25% superconducting helical snake

helical dipole coil

correction solenoid and dipoles

measured twist angle 2 deg/cmin the middle ~4 deg/cm at ends

Page 46: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 46

Accelerating polarized protons in the MR• Possible location of partial helical snake magnets in

the MR

First 30% snake Second 30% snake

Page 47: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 47

Summary• Polarized Drell-Yan measurement

– The simplest process in hadron-hadron reaction– But, not yet done because of technical difficulties so far

• Sivers function measurement in the valence-quark region from the SSA of Drell-Yan process– Test of the QCD prediction “Sivers function in the Drell-Yan

process has an opposite sign to that in the DIS process”– Milestone for the field of hadron physics

• Several proposed (some approved and not-yet-proposed) experiments– COMPASS/GSI/Fermilab/RHIC/J-PARC/…– In this decade

• Measurement not only the sign of the Sivers function, but also the shape of the function feasible

47

Page 48: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 48

Backup slides

Page 49: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 49

RHIC/PHENIX in the future• PHENIX upgrades

– Muon trigger– Silicon VTX– More upgrades discussed in the

decadal plan• RHIC upgrades

– Electron lens & 56 MHz storage RF• EIC (Electron Ion Collider)

– 2020 ?• Spin physics

– 2009-2014(?) W measurement– Helicity structure of the proton

• Quark-spin contribution• Gluon-spin contribution

– Transverse structure of the proton• Orbital angular momentum

– Drell-Yan measurement

49from PHENIX decadal plan

Page 50: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 50

Introduction• Origin of the proton spin 1/2 - “proton-spin puzzle”

– Polarized DIS experiments– Polarized hadron collision experiments

• Longitudinal-spin asymmetry measurement– Helicity structure of the proton

• Quark-spin contribution• Gluon-spin contribution

– Large restriction for the gluon-spin contribution or gluon helicity distribution

Midrapidity 0 at PHENIXMidrapidity jet at STAR

50

Page 51: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 51

RHIC

51

Page 52: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 52

Polarized proton acceleration at AGS/RHIC • Successfully operational as a polarized proton collider

BRAHMS& PP2PP

STAR

PHENIX

AGS

LINACBOOSTER

Pol. H- Source

Spin Rotators

200 MeVPolarimeter

AGS InternalPolarimeter

rf Dipole

RHIC pCPolarimeters

Absolute Polarimeter(H jet)

AGS pC PolarimetersCold PartialHelical Siberian Snake

Warm PartialHelical Siberian Snake

PHOBOS

Spin Rotators

Full HelicalSiberian Snakes

Partial Solenoidal Snake

52

Page 53: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 53

Polarized Drell-Yan experiment• Single transverse-spin asymmetry

– Sivers function measurement– Transversity Boer-Mulders function

• Double transverse-spin asymmetry– Transversity (quark antiquark for p+p collisions)

• Double helicity asymmtry– Flavor asymmetry of quark polarization

• Other physics– Parity violation asymmetry?

53

Page 54: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 54

Single transverse-spin asymmetry• Sivers effect

– Correlation between nucleon transverse spin and parton transverse momentum (Sivers distribution function)

– Related to the orbital angular momentum in the proton (and the shape of the proton)

• Multi-dimensional structure of the proton

– Initial-state or final-state interaction with remnant partons

Anselmino, et al., PRD79, 054010 (2009)

J-PARC50-GeVpolarized beams ~ 10 GeV

RHICcolliders = 200 GeV

54

Page 55: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 55

DIS Drell-Yan

“toy” QED

QCD

attractive repulsive

Sivers function measurement• Sign of Sivers function determined by single transverse-spin

(SSA) measurement of DIS and Drell-Yan processes– Should be opposite each other

• Initial-state interaction or final-state interaction with remnant partons– Test of TMD factorization– Explanation by Vogelsang and Yuan…

• From “Transverse-Spin Drell-Yan Physics at RHIC,” Les Bland, et al., May 1, 2007

55

Page 56: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 56

Sivers function measurement• < 1% level multi-points measurements have already

been done for SSA of DIS process– x = 0.005 – 0.3 (more sensitive in lower-x region)

• comparable level measurement needs to be done for SSA of Drell-Yan process for comparison

56

Page 57: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 57

Drell-Yan experiment• The simplest process in hadron-

hadron reactions

– No QCD final state effect• Fermilab E866/NuSea

– Unpolarized Drell-Yan experiment with Ebeam = 800 GeV

– Flavor asymmetry of sea-quark distribution

• x = 0.02 – 0.35 (valence region)

• Fermilab E906/SeaQuest– Similar experiment with main-injector

beam Ebeam = 120 GeV• x = 0.1 – 0.45

DIS Drell-Yan

)(

)(1

2

1~

2 2

2

xu

xdpp

pd

57

Page 58: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 58

Drell-Yan experiment• Fermilab E906/SeaQuest

– Dimuon spectrometer

– Main injector beam Ebeam = 120 GeV– Higher-x region: x = 0.1 – 0.45– Beam time: 2010 – 2013

Focusing magnetHadron absorberBeam dump

Momentumanalysis

58

Page 59: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 59

Drell-Yan experiment• Flavor asymmetry of sea-quark distribution

– Possible origins• meson-cloud model

– virtual meson-baryon state• chiral quark model• instanton model• chiral quark soliton model

– + in the proton as an origin of anti-d quark excess• pseudo-scaler meson should have orbital angular momentum in

the proton…

• Polarized Drell-Yan experiment– Not yet done!– Many new inputs for remaining proton-spin puzzle

• flavor asymmetry of the sea-quark polarization• transversity distribution• transverse-momentum dependent (TMD) distributions

– Sivers function, Boer-Mulders function, etc.

, , npp

59

Page 60: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 60

Single transverse-spin asymmetry• Sivers function

– Correlation between nucleon transverse spin and parton transverse momentum (Sivers distribution function)

– Related to the orbital angular momentum in the proton (and the shape of the proton)

• “Non-universality” of Sivers function– Sign of Sivers function determined by SSA measurement of

DIS and Drell-Yan processes should be opposite each other

• final-state interaction with remnant partons in DIS process• Initial-state interaction with remnant partons in Drell-Yan process

– Fundamental QCD prediction– One of the next milestones for the field of hadron physics

60

Page 61: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 61

Polarized and unpolarized Drell-Yan experiment • ATT measurement

– h1(x): transversity• quark antiquark in p+p

collisions

• Unpolarized measurement– angular distribution of

unpolarized Drell-Yan– Boer-Mulders function

• violation of the Lam-Tung relation

2

2

21112

21112

cos1

)2cos(sinˆ

))21()()((

))21()()((

ˆ

21

SSTT

qqqq

qqqq

TTTT

a

xfxfe

xhxhe

aA

2 21 31 cos sin 2 cos sin cos 2

4 2

d

d

,

L.Y. Zhu,J.C. Peng, P. Reimer et al.hep-ex/0609005

With Boer-Mulders function h1┴:

ν(π-Wµ+µ-X)~valence h1┴(π)*valence

h1┴(p)

ν(pdµ+µ-X)~valence h1┴(p)*sea h1

┴(p)

61

Page 62: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 62

Collider experiment• “Transverse-Spin Drell-Yan

Physics at RHIC”– Les Bland, et al., May 1, 2007– s = 200 GeV– PHENIX muon arm– STAR FMS (Forward Muon

Spectrometer)– Large background from b-

quark– s = 500 GeV may be better…

• Higher luminosity and larger cross section

62

Page 63: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 63

Beam time request• Phase-1: parasitic beam time – Option-1

– Beam intensity 2×1011×10MHz = 2×1018/s– Cluster-jet or pellet target 1015atoms/cm2

• 50 times thinner than RHIC CNI carbon target– Luminosity 2×1033/cm2/s– 10,000pb-1 with 5×106s

• 8 weeks, or 3 years (10 weeks×3) with efficiency and live time– Hadronic reaction rate 2×1033×50mb = 108/sec = 100MHz

• 10% beams are used by hadronic reactions in ~6 hours– Beam lifetime

• 2×1011×100bunch / 108 = 2×105s from hadronic reactions• 5×104s = ~15 hours from small-angle scatterings (by D. Trbojevic)• from energy loss?

~6 hours

10% beam used for reaction

collider & internal-targetparasitic run

63

Page 64: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 64

Beam time request• Phase-1: parasitic beam time – Option-2 (beam dump mode)

– Beam time at the end of every fill after stopping collider experiments and dumping one beam

– Beam intensity assuming 1011×10MHz = 1018/s– Target with ~1017atoms/cm2 thickness (if available)

• Comparable thickness with RHIC CNI carbon target– Luminosity 1035/cm2/s– Hadronic reaction rate 1035×50mb = 5×109/s = 5GHz

• 20% beams are assumed to be used = 40 pb-1

• In ~ 1,000s depending on how fast the beam dumps?– We request 250 fills to accumulate 10,000 pb-1

• 8 weeks, or 3 years (10 weeks×3) with efficiency and live time?

20% beam used for reaction

collider runinternal-target run 64

Page 65: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 65

Beam time request• Phase-2: dedicated beam time

– Beam intensity 2×1011×15MHz = 3×1018/s, 1.5 times more number of bunches as assumed at eRHIC

– Pellet or solid target 1016/cm2

• 5 times thinner than RHIC CNI carbon target– Luminosity 3×1034/cm2/s– 30,000pb-1 with 106s

• 2 weeks, or 8 weeks with efficiency and live time– Hadronic reaction rate 3×1034×50mb = 1.5×109/s = 1.5GHz

• 10% beams are used by hadronic reactions in ~30 minutes– Beam lifetime

• 2×1011×150bunch / 1.5×109 = 2×104s from hadronic reactions• 5×103s = ~1.5 hours from small-angle scatterings (by D. Trbojevic)• from energy loss ?

– Even higher luminosity possible, if target with ~1017atoms/cm2

thickness available (beam dump mode)• e.g. 20% beams are used in a shorter period

internal-target run

10% beam used for reaction

~30 mins65

Page 66: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 66

PYTHIA simulation with IP2 configuration• IP2 configuration shown in the next slide

– detector components from FNAL-E906 apparatus• E906: total z-length ~25 m• IP2: available z-lengh ~14 m

– z-length of FMAG (1st magnet) is shortened• because of limited z-length at IP2

• PYTHIA simulation– just acceptance for Drell-Yan dimuon signal is studied– momentum resolution needs to be studied– background rate needs to be studied

• Beam needs to be restored on axis– after passing through two bending magnets– both beams needs to be restored in parasitic operation

66

Page 67: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 67

Collider experiment• Very simple PYTHIA simulation for

PHENIX muon arm– s = 500 GeV– Angle & E cut only

• 1.2 < || < 2.2 (0.22 < || < 0.59)• E > 2, 5, 10 GeV• (no magnetic field, no detector acceptance)

– RHIC-II luminosity assumption 1,000 pb-1

– M = 4.5 8 GeV

rapidity #event- 2.4, - 2.0 5K- 2.0, - 1.6 28K- 1.6, - 1.2 17K- 0.4, 0.0 3K0.0, 0.4 3K1.2, 1.6 18K1.6, 2.0 31K2.0, 2.4 5K

110K events total with 2-GeV cut Red: E > 2 GeV cut Green: E > 5 GeV cut Blue: E > 10 GeV cut

67

Page 68: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 68

Collider experiment• Very simple PYTHIA simulation for a dedicated

collider experiment– s = 500 GeV– Angle & E cut only

• || < 2.2• E > 2, 5, 10 GeV• (no magnetic field, no detector acceptance)

– RHIC-II luminosity assumption 1,000 pb-1

– M = 4.5 8 GeV rapidity #event- 2.4, - 2.0 5K- 2.0, - 1.6 32K- 1.6, - 1.2 53K- 1.2, - 0.8 53K- 0.8, - 0.4 60K- 0.4, 0.0 70K0.0, 0.4 68K0.4, 0.8 60K0.8, 1.2 55K1.2, 1.6 54K1.6, 2.0 36K2.0, 2.4 5K

550K events totalwith 2-GeV cut

68

Page 69: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 69

Experimental sensitivities• PYTHIA simulation

– s = 22 GeV (Elab = 250 GeV)– luminosity assumption 10,000 pb-1

• 10 times larger luminosity necessary than that of the collider experiments

• because of ~10 times smaller cross section acceptance (in the same mass region)

– 4.5 GeV < M < 8 GeV– acceptance for Drell-Yan dimuon

signal is studied

all generateddumuon fromDrell-Yan

accepted byall detectors

69

Page 70: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 70

Fixed-target experiment• PYTHIA simulation with FNAL-E906 geometry

– s = 22 GeV (Elab = 250 GeV)– luminosity assumption 10,000 pb-1

– M = 4.5 8 GeV– Magnetic field and detector location should be tuned to optimize the

acceptance, and fit to available experimental hall

rapidity #event- 0.4, 0.0 1K0.0, 0.4 5K0.4, 0.8 6K0.8, 1.2 3K

16K events total

70

Page 71: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 71

all generated dumuonfrom Drell-Yan

accepted by St. 1

passed through St. 1passed through St. 2

passed through St. 3

accepted by all detectors

Drell-Yan dimuon rapidity

71

Page 72: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 72

Drell-Yan x1 vs x2 (accepted events)

• x1: x of beam proton (polarized)

• x2: x of target proton

72

Page 73: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 73

Drell-Yan E1 vs E2 (accepted events)

• E1, E2: energy of dimuons– energy cut shown at 5 – 10 GeV

73

Page 74: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 74

Comparison• x1 & x2 coverage

– PHENIX muon arm• Single arm: x1 = 0.05 – 0.1 (x2 = 0.001 – 0.002)

– Very sensitive x-region of SIDIS data• Back-to-back: small x1 & x2

– Fixed-target experiment• x1 = 0.25 – 0.4 (x2 = 0.1 – 0.2)

– Can explore higher-x region with better sensitivity

PHENIX muon arm Fixed-target experiment

x1

x2

x1

x2

rapidity rapidity74

Page 75: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 75

Issues for the fixed-target experiment• Requirement for target thickness

– In phase-1 (parasitic operation), 1015 /cm2 thickness is necessary to achieve L = 21033 cm-2s-1

• Pellet target (~1015 /cm2) or cluster-jet target (up to 81014/cm2 ?) is necessary

• If it is not achieved, the internal-target experiment would not be competitive against collider experiments

• In collider experiments, L = 2(or 3)1032 is expected and cross section ( acceptance) is >10 times larger

– In phase-2 (dedicated operation), 10-times larger thickness, 1016 /cm2 is expected

• Requirement for accelerator– Compensation of dipole magnets in the experimental apparatus

(in two colliding-beam operation)– Size of the experimental site and possible target-position (with

proper beam operation)– Reaction rate (peak rate) and beam lifetime– Radiation issues

• Beam loss/dump requirement75

Page 76: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 76

To-do list• Low-mass region study

– 2 – 2.5 GeV– Larger yield– covering lower x region

• 0.1 < x < 0.45– With lower magnetic field?– Charm background < 20% (PYTHIA)

• Geometry optimization– Opposite polarity of two magnets

• May be better for restoring beams on axis– Aperture study of the magnets

• For inventory check of BNL magnets

• GEANT simulation– Background rate study

• From the beam pipe?• Effect for the DX magnet?• Peak rate?

• Internal target study

2<M<2.5 GeV(1,000 pb-1)

4.5<M<8 GeV(10,000 pb-1)

2<M<2.5 GeV

Drell-Yan

Charm

76

Page 77: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 77

Internal target• Cluster-jet target

– H2, D2, N2, CH4, Ne, Ar, Kr, Xe, …– 1014 – 1015 atoms/cm2

– Prototype of the PANDA target is operational at the Univ. of Muenster with a thickness of 8×1014 atoms/cm2

• Pellet target– H2, D2, N2, Ne, Ar, Kr, Xe, …– 1015 – 1016 atoms/cm2

– First-generation target was developed in Uppsala and is in use with the WASA@COSY experiment

– Prototype of the PANDA target is available at Juelich which has been developed in collaboration with Moscow groups (ITEP and MPEI)

77

Page 78: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 78

Experimental sensitivities

accepted4.5 - 8 GeV/c2

4.5 - 5 GeV/c2

5 - 6 GeV/c2

6 - 8 GeV/c2

rapidity

x1

xF

pT

all generated dumuonfrom Drell-Yan

passed through FMAGpassed through St. 1passed through St. 2passed through St. 3accepted by all detectors

78

Page 79: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 79

Collider vs fixed-target• x1 & x2 coverage

– Collider experiment with PHENIX muon arm (simple PYTHIA simulation)• s = 500 GeV• Angle & E cut only

– 1.2 < || < 2.2 (0.22 < || < 0.59), E > 2, 5, 10 GeV– (no magnetic field, no detector acceptance)

• luminosity assumption 1,000 pb-1

• M = 4.5 8 GeV• Single arm: x1 = 0.05 – 0.1 (x2 = 0.001 – 0.002)

– Very sensitive x-region of SIDIS data– Fixed-target experiment

• x1 = 0.2 – 0.5 (x2 = 0.1 – 0.2)– Can explore higher-x region with better sensitivity

PHENIX muon arm (angle & E cut only)

x1

x2 x2

x1

Fixed-target experiment

79

Page 80: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 80

Charm/bottom background• In collider energies, there is non-negligible

background from open beauty production• In fixed-target energies, background from charm &

bottom production is negligible

charm

bottom

Drell-Yan

PHENIX muon arms = 200 GeV

FNAL-E866Elab = 800 GeV

80

Page 81: 偏極 Drell-Yan 実験による 核子構造の多次元的理解に向けて

January 8, 2011 81

Charm/bottom background• In collider energies, there is non-negligible

background from open beauty production• In fixed-target energies, background from

charm & bottom production is negligible at 4.5 - 8 GeV mass region

• At 2 - 2.5 GeV low-mass region– Larger yield– covering lower x region

• 0.1 < x < 0.45– Charm background < 20% (PYTHIA)

charm

bottom

Drell-Yan

PHENIX muon arms = 200 GeV

2<M<2.5 GeV(1,000 pb-1)

4.5<M<8 GeV(10,000 pb-1)

2<M<2.5 GeV

Drell-Yan

Charm

81