ÊÐÀÉÎÂÀ ÇÀÄÀ ×À ÄËß ÎÄÍÎÃÎ ÂÈÐÎÄÆÅÍÎÃÎ...

7
a b a b B B r r φ r 2π φ u(r, φ) J n (r)= m=0 (1) m Γ(m + 1)Γ(m + n + 1) ( r 2 ) 2m+n ,n 0, n Γ(q) q 0 ω(α, ν (k)) = α k 2 |k| ν(k) , α R, k Z \{0}, {ν (k): k Z \{0}} E α,ν(k) g(φ)= kZ\{0} g k e ikφ ,g k C,k Z \{0} g; E α,ν(k) = kZ\{0} |g k | 2 ω 2 (α, ν (k)); E 2 α,ν(k) u(r, φ)= kZ\{0} u k (r)e ikφ , u k (r) k Z \{0} r [0,R] E 2 α,ν(k) u; E 2 α,ν(k) = v u u t kZ\{0} 2 j=0 max r[0,R] |u (j) k (r)| 2 ω 2 (α, ν (k)). E 2 α,ν(k) r 2 u(r, φ) ∂r 2 2 3 u(r, φ) ∂r∂φ 2 + γ 2 r 4 u(r, φ) ∂φ 4 =0, Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Upload: others

Post on 26-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • ÂIÑÍÈÊ ÍÀÖIÎÍÀËÜÍÎÃÎ ÓÍIÂÅÐÑÈÒÅÒÓ�ËÜÂIÂÑÜÊÀ ÏÎËIÒÅÕÍIÊÀ�

    �Ôiçèêî-ìàòåìàòè÷íi íàóêè�804, 2014, c. 57�63

    JOURNAL OF LVIV POLYTECHNICNATIONAL UNIVERSITY

    �Physical and mathematical sciences�804, 2014, p. 57�63

    ÊÐÀÉÎÂÀ ÇÀÄÀ×À ÄËß ÎÄÍÎÃÎ ÂÈÐÎÄÆÅÍÎÃÎÏÀÐÀÁÎËI×ÍÎÃÎ ÐIÂÍßÍÍß

    Ñèìîòþê Ì. Ì.a, Òèìêiâ I. Ð.b

    aIíñòèòóò ïðèêëàäíèõ ïðîáëåì ìåõàíiêè i ìàòåìàòèêè iì. ß. Ñ. Ïiäñòðèãà÷à ÍÀÍ Óêðà¨íè(79060, Ëüâiâ, âóë. Íàóêîâà, 3-á, Óêðà¨íà)

    bIâàíî-Ôðàíêiâñüêèé íàöiîíàëüíèé òåõíi÷íèé óíiâåðñèòåò íàôòè i ãàçó(76019, Iâàíî-Ôðàíêiâñüê, âóë. Êàðïàòñüêà, 5, Óêðà¨íà)

    (Îòðèìàíî 10 ëèñòîïàäà 2014 ð.)Äîñëiäæåíî êðàéîâó çàäà÷ó äëÿ îäíîãî âèðîäæåíîãî çà ðàäiàëüíîþ çìiííîþ ïàðàáîëi-

    ÷íîãî ðiâíÿííÿ. Âñòàíîâëåíî óìîâè iñíóâàííÿ òà ¹äèíîñòi ðîçâ'ÿçêó çàäà÷i. Çà äîïîìîãîþìåòðè÷íîãî ïiäõîäó âñòàíîâëåíî îöiíêó çíèçó äëÿ çíà÷åíü ôóíêöié Áåññåëÿ ïiâöiëîãî iíäå-êñó, ùî âõîäÿòü çíàìåííèêàìè ó âèðàçè äëÿ êîåôiöi¹íòiâ ðÿäó Ôóð'¹, ÿêèì çîáðàæó¹òüñÿðîçâ'ÿçîê çàäà÷i.

    Êëþ÷îâi ñëîâà: âèðîäæåíå ðiâíÿííÿ, ôóíêöiÿ Áåññåëÿ, ìàëèé çíàìåííèê, ìiðà Ëåáåãà.

    2000 MSC: 35K35, 35B15, 35B30

    ÓÄÊ: ÓÄÊ 517.95+511.42

    Âñòóï 1

    Êðàéîâi çàäà÷i äëÿ ðiâíÿíü iç ÷àñòèííèìè ïîõi-äíèìè ç âèðîäæåíèìè êîåôiöi¹íòàìè âèíèêàþòü ïiä÷àñ ìîäåëþâàííÿ äèôóçiéíèõ, ãiäðî- òà ãàçîäèíàìi-÷íèõ ïðîöåñiâ, ÿâèù òåïëîìàñîïåðåíîñó, êðèñòàëî-ãðàôi¨ òîùî. Äîñëiäæåííþ òàêèõ çàäà÷ ïðèñâÿ÷å-íi ðîáîòè [5, 6, 12, 8, 19]. Çîêðåìà, ó ïðàöÿõ [5, 8]äîñëiäæåíî ëîêàëüíi òà íåëîêàëüíi êðàéîâi çàäà÷iäëÿ âèðîäæåíèõ ãiïåðáîëi÷íèõ òà áåçòèïíèõ ðiâíÿíü.Ó ðîáîòàõ [12, 19] âèâ÷åíî íåëîêàëüíi äâîòî÷êîâi òàáàãàòîòî÷êîâi çàäà÷i äëÿ ïàðàáîëi÷íèõ ðiâíÿíü ç âè-ðîäæåííÿìè òà îñîáëèâîñòÿìè.

    Âàæëèâèì êëàñîì ðiâíÿíü iç âèðîäæåíèìè êîå-ôiöi¹íòàìè ¹ ðiâíÿííÿ, ùî ìiñòÿòü îïåðàòîð Áåññå-ëÿ. Óìîâè ðîçâ'ÿçíîñòi çàäà÷ ç iíòåãðàëüíèìè óìîâà-ìè äëÿ ëiíiéíèõ òà íåëiíiéíèõ ïàðàáîëi÷íèõ ðiâíÿíüäðóãîãî ïîðÿäêó ç îïåðàòîðîì Áåññåëÿ çà ïðîñòîðî-âîþ çìiííîþ (B-ïàðàáîëi÷íèõ ðiâíÿíü) âñòàíîâëåíîó ïðàöÿõ [3, 17], à óìîâè ðîçâ'ÿçíîñòi ëîêàëüíî¨ áàãà-òîòî÷êîâî¨ çàäà÷i äëÿ B-ïàðàáîëi÷íîãî ðiâíÿííÿ âè-ñîêîãî ïîðÿäêó � â ðîáîòi [11]. Çàäà÷ó Êîøi äëÿ ãi-ïåðáîëi÷íèõ ðiâíÿíü äðóãîãî ïîðÿäêó ç îïåðàòîðîìÁåññåëÿ çà ÷àñîì ó íåîáìåæåíèõ îáëàñòÿõ âèâ÷åíî óïðàöÿõ [7, 16].

    Ó öié ðîáîòi äëÿ ðiâíÿííÿ (1), ùî âèðîäæó¹òüñÿçà çìiííîþ r i ¹ ïàðàáîëi÷íèì çà r ñòîñîâíî çìií-íî¨ φ, äîñëiäæåíî çàäà÷ó ïðî çíàõîäæåííÿ (â êëà-ñi ôóíêöié, àíàëiòè÷íèõ çà r, 2π-ïåðiîäè÷íèõ çà φ)ðîçâ'ÿçêó u(r, φ), ÿêèé ñïðàâäæó¹ êðàéîâó óìîâó (2).Ïiä ÷àñ ïîáóäîâè òà âèâ÷åííÿ âëàñòèâîñòåé ðîçâ'ÿç-êó öi¹¨ çàäà÷i âèíèêàþòü ìàëi çíàìåííèêè ó âèãëÿäiçíà÷åíü ôóíêöié Áåññåëÿ ïiâöiëîãî iíäåêñó; äëÿ îöi-íþâàííÿ çíèçó öèõ âåëè÷èí çàñòîñîâàíî ìåòðè÷íèéïiäõiä [10]. Çàóâàæèìî, ùî ìåòðè÷íi îöiíêè äëÿ çíà-

    ÷åíü ôóíêöié Áåññåëÿ ïiâöiëîãî iíäåêñó ó íàóêîâiéëiòåðàòóði âiäñóòíi i â öié ðîáîòi îòðèìàíi âïåðøå.

    Ðåçóëüòàòè ðîáîòè àíîíñîâàíî â [14].

    I. Ïîñòàíîâêà çàäà÷i

    Âèêîðèñòîâóâàòèìåìî òàêi ïîçíà÷åííÿ:

    Jn(r) =∞∑m=0

    (−1)m

    Γ(m+ 1)Γ(m+ n+ 1)

    (r2

    )2m+n, n ≥ 0,−

    ôóíêöiÿ Áåññåëÿ (äèâ. ñ. 21 ó [2] ïåðøîãî ðîäó ïî-ðÿäêó n, äå Γ(q), q ≥ 0, � ãàììà-ôóíêöiÿ Åéëåðà;

    ω(α, ν(k)) = αk2

    |k|ν(k), α ∈ R, k ∈ Z \ {0},

    äå {ν(k) : k ∈ Z \ {0}} � ïîñëiäîâíiñòü äîäàòíèõ äié-ñíèõ ÷èñåë; Eα,ν(k) � ïðîñòið òðèãîíîìåòðè÷íèõ ðÿäiâg(φ) =

    ∑k∈Z\{0}

    gkeikφ, gk ∈ C, k ∈ Z \ {0}, äëÿ ÿêèõ

    ñêií÷åííà íîðìà

    ∥g;Eα,ν(k)∥ =√ ∑k∈Z\{0}

    |gk|2ω2(α, ν(k));

    E2α,ν(k) � ïðîñòið ðÿäiâ u(r, φ) =∑

    k∈Z\{0}uk(r)e

    ikφ,

    êîåôiöi¹íòè uk(r), k ∈ Z\{0} ÿêèõ ¹ àíàëiòè÷íèìè çàr íà âiäðiçêó [0, R], íîðìó â E2α,ν(k) çàäàìî ôîðìóëîþ

    ∥u;E2α,ν(k)∥ =

    √√√√ ∑k∈Z\{0}

    2∑j=0

    maxr∈[0,R]

    |u(j)k (r)|2ω2(α, ν(k)).

    Ó öié ðîáîòi â ïðîñòîði E2α,ν(k) äîñëiäæó¹ìîðîçâ'ÿçíiñòü çàäà÷i

    r∂2u(r, φ)

    ∂r2− 2∂

    3u(r, φ)

    ∂r∂φ2+ γ2r

    ∂4u(r, φ)

    ∂φ4= 0, (1)

    1Ðîáîòà ÷àñòêîâî ïiäòðèìàíà ÄÔÔÄ Óêðà¨íè (ïðîåêò 54.1/027).

    Ìàòåìàòèêà c⃝ Ñèìîòþê Ì. Ì., Òèìêiâ I. Ð., 2014

    Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

  • Ñèìîòþê Ì. Ì., Òèìêiâ I. Ð.

    u(R,φ) = g(φ). (2)

    äå r ∈ (0, R), φ ∈ [0, 2π], γ > 0. Ðiâíÿííÿ (1) ¹ ïàðàáî-ëi÷íèì (çà çìiííîþ r ñòîñîâíî çìiííî¨ φ) ó òîìó ñåíñi,ùî äëÿ äîâiëüíîãî η ∈ R i äëÿ äîâiëüíîãî r ∈ (0, R)ξ-êîðåíi ðiâíÿííÿ

    rξ2 + 2η2ξ + γ2rη4 = 0,

    ñïðàâäæóþòü îöiíêè

    Reξj(r, η) ≤ −δ(R)η2, j ∈ {1, 2},

    äå δ(R) > 0.Çàóâàæèìî, ùî äî ðiâíÿííÿ (1) çâîäèòüñÿ (ïåðå-

    õîäîì âiä äåêàðòîâî¨ ñèñòåìè (x, y) äî ïîëÿðíî¨ ñèñ-òåìè (r, φ)) ðiâíÿííÿ, ÿêå ¹ àíàëîãîì ðiâíÿííÿ Òðè-êîìi (äèâ. [8, ñ. 133]) i ì๠âèãëÿä

    y4∂4v(x, y)

    ∂x4+ x4

    ∂4v(x, y)

    ∂y4+ F = 0,

    äå ñèìâîë F ïîçíà÷๠ëiíiéíó êîìáiíàöiþ ôóíêöiév, ∂v∂x ,

    ∂v∂y , . . . ,

    ∂4v∂y∂x3 , êîåôiöi¹íòè ÿêî¨ ¹ ìíîãî÷ëåíàìè

    âiä x, y.

    II. Óìîâè ¹äèíîñòi ðîçâ'ÿçêó

    Ðîçâ'ÿçîê çàäà÷i (1), (2) ç ïðîñòîðó E2α,ν(k) øó-êà¹ìî ó âèãëÿäi ðÿäó

    u(r, φ) =∑

    k∈Z\{0}

    uk(r)eikφ. (3)

    Êîæíà ç ôóíêöié uk(r), k ∈ Z \ {0}, ¹ âiäïîâiäíî ðîç-â'ÿçêîì çàäà÷i

    rd2uk(r)

    dr2+ 2k2

    duk(r)

    dr+ (γk2)2ruk(r) = 0, (4)

    uk(R) = gk, (5)

    äå gk, k ∈ Z \ {0}, � êîåôiöi¹íòè Ôóð'¹ ôóíêöi¨ g(φ).Ôóíêöiÿ uk(r), k ∈ Z \ {0}, ¹ àíàëiòè÷íîþ çà r,

    òîìó âîíà äîïóñê๠ðîçâèíåííÿ ó ñòåïåíåâèé ðÿä

    uk(r) =

    ∞∑q=0

    ak,qrq. (6)

    Ïiäñòàâëÿþ÷è ðÿä (6) ó ðiâíÿííÿ (4), äiñòàíåìî, ùîéîãî êîåôiöi¹íòè ïðè íåïàðíèõ ñòåïåíÿõ çìiííî¨ r äî-ðiâíþþòü íóëþ

    ak,2q−1 = 0, q ∈ N,

    à êîåôiöi¹íòè ïðè ïàðíèõ ñòåïåíÿõ çìiííî¨ r âèðàæà-þòüñÿ ÷åðåç ak,0 i îá÷èñëþþòüñÿ çà ôîðìóëàìè

    ak,2q =(−1)q(γk2)2qak,0

    2qΓ(q + 1)q∏

    m=1(2m− 1 + 2k2)

    , q ∈ N. (7)

    Òîäi ç ôîðìóë (6), (7) îòðèìó¹ìî, ùî

    uk(r) = ak,0 +∞∑q=1

    (−1)q(γk2r)2qak,0

    2qΓ(q + 1)q∏

    m=1(2m− 1 + 2k2)

    .

    Âðàõîâóþ÷è, ùî

    Γ(k2 + 1/2) =√π2k

    2k2∏p=1

    (2p− 1),

    q∏m=1

    (2m− 1 + 2k2) = 2qΓ(q + k2 + 1/2)

    Γ(k2 + 1/2),

    îòðèìó¹ìî

    uk(r) = ak,0 +∞∑q=1

    (−1)q(γk2r)2qΓ(k2 + 1/2)ak,022qΓ(q + 1)Γ(q + k2 + 1/2)

    =

    =ak,0Γ(k

    2 + 1/2)2k2−1/2

    (γk2r)k2−1/2

    ∞∑q=1

    (−1)q(γk2r/2)2q+k2−1/2

    Γ(q + 1)Γ(q + k2 + 1/2)=

    =ak,0Γ(k

    2 + 1/2)2k2−1/2

    (γk2)k2−1/2

    Jk2− 12 (γk2r)

    rk2−1/2. (8)

    ßêùî Jk2− 12 (γk2R) ̸= 0 äëÿ âñiõ k ∈ Z\{0}, òî êîåôi-

    öi¹íò ak,0 ìîæíà âèçíà÷èòè ç óìîâè (5) çà ôîðìóëîþ

    ak,0 =(γk2)k

    2−1/2

    Γ(k2 + 1/2)2k2−1/2Rk

    2−1/2gkJk2− 12 (γk

    2R). (9)

    Òåîðåìà 1. Äëÿ ¹äèíîñòi ðîçâ'ÿçêó çàäà÷i (1),(2) ó ïðîñòîði E2α,ν(k), α>0, {ν(k) : k∈Z \ {0}}⊂R+,íåîáõiäíî i äîñèòü, ùîá âèêîíóâàëàñü óìîâà

    ∀k ∈ Z \ {0} Jk2− 12 (γk2R) ̸= 0. (10)

    Çàóâàæåííÿ 1. Äëÿ äîâiëüíîãî ôiêñîâàíîãî ðiâ-íÿííÿ (1) óìîâà (10) âèêîíó¹òüñÿ äëÿ âñiõ (êðiì, ìî-æëèâî, çëi÷åííî¨ êiëüêîñòi) çíà÷åíü R > 0. Öå âèïëè-â๠ç òîãî, ùî ïðè ôiêñîâàíèõ γ > 0 òà k ∈ Z \ {0}ôóíêöiÿ Jk2− 12 (γk

    2R) ¹ àíàëiòè÷íîþ çà R i íà äîâiëü-íîìó âiäðiçêó äîäàòíî¨ ïiâîñi ìîæå ìàòè ëèøå ñêií-÷åííó êiëüêiñòü íóëiâ.

    III. Óìîâè iñíóâàííÿ ðîçâ'ÿçêó

    Íàäàëi ââàæàòèìåìî, ùî óìîâà (10) ñïðàâäæó¹-òüñÿ. Òîäi ç ôîðìóë (8), (9) îòðèìó¹ìî, ùî ðîçâ'ÿçîêçàäà÷i (4), (5) çîáðàæó¹òüñÿ ôîðìóëîþ

    uk(r) =gkJk2− 12 (γk

    2r)

    Jk2− 12 (γk2R)

    (R

    r

    )k2− 12, k ∈ Z \ {0}. (11)

    Iç ðiâíîñòåé (3), (11) äëÿ ðîçâ'ÿçêó çàäà÷i (1), (2)îòðèìó¹ìî ôîðìàëüíå çîáðàæåííÿ ó âèãëÿäi ðÿäó

    u(r, φ) =∑

    k∈Z\{0}

    gkJk2− 12 (γk2r)

    Jk2− 12 (γk2R)

    (R

    r

    )k2− 12eikφ. (12)

    58 Ìàòåìàòèêà

    Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

  • Êðàéîâà çàäà÷à äëÿ îäíîãî âèðîäæåíîãî ïàðàáîëi÷íîãî ðiâíÿííÿ

    Äëÿ âñòàíîâëåííÿ óìîâ çáiæíîñòi ðÿäó (12) íàìçíàäîáèòüñÿ òàêå òâåðäæåííÿ ïðî îöiíêè çãîðè ôóíê-öié Jk2− 12 (γk

    2r)/rk2− 12 òà ¨õ ïîõiäíèõ.

    Ëåìà 1. Äëÿ äîâiëüíèõ γ > 0, äëÿ âñiõ k ∈ Z,k ̸= 0, ñïðàâäæóþòüñÿ îöiíêè

    maxr∈[0,R]

    ∣∣∣∣∣ dqdrq(Jk2− 12 (γk

    2r)

    rk2− 12

    )∣∣∣∣∣ ≤ C1 (γe2 )k2

    |k|2q, (13)

    äå q ∈ N ∪ {0}, C1 = C1(γ) > 0.

    � Äîâåäåííÿ. Iç ôîðìóëè Ïóàññîíà äëÿ ôóíêöié Áåñ-ñåëÿ ( äèâ. ñ. 58 ó [2]) äëÿ äîâiëüíèõ γ > 0, r ≥ 0,k ∈ Z \ {0}, îòðèìó¹ìî

    Jk2− 12 (γk2r) =

    (γk2r

    2

    )k2− 12 1Γ(k2)

    ×

    ×π∫

    0

    cos(γk2r cos θ) sin2k2+1 θdθ. (14)

    Âðàõîâóþ÷è åëåìåíòàðíi íåðiâíîñòi

    | cos(γk2r cos θ) sin2k2+1 θ| ≤ 1,

    θ ∈ [0, π], γ > 0, r ∈ [0, R], k ∈ Z \ {0},

    à òàêîæ ôîðìóëó Ñòiðëiíãà (äèâ. c. 134 ó [4])

    Γ(k2) =√2π|k|2k

    2−1e−k2

    eδ1(k)12 , (15)

    0 < δ1(k) < 1, k ∈ Z \ {0},

    iç (14) îòðèìó¹ìî

    maxr∈[0,R]

    ∣∣∣∣∣Jk2− 12 (γk2r)

    rk2− 12

    ∣∣∣∣∣ ≤ C2 (γe2 )k2

    ,

    C2 =√γπ/2. Äèôåðåíöiþþ÷è ðiâíiñòü (14) q ðàçiâ çà

    çìiííîþ r, îäåðæó¹ìî, ùî

    dq

    drq

    (Jk2− 12 (γk

    2r)

    rk2− 12

    )=

    (γk2

    2

    )k2− 12 (γk2)qΓ(k2)

    ×

    ×π∫

    0

    cosq θ sin2k2−1 θ cos(γk2r cos θ + qπ/2)dθ. (16)

    Iç ôîðìóë (16) íà ïiäñòàâi (15) òà åëåìåíòàðíèõ ïå-ðåòâîðåíü îòðèìó¹ìî íåðiâíîñòi

    maxr∈[0,R]

    ∣∣∣∣∣ dqdrq(Jk2− 12 (γk

    2r)

    rk2− 12

    )∣∣∣∣∣ ≤ C3 (γe2 )k2

    |k|2q, (17)

    äå C3 = C3(γ) > 0, q ∈ N ∪ {0}, ç ÿêèõ âèïëèâà¹òâåðäæåííÿ ëåìè 1. �

    Âñòàíîâèìî äîñòàòíi óìîâè iñíóâàííÿ ðîçâ'ÿçêóçàäà÷i (1), (2).

    Òåîðåìà 2. Íåõàé âèêîíó¹òüñÿ óìîâà (10)òà iñíóþòü α1 > 0 i ïîñëiäîâíiñòü {ν1(k) :k ∈ Z \ {0}} ⊂ R+ òàêi, ùî äëÿ âñiõ (êðiì ñêií-÷åííî¨ êiëüêîñòi) çíà÷åíü k ∈ Z \ {0} âèêîíó¹òüñÿíåðiâíiñòü

    |Jk2− 12 (γk2R)| ≥ ω(α1,−ν1(k)). (18)

    ßêùî g ∈ Eα0,ν0(k), äå

    α0 =αγeR

    2α1, ν0(k) = ν(k) + ν1(k) + 4,

    òî â ïðîñòîði E2α,ν(k) iñíó¹ ðîçâ'ÿçîê çàäà÷i (1), (2),ÿêèé çîáðàæó¹òüñÿ ðÿäîì (12) i íåïåðåðâíî çàëå-æèòü âiä ôóíêöi¨ g.

    � Äîâåäåííÿ. Iç ôîðìóë (11), (18) íà ïiäñòàâi îöiíîê(13) ëåìè 1 äëÿ êîæíîãî k ∈ Z \ {0} îòðèìó¹ìî

    2∑q=0

    maxr∈[0,R]

    |u(q)k (r)| ≤Rk

    2−1/2|gk||Jk2− 12 (γk

    2R)|×

    ×2∑q=0

    maxr∈[0,R]

    ∣∣∣∣∣ dqdrq(Jk2− 12 (γk

    2r)

    rk2− 12

    )∣∣∣∣∣ ≤≤ C4ω

    (eγR

    2α1, ν1(k) + 4

    )|gk|, C4 > 0. (19)

    Îòæå, iç (19) ìà¹ìî

    ∥u;E2α,ν(k)∥2 =

    ∑k∈Z\{0}

    2∑q=0

    maxr∈[0,R]

    |u(q)k (r)|2ω2(α, ν(k))≤

    ≤C5∑

    k∈Z\{0}

    ω2(αeγR

    2α1, ν(k) + ν1(k) + 4

    )|gk|2=

    = C5∥g;Eα0,ν0(k)∥2. (20)

    Iç (20) âèïëèâ๠äîâåäåííÿ òåîðåìè. �

    IV. Îöiíêè ìàëèõ çíàìåííèêiâ

    Çáiæíiñòü ðÿäó (12) ó ïðîñòîðàõ E2α,ν(k), α > 0,{ν(k) : k ∈ Z \ {0}} ⊂ R+, ïîâ'ÿçàíà iç ìîæëèâiñòþâèêîíàííÿ îöiíîê (18). Ç'ÿñó¹ìî ïèòàííÿ ïðî ¨õ âè-êîíàííÿ. Äëÿ öüîãî âñòàíîâèìî äîïîìiæíi ëåìè 2, 3.

    Ëåìà 2. Äëÿ äîâiëüíîãî n ∈ N∪ {0} òà λ > 0ñïðàâäæó¹òüñÿ ôîðìóëà(

    1

    t

    d

    dt

    )n (tn+

    12 Jn+ 12 (λt)

    )=√

    2/πλn−12 sin(λt), t > 0.

    (21)

    Mathematics 59

    Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

  • Ñèìîòþê Ì. Ì., Òèìêiâ I. Ð.

    � Äîâåäåííÿ. Âèêîðèñòà¹ìî ìåòîä ìàòåìàòè÷íî¨ ií-äóêöi¨ çà n. Äëÿ n = 0 òâåðäæåííÿ ëåìè âèïëèâ๠çâiäîìî¨ (äèâ. ñ. 66 ó [2]) ôîðìóëè

    J 12(z) =

    √2/(πz) sin z, z > 0.

    Ïðèïóñòèìî, ùî ëåìà 3 ïðàâèëüíà ïðè n = m,m ≥ 1.Äîâåäåìî ¨¨ iñòèííiñòü ïðè n = m+ 1. Î÷åâèäíî, ùî(

    1

    t

    d

    dt

    )m+1 (tm+

    32 Jm+ 32 (λt)

    )=

    =

    (1

    t

    d

    dt

    )m(1

    t

    d

    dt

    )(tm+

    32 Jm+ 32 (λt)

    ). (22)

    Iç çîáðàæåííÿ ôóíêöi¨ Áåññåëÿ ó âèãëÿäi ðÿäó îòðè-ìó¹ìî

    d

    dt

    (tm+

    32 Jm+ 32 (λt)

    )=

    (2

    λ

    )m+ 32×

    × ddt

    (∞∑l=0

    (−1)l

    Γ(l + 1)Γ(l +m+ 52 )

    (λt

    2

    )2l+2m+3)=

    =

    (2

    λ

    )m+ 12 ∞∑l=0

    (−1)l(2l + 2m+ 3)Γ(l + 1)Γ(l +m+ 52 )

    (λt

    2

    )2l+2m+2.

    (23)Íà ïiäñòàâi âëàñòèâîñòi ãàììà-ôóíêöi¨

    Γ(l +m+ 5/2) =(2l + 2m+ 3)

    2Γ(l +m+ 3/2)

    iç ðiâíîñòi (23) îòðèìó¹ìî(1

    t

    d

    dt

    )(tm+

    32 Jm+ 32 (λt)

    )= λtm+

    12×

    ×∞∑l=0

    (−1)l

    Γ(l + 1)Γ(l +m+ 32 )

    (λt

    2

    )2l+m+ 12=

    = λtm+12 Jm+ 12 (λt). (24)

    Iç ôîðìóë (22), (24) òà ïðèïóùåííÿ iíäóêöi¨ îäåðæó-¹ìî (

    1

    t

    d

    dt

    )m+1 (tm+

    32 Jm+ 32 (λt)

    )=

    =√2/πλm+

    12 sin(λt), t > 0, λ > 0.

    Îòæå, òâåðäæåííÿ ëåìè ñïðàâåäëèâå ïðè n = m+ 1.Ëåìó äîâåäåíî. �

    Ëåìà 3. Íåõàé f(t) ∈ Cn(a, b) ¹ òàêîþ, ùîäëÿ âñiõ t ∈ (a, b) âèêîíó¹òüñÿ íåðiâíiñòü∣∣∣∣(1t ddt

    )nf(t)

    ∣∣∣∣ ≥ δ > 0.Òîäi äëÿ äîâiëüíîãî ε > 0

    mesR{t ∈ (a, b) : |f(t)| < ε} ≤cna

    n

    √ε

    δ, cn = 2n

    n√n!.

    � Äîâåäåííÿ. Çàñòîñó¹ìî ìåòîä ìàòåìàòè÷íî¨ iíäó-êöi¨. Íåõàé n = 1, f(t) ∈ C1(a, b), i íåõàé

    ∀t ∈ (a, b)∣∣∣∣1t ddtf(t)

    ∣∣∣∣ ≥ δ.Òîäi |f ′(t)| ≥ δt > δa äëÿ âñiõ t ∈ (a, b). Íà ïiäñòàâiëåìè 1 iç [13] îòðèìó¹ìî, ùî

    mesR{t ∈ (a, b) : |f(t)| < ε} ≤2

    a

    ε

    δ.

    Ïðèïóñòèìî, ùî ëåìà 3 ¹ ïðàâèëüíîþ äëÿ n = m,m ≥ 1. Äîâåäåìî ¨¨ iñòèííiñòü äëÿ n = m+ 1.

    Íåõàé f(t) ∈ Cm+1(a, b) i íåõàé∣∣∣∣∣(1

    t

    d

    dt

    )m+1f(t)

    ∣∣∣∣∣ ≥ δ > 0, t ∈ (a, b).Äëÿ êîæíîãî η > 0 ðîçãëÿíåìî ìíîæèíè

    A1(η) = {t ∈ (a, b) : |h(t)| > η},

    A2(η) = {t ∈ (a, b) : |h(t)| ≤ η},

    äå h(t) = 1tddtf(t). Îñêiëüêè

    ∣∣∣( 1t ddt)m h(t)∣∣∣ > δ äëÿ âñiõt ∈ (a, b), òî çãiäíî ç ïðèïóùåííÿì iíäóêöi¨ ìà¹ìî

    mesRA2(η) ≤cma

    m

    √η

    δ. (25)

    ßêùî A1(η)=∅, òî mesRA1(η)=0, ÿêùî æ A1(η)̸=∅, òîçà òåîðåìîþ (äèâ ñ. 14 ó [4]) ïðî ñòðóêòóðó âiäêðèòèõìíîæèí â R ìíîæèíà A1(η) ¹ îá'¹äíàííÿì ïîïàðíîíåïåðåòèííèõ iíòåðâàëiâ. Íà êîæíîìó ç òàêèõ iíòåð-âàëiâ (êðiì, ìîæëèâî, äâîõ êðàéíiõ) ôóíêöiÿ 1t

    ddth(t)

    çà óçàãàëüíåíîþ òåîðåìîþ Ðîëëÿ [9, c. 63] ì๠õî÷àá îäèí íóëü. Îñêiëüêè∣∣∣∣(1t ddt

    )m(h(t)± η)

    ∣∣∣∣= ∣∣∣∣(1t ddt)m

    h(t)

    ∣∣∣∣ ≥ δ > 0äëÿ âñiõ t ∈ (a, b) òî ç óçàãàëüíåíî¨ òåîðåìè Ðîëëÿâèïëèâà¹, ùî ôóíêöiÿ 1t

    ddth(t) ìîæå ìàòè íà (a, b) íå

    áiëüøå (m−1) íóëiâ. Îòæå, êiëüêiñòü ïðîìiæêiâ ìíî-æèíè A1(η) íå ïåðåâèùó¹ (m + 1). Çàñòîñîâóþ÷è íàêîæíîìó ç öèõ ïðîìiæêiâ áàçó iíäóêöi¨, äiñòàíåìî

    mesR{t ∈ A1(η) : |f(t)| < ε} ≤2(m+ 1)

    a

    ε

    η. (26)

    Çàóâàæèìî, ùî äëÿ áóäü-ÿêîãî η > 0

    {t ∈ (a, b) : |f(t)| < ε} ⊂ {t ∈ A1(η) :

    |f(t)| < ε} ∪ {t ∈ A2(η) : |f(t)| < ε}. (27)Òîäi iç âêëþ÷åííÿ (27) íà ïiäñòàâi àäèòèâíîñòi ìiðèËåáåãà òà îöiíîê (25), (26) îòðèìó¹ìî, ùî äëÿ äîâiëü-íîãî η > 0

    mesR{t ∈ (a, b) : |f(t)| < ε} ≤2(m+ 1)

    a

    ε

    η+cma

    m

    √η

    δ.

    Äîñëiäæóþ÷è ôóíêöiþ

    ψ(η)=2(m+ 1)

    a

    ε

    η+

    2m m√m!

    am

    √η

    δ

    60 Ìàòåìàòèêà

    Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

  • Êðàéîâà çàäà÷à äëÿ îäíîãî âèðîäæåíîãî ïàðàáîëi÷íîãî ðiâíÿííÿ

    íà ìiíiìóì çà çìiííîþ η > 0 (a,m, ε, δ � ôiêñîâàíi)çíàõîäèìî, ùî

    minη>0

    ψ(η) =2(m+ 1) m+1

    √(m+ 1)!

    am+1

    √ε

    δ.

    Îòæå,mesR{t ∈ (a, b) : |f(t)| < ε} ≤

    ≤2(m+ 1) m+1

    √(m+ 1)!

    am+1

    √ε

    δ=cm+1a

    m+1

    √ε

    δ,

    òîáòî òâåðäæåííÿ ëåìè ñïðàâåäëèâå i äëÿ n = m+1.Ëåìó äîâåäåíî. �

    Çàóâàæåííÿ 2. Ó ðîáîòàõ [10, 13, 18] âñòàíîâëå-íî îöiíêè ìið ìíîæèí

    {t ∈ (a, b) : |f(t)| < ε}, ε > 0, (28)

    ÿêùî äëÿ âñiõ t ∈ (a, b) âèêîíó¹òüñÿ íåðiâíiñòü∣∣∣∣( ddt)n

    f(t)

    ∣∣∣∣ ≥ δ > 0. (29)Ëåìà 3 öi¹¨ ðîáîòè ïîøèðþ¹ ðåçóëüòàòè ïðàöü [10, 13,18] ïðî îöiíêè ìið ìíîæèí (28) íà âèïàäîê, êîëè âóìîâi (29) äèôåðåíöiàëüíèé îïåðàòîð

    (ddt

    )nçàìiíåíî

    âèðàçîì(1tddt

    )n.

    Âñòàíîâèìî òåïåð ðåçóëüòàò ïðî âèêîíàííÿ îöi-íîê (18).

    Òåîðåìà 3. Äëÿ ìàéæå âñiõ (ñòîñîâíî ìiðèËåáåãà â R) ÷èñåë R ∈ [R0, R1] íåðiâíiñòü (18) âè-êîíó¹òüñÿ äëÿ âñiõ (êðiì ñêií÷åííî¨ êiëüêîñòi) çíà-÷åíü k ∈ Z \ {0}, ÿêùî α1 = eγ/R0, à ïîñëiäîâ-íiñòü {ν1(k) : k ∈ Z \ {0}} ⊂ R+ ñïðàâäæó¹ óìîâóν1(k) = (5 + σ1)k

    2 − 2 + σ2, k ∈ Z \ {0}, σ1, σ2 > 0.

    � Äîâåäåííÿ. Ðîçiá'¹ìî âiäðiçîê [R0, R1] íà òà-êi ïðîìiæêè Wq(k), q ∈ {1, . . . , N1(k)}, òà Vq(k),q ∈ {1, . . . , N2(k)}, (êiíöÿìè ÿêèõ ¹ òî÷êè R0, R1 òàR-íóëi ôóíêöié sin(γk2R)± 1|k|1+σ2 , σ2 > 0), ùî

    ∀R ∈Wq(k) | sin(γk2R)| ≥1

    |k|1+σ2,

    ∀R ∈ Vq(k) | sin(γk2R)| ≤1

    |k|1+σ2.

    Çðîçóìiëî, ùî |Nj(k)| ≤ C6|k|2, j ∈ {1, 2}. Çãiäíîç ïîáóäîâîþ ðîçáèòòÿ äëÿ êîæíîãî ïðîìiæêà Vq(k),q ∈ {1, . . . , N2(k)}, iñíó¹ l ∈ Z òàêå, ùî

    Vq(k) ⊂[

    1

    γ|k|2

    (lπ − arcsin 1

    |k|1+σ2

    ),

    1

    γ|k|2

    (lπ + arcsin

    1

    |k|1+σ2

    )].

    Òîìó

    mesRVq(k) ≤2

    γ|k|2arcsin

    1

    |k|1+σ2, q ∈ {1, . . . , N2(k)}.

    (30)

    Äëÿ êîæíîãî k ∈ Z \ {0} ðîçãëÿíåìî ìíîæèíè

    Q(k) ={R ∈ [R0, R1] : |Rk

    2− 12 Jk2− 12 (γk2R)| ≤ ρ(k)

    },

    Sq(k) ={R ∈Wq(k) : |Rk

    2− 12 Jk2− 12 (γk2R)| ≤ ρ(k)

    },

    q ∈ {1, . . . , N1(k)},

    ρ(k) =√2/π(eγ)k

    2−3/2|k|−(5+σ1)|k|2+2−σ2 , k ∈ Z \ {0},

    σ1 > 0. Íà ïiäñòàâi ëåìè 3 îòðèìó¹ìî, ùî äëÿ âñiõR ∈Wq(k), q ∈ {1, . . . , N1(k)}, âèêîíóþòüñÿ îöiíêè∣∣∣∣∣

    (1

    R

    d

    dR

    )k2−1 (Rk

    2− 12Jk2− 12 (γk2R)

    )∣∣∣∣∣ ≥≥√2/πγk

    2−3/2|k|2k2−4−σ2 , k ∈ Z \ {0}. (31)

    Iç ëåìè 3 íà ïiäñòàâi îöiíîê (15), (31) îòðèìó¹ìî

    mesRSq(k) ≤2(k2 − 1)

    R0

    (√π/2(k2 − 1)!ρ(k)

    γk2− 32 |k|2k2−4−σ2

    ) 1k2−1

    ≤ C7|k|3+σ1

    , q ∈ {1, . . . , N1(k)}, k ∈ Z \ {0}, (32)

    äå C7 = C7(R0, π, γ). Î÷åâèäíî, ùî

    Q(k) ⊂

    N1(k)∪q=1

    Sq(k)

    ∪N2(k)∪q=1

    (Q(k) ∩ Vq(k))

    ,(33)

    äå k ∈ Z \ {0}. Iç (30), (32), (33), òà àäèòèâíîñòi ìiðèËåáåãà îòðèìó¹ìî

    mesRQ(k) ≤N1(k)∑q=1

    mesRSq(k) + +N2(k)∑q=1

    mesRVq(k) ≤

    ≤ C8|k|1+σ1

    + C9 arcsin1

    |k|1+σ2≤ C10

    |k|1+σ3, k ∈ Z \ {0},

    äå σ3 = min{σ1, σ2}. Ó òàêèé ñïîñiá ðÿä∑k∈Z\{0}

    mesRQk ¹ çáiæíèì, òîäi çà ëåìîþ Áîðåëÿ-

    Êàíòåëëi [15, ñ. 13] îöiíêà

    |Jk2− 12 (γk2R)| >

    √2R1/(πγ3)

    (eγ/R0)k2

    |k|(5+σ1)|k|2−2+σ,

    âèêîíó¹òüñÿ äëÿ ìàéæå âñiõ (ñòîñîâíî ìiðè Ëåáåãà âR) ÷èñåë R ∈ [R0, R1] äëÿ âñiõ (êðiì ñêií÷åííî¨ êiëü-êîñòi) çíà÷åíü k ∈ Z \ {0}. Òåîðåìó äîâåäåíî. �

    Çàóâàæåííÿ 3. Âiäçíà÷èìî, ùî íàÿâíiñòü äiî-ôàíòîâèõ îöiíîê çíèçó äëÿ çíà÷åíü ôóíêöié Áåñ-ñåëÿ ä๠ìîæëèâiñòü îïèñàòè ñïåêòð ðîçâ'ÿçíîãîïîâîðîòíî-iíâàðiàíòíîãî ðîçøèðåííÿ îïåðàòîðà Ëà-ïëàñà ó êðóçi (äèâ. c. 220 ó [1]). Îäíàê ó [1] òàêiîöiíêè çíèçó íàêëàäåíi àêñiîìàòè÷íî, à ïèòàííÿ ïðî

    Mathematics 61

    Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

  • Ñèìîòþê Ì. Ì., Òèìêiâ I. Ð.

    ìîæëèâiñòü âèêîíàííÿ öèõ îöiíîê ç ïîãëÿäó ìåòðè-÷íîãî àíàëiçó íå ïðîâîäèëîñÿ.

    Ç òåîðåì 2, 3 âèïëèâ๠òàêå òâåðäæåííÿ.

    Òåîðåìà 4. Íåõàé g ∈ Eα2,ν2(k), äå

    α2 =αR0R

    2, ν2(k) = ν(k) + (5 + σ1)k

    2 + 2 + σ2,

    σ1, σ2 > 0. Äëÿ ìàéæå âñiõ (ñòîñîâíî ìiðè Ëåáåãà âR) ÷èñåë R ∈ [R0, R1] â ïðîñòîði E2α,ν(k) iñíó¹ ¹äèíèéðîçâ'ÿçîê çàäà÷i (1), (2), ÿêèé çîáðàæó¹òüñÿ ðÿäîì(12) i íåïåðåðâíî çàëåæèòü âiä ôóíêöi¨ g.

    Âèñíîâêè

    Ó ñïåöiàëüíèõ âàãîâèõ ïðîñòîðàõ âñòàíîâëå-íî óìîâè êîðåêòíî¨ ðîçâ'ÿçíîñòi êðàéîâî¨ çàäà÷iäëÿ îäíîãî âèðîäæåíîãî ïàðàáîëi÷íîãî ðiâíÿííÿ iïîêàçàíî, ùî òàêi óìîâè âèêîíóþòüñÿ äëÿ ìàéæåâñiõ (ñòîñîâíî ìiðè Ëåáåãà íà ïðÿìié) ÷èñåëR ∈ [R0, R1] .

    Ìåòîäè, îïèñàíi â öié ðîáîòi, ìîæíà ïîøèðèòèíà âèïàäîê áàãàòîòî÷êîâèõ çàäà÷ äëÿ ðiâíÿíü iç ÷à-ñòèíííèìè ïîõiäíèìè âèñîêîãî ïîðÿäêó, à òàêîæ ñè-ñòåì ðiâíÿíü, êîåôiöi¹íòè ÿêèõ ìiñòÿòü âèðîäæåííÿ.

    Ëiòåðàòóðà

    [1] Áóðñêèé Â. Ï. Ìåòîäû èññëåäîâàíèÿ ãðàíè÷íûõ çà-äà÷ äëÿ îáùèõ äèôôåðåíöèàëüíûõ óðàâíåíèé. � Ê.:Íàóê. äóìêà, 2002. � 316 ñ.

    [2] Âàòñîí Ã. Í. Òåîðèÿ Áåññåëåâûõ ôóíêöèé. ×. I. �Ì: Èçä. èíîñòð. ëèòåð., 1949. � 787 ñ.

    [3] Ãàðèïîâ È. Á., Ìàâëÿâèåâ Ð. Ì. Êðàåâàÿ çàäà-÷à äëÿ îäíîãî ïàðàáîëè÷åñêîãî óðàâíåíèÿ ñ îïåðà-òîðîì Áåññåëÿ è èíòåãðàëüíûì óñëîâèåì ïåðâîãîðîäà // Èçâ. Òóë. ÃÓ. Åñòåñòâåííûå íàóêè.Âûï. 1. � Òóëà: Èçä. Òóë. ÃÓ. 2013. � C. 5�14.

    [4] Äîðîãîâöåâ À. ß. Ìàòåìàòè÷íèé àíàëiç: ó 2-õ ÷.×. 2. � Ê.: Ëèáiäü, 1993. � 304 ñ.

    [5] Êîðåíåâ Á. Ã. Íåêîòîðûå çàäà÷è òåîðèè óïðóãîñòèè òåïëîïðîâîäíîñòè, ðåøàåìûå â áåññåëåâûõ ôóíê-öèÿõ. � Ì.: ÔÈÇÌÀÒÃÈÇ, 1960. � 460 ñ.

    [6] Ìàòié÷óê Ì. I. Ïàðàáîëi÷íi ñèíãóëÿðíi êðàéîâi çà-äà÷i. � Ê.: Ií-ò ìàòåìàòèêè ÍÀÍ Óêðà¨íè, 1999. �176 ñ.

    [7] Ìóõëèñîâ Ô. Ã., Ãàôóðîâà Ñ. Ì. Ïîòåíöèàëû äëÿíåêîòîðûõ ñèíãóëÿðíûõ âîëíîâûõ óðàâíåíèé // Ñá.íàó÷. òð. "Íåêëàñcè÷åñêèå óðàâíåíèÿ ìàòåìàòè÷å-ñêîé ôèçèêè". � Íîâîñèáèðñê.: Èçä.-âî Èí-òà ìàòå-ìàòèêè ÑÎ ÀÍÐÔ. � 2002. � Ñ. 132�139.

    [8] Íàõóøåâ À. Ì. Óðàâíåíèÿ ìàòåìàòè÷åñêîé áèîëî-ãèè. � Ì.: Âûñøàÿ øêîëà, 1995. � 301 ñ.

    [9] Ïîëèà Ã., Ñåãå Ã. Çàäà÷è è òåîðåìû èç àíàëèçà: â2-õ ÷. ×. 2. � Ì.: Íàóêà, 1978. � 432 ñ.

    [10] Ïòàøíèê Á. È. Íåêîððåêòíûå ãðàíè÷íûå çàäà-÷è äëÿ äèôôåðåíöèàëüíûõ óðàâíåíèé ñ ÷àñòíûìèïðîèçâîäíûìè. � Ê.: Íàóê. äóìêà, 1984. � 264 ñ.

    [11] Ïòàøíèê Á. É., Òèìêiâ I. Ð. Áàãàòîòî÷êîâà çàäà÷àäëÿ B-ïàðàáîëi÷íèõ ðiâíÿíü // Óêð. ìàò. æóðí. �2013. � 65, 3. � Ñ. 394�405.

    [12] Ïóêàëüñüêèé I. Ä. Êðàéîâi çàäà÷i äëÿ íåðiâíîìiðíîïàðàáîëi÷íèõ òà åëiïòè÷íèõ ðiâíÿíü ç âèðîäæåííÿ-ìè i îñîáëèâîñòÿìè: Ìîíîãðàôiÿ. � ×åðíiâöi: Ðóòà,2008. � 253 ñ.

    [13] Ñèìîòþê Ì. Ì. Ïðî îöiíêè ìið ìíîæèí, íàÿêèõ ìîäóëü ãëàäêî¨ ôóíêöi¨ îáìåæåíèé çâåðõó //Ìàò. ìåòîäè òà ôiç.-ìåõ. ïîëÿ. � 1999. � 42, 4. �Ñ. 90�95.

    [14] Ñèìîòþê Ì. Ì., Òèìêiâ I. Ð. Äâîòî÷êîâà çàäà-÷à äëÿ ðiâíÿííÿ ç âèðîäæåíèìè êîåôiöi¹íòàìè ïðèíàéñòàðøèõ ïîõiäíèõ // Íåëiíiéíi ïðîáëåìè àíàëi-çó: V Âñåóêð. íàóê. êîíô.: òåç. äîï. (19�21 âåðå-ñíÿ 2013 ð. Iâàíî-Ôðàíêiâñüê)� Iâàíî-Ôðàíêiâñüê:Âèä-âî Ïðèêàðï. íàö. óí-òó iì. Â. Ñòåôàíèêà,2013. � Ñ. 67.

    [15] Ñïðèíæóê Â. Ã. Ìåòðè÷åñêàÿ òåîðèÿ äèîôàíòîâûõïðèáëèæåíèé. � Ì.: Íàóêà, 1977. � 143 ñ.

    [16] ×åïàíîâà Í. Â. Ðåøåíèå çàäà÷è Êîøè äëÿ îäíîãîñèíãóëÿðíîãî B-ãèïåðáîëè÷åñêîãî óðàâíåíèÿ ìåòî-äîì Ôóðüå-Áåññåëÿ // Âåñíèê ÒÃÃÏÓ. � 2008. � 13,2. � Ñ. 27�29.

    [17] Bouziani A. On thee-point boundary value problemwith a weighted integral condition for a classe of si-ngular parabolic equations // Abstract and AppliedAnalysis. � 2002. � 7, No10. � P. 517�530.

    [18] Ilkiv V. S., Maherovska T. V. Exact estimate for thelevel set of the modulus of a function with high-orderconstant-sign derivativ // Mat. stud. � 2010. � 34. �P. 57�64.

    [19] Rassias J. M., Karimov E. T. Boundary-valuesproblem with non-local conditions for degenerateparabolic equations // Contemporary Analisis andApplied mathematics. � 2013. � 1, 1. � P.42�48.

    62 Ìàòåìàòèêà

    Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

  • Êðàéîâà çàäà÷à äëÿ îäíîãî âèðîäæåíîãî ïàðàáîëi÷íîãî ðiâíÿííÿ

    ÊÐÀÅÂÀß ÇÀÄÀ×À ÄËß ÎÄÍÎÃÎ ÂÛÐÎÆÄÅÍÍÎÃÎÏÀÐÀÁÎËÈ×ÅÑÊÎÃÎ ÓÐÀÂÍÅÍÈß

    Ñèìîòþê Ì. Ì.a, Òûìêèâ È. Ð.b

    aÈíñòèòóò ïðèêëàäíûõ ïðîáëåì ìåõàíèêè è ìàòåìàòèêè èì. ß.Ñ. Ïîäñòðèãà÷à ÍÀÍ Óêðàèíû(79060, Ëüâîâ, óë. Íàó÷íàÿ 3-á, Óêðàèíà)

    bÈâàíî-Ôðàíêîâñêèé íàöèîíàëüíûé òåõíè÷åñêèé óíèâåðñèòåò íåôòè è ãàçà(76090, Èâàíî-Ôðàíêîâñê, óë. Êàðïàòñêàÿ 5, Óêðàèíà)

    Èññëåäîâàíà êðàåâàÿ çàäà÷à äëÿ îäíîãî âûðîæäåííîãî ïî ðàäèàëüíîé ïåðåìåííîé ïà-ðàáîëè÷åñêîãî óðàâíåíèÿ. Óñòàíîâëåíû óñëîâèÿ ñóùåñòâîâàíèÿ è åäèíñòâåííîñòè ðåøåíèÿçàäà÷è. Ñ ïîìîùüþ ìåòðè÷åñêîãî ïîäõîäà óñòàíîâëåíà îöåíêà ñíèçó äëÿ çíà÷åíèé ôóíêöèéÁåññåëÿ ïîëóöåëîãî èíäåêñà, âõîäÿùèõ çíàìåíàòåëÿìè â âûðàæåíèÿ äëÿ êîýôôèöèåíòîâðÿäà Ôóðüå, ïðåäñòàâëÿþùåãî ðåøåíèå çàäà÷è.

    Êëþ÷åâûå ñëîâà: âûðîæäåííîå óðàâíåíèå, ôóíêöèÿ Áåññåëÿ, ìàëûé çíàìåíàòåëü, ìåðàËåáåãà.

    2000 MSC: 35K35, 35B15, 35B30

    ÓÄÊ: 517.95+511.42

    BOUNDARY VALUE PROBLEMFOR ONE A DEGENERATE PARABOLIC EQUATION

    Symotyuk M. M.a, Tymkiv I. R.b

    aPidstryhach Institute of Applied Problems of Mechanics and Mathematics of NAS of Ukraine(79060, Lviv, 3-b Naukova Str., Ukraine)

    bIvano-Frankivsk National Technical University of Oil and Gas(76019, Ivano-Frankivsk, 15, Karpatska Str., Ukraine)

    We investigate a boundary problem for some degenerate in radial variable parabolic equations.The theorems of existence and uniqueness the solution of the problem, are established. Usingmetric approach thake is obtained a lover estimate for values of Bessel function with semiinteger index. The values are denominators in expression for coe�cients of Fourier series, thatis described a problem solutions.

    Key words: degenerate equations, Bessel functions, small denominator, Lebesgue measure.

    2000 MSC: 35K35, 35B15, 35B30

    UDK: ÓÄÊ 517.95+511.42

    Mathematics 63

    Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua