˘ˇ ˆ - kug · hrir, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band •...

27
$Q2EMHFWLYH0RGHORI/RFDOLVDWLRQLQ %LQDXUDO6RXQG5HSURGXFWLRQ6\VWHPV $(6VW,QWHUQDWLRQDO&RQIHUHQFH -XQH 6W3HWHUVEXUJ5XVVLD Sontacchi A., Noisternig M., Majdak P., Höldrich R.

Upload: others

Post on 12-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

������������ ���� ��� ����� ������������� �������� ��� ��������

�������������� ���� ���������

�!!��"�����#$

�%&�������'(������

Sontacchi A., Noisternig M., Majdak P., Höldrich R.

Page 2: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

�������������� ���� ����� ����� ���� �

���������������� ���

University of Music and Dramatic ArtsGraz, Austria

��� ������������������� ���� �� �����!��������

��������������� �

Page 3: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Outline

• HRIR based Binaural Sound Reproduction Systems using Ambisonic

• Definitions

• Mathematical Model

• Results

• Outlook

Page 4: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Binaural Systems using Ambisonic

Binaural Reproduction Systems:

• filtering virtual source signals with HRIRs

• incorporate head tracking to improve source localisation

Problem:

• time-varying interpolation between HRIRs

Page 5: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Binaural Systems using Ambisonic

Why Ambisonic?

• head movement:- time-invariant HRIR filter - cheap time-variant rotation matrix

• decoding is independent from coding

• number of transmit channels is independent from number of virtual sources

Page 6: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Binaural Systems using Ambisonic

• encode signals depending on source position

• rotate Ambisonic depending on head position

• decode Ambisonic to virtual speaker signals

• convolve speaker signals with HRIRs

Page 7: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Definitions

• localisation function

• localisation error

• localisation blur

• average localisation error

• average localisation blur

localisation

errorlocalisation

blur

Page 8: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Mathematical Model

Intentions:

• classifying Binaural Reproduction Systems

• prediction of localisation performance

Main assumption:

• the reference HRIRs result in optimal localisation

• 2D systems only

Page 9: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Mathematical Model

HRIRs

Device under test

ILD

ITD

ILD

ITD

ITDA ILDA

Merger

Mathematical ModelParameter

Result

Page 10: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

0 0.51

1.5 2 2.5 3 3.5 4 4.5

x 10-4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time in s

Am

plitu

de

HRIR for 0°

Interaural Time Difference (ITD)

HRIR, ϕ=0°

0 0.5 1 1.5 2 2.5

x 10 4

-60

-50

-40

-30

-20

-10

0

10

20

Frequenz in HzA

mpl

itude

in d

B

Amplitudengang

0 0.5 1 1.5 2 2.5

x 10 4

-70

-60

-50

-40

-30

-20

-10

0

10

Frequenz in Hz

Phas

e in

rad

Phasengang

0 0.5 1 1.5 2 2.5

x 104

-60

-50

-40

-30

-20

-10

0

10

20

Frequency in Hz

Am

plitu

de in

dB

Magnitude Response

0 0.5 1 1.5 2 2.5

x 10 4

-70

-60

-50

-40

-30

-20

-10

0

10

Frequency in Hz

Phas

e in

rad

Phase Response

FFT0 0.5 1 1.5 2 2.5

x 104

-4

-2

0

2

4

6

8

10x 10 -3

Frequenz in Hz

Gru

ppen

lauf

zeit

in s

Gruppenlaufzeit

0 0.5 1 1.5 2 2.5

x 104

-4

-2

0

2

4

6

8

10x 10 -3

Frequency in Hz

Gro

up D

elay

Tim

e in

s

Group Delay Time

���Φ⋅−

π2

1

Page 11: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Interaural Time Difference (ITD)

Calculation of the group delay time:

• impulse response (HRIR)

• zero phase filter over critical bands

• energy center of gravity per band

• group delay time per band 0 0.5 1 1.5 2 2.5

x 104

-4

-2

0

2

4

6

8

10x 10-3

Frequency [Hz]G

roup

Del

ay T

ime

[s]

Group Delay Time

Page 12: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Interaural Time Difference (ITD)

ITD over critical bands: difference of the group delay time between ipsi- and contralateral eardrum

left ear

Group Delay TimeITD

critical bands

azimuth angleright ear

Page 13: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Interaural Level Difference (ILD)

Calculation of the ILD:

• amplitude response (HRTF)

• energy-difference over critical bands between ipsi- and contralateral eardrums

left earILD

critical bands

azimuth angleright ear

energy over critical bands

Page 14: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Interaural Difference Angle (ITDA/ILDA)

0 50 100 150 200 250 300 350 400-5

0

5x 10-4

Azimuth Angle [°]

ITD

[s]

Search Algorithm:

Deviation

�)!*

�����������

�� ��������

�� ��������������������������� ��������������

Page 15: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Merging of ITDA and ILDA

• ITDA: fade out above 800 Hz

• ILDA: fully weighted

ITDA

ILDA

Res

ult

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Gewichtung der ITD

Frequenzgruppe in bark

Gew

icht

ungs

fakt

or

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Frequenzgruppe in bark

Gew

icht

ungs

fakt

or

Gewichtung der ILD

Page 16: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Results (1)

• localisation function (averaged over critical bands)

• localisation blur (standard deviation over critical bands)

ΘΘ⋅⋅⋅

+

ΘΘ⋅⋅⋅=Θ

∑∑

∑∑

=

=

24

1

24

1

),()()(

1

2

1

),()()(

1

2

1)(

�������

���

�������

���

�����

�����

[ ]∑∑ ∑ ==Θ−ΘΘ⋅⋅⋅=Θ

24

1

2)(),()()(

1

2

1)(

���

��� ����

���

Page 17: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Results (2)

• average localisation blur(averaged over the azimuth angle)

• average localisation erroraveraged over azimuth angle referring to the MAA

[ ]∑=

Θ−Θ=�

��

1

2)(1

∑°

=Θ ΘΘ⋅=

360

0 )(

)(1

���

��

Page 18: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Analysis

Variations of design parameters:

• reference HRIRs

• length of HRIR

• ambisonic order

• weighting of ambisonic channels

• number of virtual speaker

Page 19: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

HRIR Type (1)

10 20 30 40

30

60

90

120

150

180

0

Kemar-HRIR (#12)Proprietary-HRIR (#9)

filter length = 128 samples

loca

lisat

ion

blur

[°]

azimuth angle [°]

-20

-15

-10

-5

0

5

10

15

20

Kemar-HRIR (#12)Propr.-HRIR (#9)

azimuth angle [°]

loca

lisat

ion

erro

r [°

]filter length = 128 samples

Page 20: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

HRIR Type (2)

256

128

96

64

48 3

3.5

4

4.5

5

5.5

6

6.5

filter length [samples]

loca

lisat

ion

blur

[mul

tiple

s of

MA

A]

3rd ord. KEMAR, 5°3rd ord. KEMAR, 15°3rd ord. Propr., 15°4th ord. KEMAR, 5°4th ord. Propr., 15°

256

128

96

64

48 6

7

8

9

10

11

12

13

14

15

16

filter length [samples]

loca

lisat

ion

erro

r [°

]

3rd ord. KEMAR, 5° (#0)3rd ord. KEMAR, 15° (#12)3rd ord. AKG, 15° (#9)4th ord. KEMAR, 5° (#18)4th ord. AKG, 15° (#23)

� ����� ����� � � ����� ������

Page 21: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Ambisonic Order (1)

-30

-20

-10

0

10

20

4th ord. (#18)3rd ord. (#100)2nd ord. (#100)

loca

lisat

ion

erro

r [°

]

azimuth angle [°]

30

10 20 30 40 50

30

60

90

120

150

180

0

2nd ord. (#100)3rd ord. (#0)4th ord. (#18)

azimuth angle [°]

loca

lisat

ion

blur

[°]

filter length = 128 samples

Page 22: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Ambisonic Order (2)

256

128

96

64

48 3

3.5

4

4.5

5

5.5

6

6.5

filter length [samples]

loca

lisat

ion

blur

[mul

tiple

s M

AA

]

4th ord. (#18)3rd ord. (#0)2nd ord. (#100)

256

128

96

64

48 8

9

10

11

12

13

14

15

16

17

18

filter length [samples]

loca

lisat

ion

erro

r [°

]

4th ord. (#18)3rd ord. (#0)2nd ord. (#100)

� ����� ����� � � ����� ������

Page 23: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Ambisonic Weighting (1)

-15

-10

-5

0

5

10

15

3rd ord., Kaiser window (#24)4th ord., fully weighted (#18)4th. ord. Kaiser window (#22)

azimuth angle [°]

loca

lisat

ion

erro

r [°

]

filter length = 128 samples

10 20 30 40

30

60

90

120

150180

0

Kaiser window, 3rd order (#24)Fully weighted, 4th order (#18)Kaiser window, 4th order (#22)

length of filter = 128 samples

lo

calis

atio

n bl

ur [°

]

azimuth angle [°]

Page 24: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Ambisonic Weighting (2)

256

128

96

64

48 3

3.5

4

4.5

5

5.5

6

6.5

length of filter [samples]

3rd ord., weighting: 0.4 (#3)3rd ord., fully weighted (#0)3rd ord., Kaiser window (#24)4th ord., fully weighted (#18)4th ord., Kaiser window (#22)

loca

lisat

ion

blur

[mul

tiple

s of

MA

A]

256

128

96

64

48 7

8

9

10

11

12

13

14

15

16

17

filter length [samples]

3rd ord., weighting: 0.4 (#3)3rd ord., fully weighted (#0)3rd ord., Kaiser window (#24)4th ord., fully weighted (#18)4th ord., Kaiser window (#22)

loca

lisat

ion

erro

r [°

]

� ����� ����� � � ����� ������

Page 25: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Conclusion

• prediction of localisation is possible

• results correspond with ambisonic theory- ambisonic not less than 3rd order for correct localisation

- weighting of channels using Kaiser-window yields better localisation

- filter length up to 128 samples

• model was evaluated using listening tests

Page 26: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

Outlook

• incorporate IGD (���������������������) as a cue for high frequency localisation

• classification regarding coloration and externity

• extend the model for 3D applications• warping tables to predict and minimise the

localisation errors for further implemen-tations

Page 27: ˘ˇ ˆ - KUG · HRIR, ϕ=0° 0 0.5 1 1.5 2 2.5 x ... • energy center of gravity per band • group delay time per band 0 0.5 1 1.5 2 2.5 x 104-4-2 0 2 4 6 8 10 x 10-3 Frequency

�������������� ���� ����� ����� ���� �

���������������� ���

University of Music and Dramatic Arts

Graz, Austria

+,��-�� �.