東京大学¢ quantum algorithms for combinatorial triangle finding [le gall 2011] ¢ quantum...

37
· 201882

Upload: others

Post on 30-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

� ���

� ��·������2018�8�2�

��� �����

���������

Page 2: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

K0I�

§ 19782 ���A��§ 20002 ���/C+-U���V %=§ 20002 :9

§ 20012X20032 ;�+-+-S8T($4C-BFC *NDBF ��W������������><-J

§ 20032X20062 ;�+-+-S3)@/-HBFC &*NDBF ��WR,MG

§ 20062X20092 JST ERATO-SORST R,� ���� ���BF'BF ��WR,������R,MGR@O

§ 20092X20162;�+-+-S3)@/-HBFC ?�P1➞?�!65BF ��WR,������L#E�����

§ 20162X �Q+-+-S3)-BFC ?.!65BF ��WR,MG�"7MG

Page 3: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

1�,�($ ��

,�($���

,�($���

Feynman Deutsch

1982 1985 1994 1996

Shor Grover

-+�,��������#�

,�)�'�

1999

20052011

D-WaveGoogle & Martinis

20142017

IBM

�&�,���������%(20~100,��)

2�,�($ ��Microsoft,Rigetti,...

Wineland Haroche

,�*" $��!

Ambainis

Page 4: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

� ���� ����?¢ quantum algorithms with amplitude amplification [Brassard+ 1999]¢ quantum algorithms for element disjointness [Ambainis 2002]¢ quantum algorithms for Gauss sums [van Dam + 2002] ¢ quantum algorithms for solving Pell’s equation [Hallgren 2002]¢ quantum algorithms for quantum simulations [Childs 2004]¢ quantum algorithms for hidden subgroups [Kuperberg 2004]¢ quantum algorithms for finding an unit group [Hallgren 2005]¢ quantum algorithms for triangle finding [Magniez+ 2005]¢ quantum algorithms for computing knot invariants [Aharonov+ 2006]¢ quantum algorithms for data streams [Le Gall 2006]¢ quantum algorithms for hidden nonlinear structures [Childs+ 2007]¢ quantum algorithms for linear equations [Harrow+ 2009]¢ quantum algorithms for group isomorphism [Le Gall 2010]¢ quantum algorithms for matrix multiplication [Le Gall 2011]¢ quantum algorithms using span programs [Belovs 2011]¢ quantum algorithms for matrix inversion [Ta-Shma 2013]¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011]¢ quantum algorithms for pattern matching [Montanaro 2014]¢ quantum algorithms for distributed computation [Le Gall and Magniez 2017]¢ …

Grover’s algorithm (1996)� ��

Shor’s algorithm (1994)�����

Page 5: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

�������¢ quantum algorithms with amplitude amplification [Brassard+ 1999]¢ quantum algorithms for element disjointness [Ambainis 2002]¢ quantum algorithms for Gauss sums [van Dam + 2002] ¢ quantum algorithms for solving Pell’s equation [Hallgren 2002]¢ quantum algorithms for quantum simulations [Childs 2004]¢ quantum algorithms for hidden subgroups [Kuperberg 2004]¢ quantum algorithms for finding an unit group [Hallgren 2005]¢ quantum algorithms for triangle finding [Magniez+ 2005]¢ quantum algorithms for computing knot invariants [Aharonov+ 2006]¢ quantum algorithms for data streams [Le Gall 2006]¢ quantum algorithms for hidden nonlinear structures [Childs+ 2007]¢ quantum algorithms for linear equations [Harrow+ 2009]¢ quantum algorithms for group isomorphism [Le Gall 2010]¢ quantum algorithms for matrix multiplication [Le Gall 2011]¢ quantum algorithms using span programs [Belovs 2011]¢ quantum algorithms for matrix inversion [Ta-Shma 2013]¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011]¢ quantum algorithms for pattern matching [Montanaro 2014]¢ quantum algorithms for distributed computation [Le Gall and Magniez 2017]¢ …

278 � (20187�� )

��������

https://math.nist.gov/quantum/zoo/

Page 6: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

��� ��¢ quantum algorithms with amplitude amplification [Brassard+ 1999]¢ quantum algorithms for element disjointness [Ambainis 2002]¢ quantum algorithms for Gauss sums [van Dam + 2002] ¢ quantum algorithms for solving Pell’s equation [Hallgren 2002]¢ quantum algorithms for quantum simulations [Childs 2004]¢ quantum algorithms for hidden subgroups [Kuperberg 2004]¢ quantum algorithms for finding an unit group [Hallgren 2005]¢ quantum algorithms for triangle finding [Magniez+ 2005]¢ quantum algorithms for computing knot invariants [Aharonov+ 2006]¢ quantum algorithms for data streams [Le Gall 2006]¢ quantum algorithms for hidden nonlinear structures [Childs+ 2007]¢ quantum algorithms for linear equations [Harrow+ 2009]¢ quantum algorithms for group isomorphism [Le Gall 2010]¢ quantum algorithms for matrix multiplication [Le Gall 2011]¢ quantum algorithms using span programs [Belovs 2011]¢ quantum algorithms for matrix inversion [Ta-Shma 2013]¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011]¢ quantum algorithms for pattern matching [Montanaro 2014]¢ quantum algorithms for distributed computation [Le Gall and Magniez 2017]¢ …

���������� ��

���������������

Page 7: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

$)�������*&�+�

,�������¢ quantum algorithms with amplitude amplification [Brassard+ 1999]¢ quantum algorithms for element disjointness [Ambainis 2002]¢ quantum algorithms for Gauss sums [van Dam + 2002] ¢ quantum algorithms for solving Pell’s equation [Hallgren 2002]¢ quantum algorithms for quantum simulations [Childs 2004]¢ quantum algorithms for hidden subgroups [Kuperberg 2004]¢ quantum algorithms for finding an unit group [Hallgren 2005]¢ quantum algorithms for triangle finding [Magniez+ 2005]¢ quantum algorithms for computing knot invariants [Aharonov+ 2006]¢ quantum algorithms for data streams [Le Gall 2006]¢ quantum algorithms for hidden nonlinear structures [Childs+ 2007]¢ quantum algorithms for linear equations [Harrow+ 2009]¢ quantum algorithms for group isomorphism [Le Gall 2010]¢ quantum algorithms for matrix multiplication [Le Gall 2011]¢ quantum algorithms using span programs [Belovs 2011]¢ quantum algorithms for matrix inversion [Ta-Shma 2013]¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011]¢ quantum algorithms for pattern matching [Montanaro 2014]¢ quantum algorithms for distributed computation [Le Gall and Magniez 2017]¢ …

)�%����,�������

)����� -+�"��,�������

,�! �'��#��(�

Page 8: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

:A'1��*&C<��D�

E/�!� ��¢ quantum algorithms with amplitude amplification [Brassard+ 1999]¢ quantum algorithms for element disjointness [Ambainis 2002]¢ quantum algorithms for Gauss sums [van Dam + 2002] ¢ quantum algorithms for solving Pell’s equation [Hallgren 2002]¢ quantum algorithms for quantum simulations [Childs 2004]¢ quantum algorithms for hidden subgroups [Kuperberg 2004]¢ quantum algorithms for finding an unit group [Hallgren 2005]¢ quantum algorithms for triangle finding [Magniez+ 2005]¢ quantum algorithms for computing knot invariants [Aharonov+ 2006]¢ quantum algorithms for data streams [Le Gall 2006]¢ quantum algorithms for hidden nonlinear structures [Childs+ 2007]¢ quantum algorithms for linear equations [Harrow+ 2009]¢ quantum algorithms for group isomorphism [Le Gall 2010]¢ quantum algorithms for matrix multiplication [Le Gall 2011]¢ quantum algorithms using span programs [Belovs 2011]¢ quantum algorithms for matrix inversion [Ta-Shma 2013]¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011]¢ quantum algorithms for pattern matching [Montanaro 2014]¢ quantum algorithms for distributed computation [Le Gall and Magniez 2017]¢ …

A';1��E/�!� ��

A'-4%�FD8��E/�!� ��

E/750>�29+?3�

E/=���"$��#

E/)0�(@�29?

����.B6E/�#��$�,��!� ��

Page 9: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

20052014

Google & Martinis

2017

IBM

=QDT; /'+0"�CL(20~100T;&#$)

2ET;SK(0*Microsoft,Rigetti,...

=QDT; /'+0"������

ü T;O�!)+.0!,/T;7<�6P��@G�IB…

��������� �

ü �����=QDT; /'+0"�42A�J��Z

W�N?�F����� U�…

=QDT; /'+0"�M8�R���95SK��R���1>H�:V�3��

QUANTUM SUPREMACYXBoson sampling��Y

ü T;�%0-/�

Page 10: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Q/�#�"���=M@B�;:

4�E��.J8Q/�%� &�,��Q/�#�"���R>

ü PILD-S�1N��

QUANTUM SUPREMACY

ü (3?LD-S��F�

ü 0H��7��<�9 �

ü 0H������PK

T2W'J8Q/�%� &��*)5�ACU

OG'��$����VQ/+6LD (�!��Q/LD)

[Izumi and Le Gall 2017][Le Gall and Magniez 2018][Le Gall, Nishimura and Rosmanis 2018]

����������

����������

Page 11: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

6#������*3,-)(

%�/��"1'6#������ �6#������7+

����������

�&2.50�!8$������&������� 94�6#�&�������������

F. Le Gall and F. Magniez. Sublinear-Time Quantum Computation ofthe Diameter in Distributed Networks. Proceedings of the 37th ACMSymposium on Principles of Distributed Computing (PODC 2018).Also arXiv: 1804.02917.

Page 12: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Outline: Quantum Distributed Computingü From the perspective of computability and computational complexity,

quantum distributed computing has mostly been studied in the framework of 2-party communication complexity

ü Relatively few results focusing on more than two parties:

Ø exact quantum protocols for leader election on anonymous networks [Tani, Kobayashi, Matsumoto 2007]

Ø study of quantum distributed algorithms on non-anonymous networks

[Gavoille, Kosowski, Markiewicz 2009][Elkin, Klauck, Nanongkai, Pandurangan 2014]

negative results: show impossibility of quantum distributed computing faster than classical distributed computing for many important problems (shortest paths, minimum spanning tree,…)

Question: can quantum distributed computing be useful? (on non-anonymous networks�

Our result: Yes, we can compute the diameter of the network faster!

Page 13: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Eccentricity and DiameterConsider an undirected and unweighted graph G = (V,E) with n nodes

a

cb d

ef

g

D = max {d(u,v)}u,v ∈ "

The diameter of the graph is the maximum distance between two nodes(��)

d(u,v) = distance between u and v

Page 14: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Eccentricity and DiameterConsider an undirected and unweighted graph G = (V,E) with n nodes

a

cb d

ef

g D = 4

D = max {d(u,v)}u,v ∈ "

The diameter of the graph is the maximum distance between two nodes(��)

The eccentricity of a node u is defined as (���) ecc (u) = max {d(u,v)}

v ∈ "ecc (a) = 3ecc (b) = 3ecc (c) = 2ecc (d) = 3ecc (e) = 3ecc (f ) = 4ecc (g) = 4

d(a,a) = 0d(a,b) = 2d(a,c) = 1d(a,d) = 2d(a,e) = 2d(a, f) = 3d(a,g) = 3

d(u,v) = distance between u and v= max {ecc (u)}u ∈ "

Page 15: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Classical Distributed Computation of the Eccentricity

ü Each node represents a processor (with a unique ID)ü Each edge represents a classical channelü At each round only one short (i.e., O(log n) bits) message sent to each neighbor

CONGEST model (most standard model of synchronous distributed computation)

a

cb d

ef

g

ecc (a) = 3ecc (b) = 3ecc (c) = 2ecc (d) = 3ecc (e) = 3ecc (f ) = 4ecc (g) = 4

Complexity: the number of rounds needed for the computation

example: at each round, a can send one message to c

Let’s write n = number of nodes

Computing eccentricities and the diameter are among the most fundamental tasks

D = 4

b can send one message to cc can send one message to a, one to b, one to d and one to e…..

Page 16: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Classical Distributed Computation of the Eccentricity

ü Each node represents a processor (with a unique ID)ü Each edge represents a classical channelü At each round only one short (i.e., O(log n) bits) message sent to each neighbor

CONGEST model (most standard model of synchronous distributed computation)

a

cb d

ef

g

“a,0”

d(a,c) = 1

d(a,b) = 2d(a,d) = 2

d(a,e) = 2d(a,f) = 3

d(a,g) = 3

“a,1” “a,1”

“a,1”“a,2”

“a,2”

d(a,a) = 0

Computation of ecc (u):Starting with u, each node broadcasts its distance to u to its neighbors.(Each node knows its distance to u the first time it receives a message.)

The nodes then compute the maximum of their distance (easy)

complexity: ecc (u) rounds

example: computation of ecc (a) first round of communicationsecond round of communicationthird round of communication

Complexity: the number of rounds needed for the computation

Let’s write n = number of nodes

Computing eccentricities and the diameter are among the most fundamental tasks

Page 17: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Classical Distributed Computation of the Diameter

ü Each node represents a processor (with a unique ID)ü Each edge represents a classical channel

CONGEST model (most standard model of synchronous distributed computation)

a

cb d

ef

g

Computation of the diameter D:All the nodes compute simultaneously their eccentricity

Output the maximum eccentricity

“a,0”

first round of communication

“d,0”“b,0”

Congestion: what should c send at the next round? using standard

techniques to handle congestionscomplexity: Θ(n) rounds (even if D is constant)

[Holzer+12, Peleg+12]

ü At each round only one short (i.e., O(log n) bits) message sent to each neighbor

Let’s write n = number of nodes

Complexity: the number of rounds needed for the computationComputing eccentricities and the diameter are among the most fundamental tasks

d(a,a) = 0

d(b,b) = 0 d(d,d) = 0

d(e,e) = 0

“e,0”

d(g,g) = 0d(f,f) = 0

d(c,c) = 0

“a,1” “b,1” “d,1” “e,1”

Page 18: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Computation of the Diameter

Classical Quantum (our results)

Exact computation (upper bounds) !(#)[Holzer+12, Peleg+12]

!( #%)

~

3/2-approximation (upper bounds) !( # + %)[Lenzen+13,Holzer+14]

!(' #% + %)

(3/2-ε)-approximation (lower bounds) (Ω(#)[Holzer+12,Abboud+16]

(Ω( # + %) [unconditional]

Exact computation (lower bounds) (Ω(#)[Frischknecht+12]

(Ω( # + %) [unconditional]

the tilde notation removes polylog(n) factors condition: holds for algorithms using only polylog(n) qubits of memory per node

main result: sublinear-round quantum computation of the diameter whenever D=o(n)

(Ω( #%) [conditional]

(our algorithm uses O((log n)2) qubits of quantum memory per node)

first gap between classical and quantum for an important problem in the CONGEST model of distributed computing

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

Page 19: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

main result: sublinear-round quantum computation of the diameter whenever D=o(n)

Our Upper Bound

Classical Quantum (our results)

Exact computation (upper bounds) !(#)[Holzer+12, Peleg+12]

!( #%)

(our algorithm uses O((log n)2) qubits of quantum memory per node)

first gap between classical and quantum for an important problem in the CONGEST model of distributed computing

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

Page 20: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Quantum Distributed Computation of the Diameter

ü Each node represents a quantum processor (with a unique ID)ü Each edge represents a quantum channel

quantum CONGEST model

ü At each round only one short (O(log n) qubits) message sent to each neighbor

Let’s write n = number of nodes

Complexity: the number of rounds needed for the computation

a

cb d

ef

g

Page 21: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Quantum Distributed Computation of the Diameter

ü Each node represents a quantum processor (with a unique ID)ü Each edge represents a quantum channel

quantum CONGEST model

ü At each round only one short (O(log n) qubits) message sent to each neighbor

Let’s write n = number of nodes

Complexity: the number of rounds needed for the computation

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d

This is a search problem, so we can try to use Grover search:

Find an element u∈ " such that f(u) = 1 with f(u) = 1 if ecc (u) ≥ d0 otherwise

Page 22: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

can be done locally(i.e., without communication)

Usual Grover Algorithm (from Nielsen-Chuang, page 251)

Find an element u∈ " such that f(u) = 1 with f(u) = 1 if ecc (u) ≥ d0 otherwise

m m

O( n) timesm = O(log n)

remember: n = |V|

m mm

G ≡

independent of f

independent of f

depends on f(depends on the graph)

solutionWe compute of the diameter by implementing this circuit in the distributed setting:One arbitrary node (say, node a) will implement this circuit

independent of f

Page 23: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

can be done locally(i.e., without communication)

Usual Grover Algorithm (from Nielsen-Chuang, page 251)

m m

O( n) timesm = O(log n)

m mm

G ≡

independent of f

independent of f

depends on f(depends on the graph)

solution

independent of f

To implement the oracle, the node a needs to communicate with the other nodesTotal number of rounds of communication = O( n x number of rounds to implement the oracle)

We compute of the diameter by implementing this circuit in the distributed setting:One arbitrary node (say, node a) will implement this circuit

Page 24: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Implementation of the Oracle in O(D) rounds

oracle⟩|# ⟩|0 ⟩|# ⟩|%&&(#))*∈,

⟩-*|# ⟩|0 )*∈,

⟩-*|# ⟩|%&&(#)

a

cb d

ef

g

V={a,b,c,d,e,f,g}1. “Broadcast” this state, which gives

)*∈,

-* ⟩|# a ⟩|# b ⟩|# c ⟩|# d ⟩|# e ⟩|# f ⟩|# g

The nodes implements the classical protocol for computing the eccentricity, which gives

)*∈,

-* ⟩|# a ⟩|# b ⟩|# c ⟩|# d ⟩|# e ⟩|# f ⟩|# g ⟩|%&&(#) a

2.

[ecc(a) ≤ D rounds]

[≤ D rounds]

Initially node a owns )*∈,

-* ⟩|# a

a

c

b d

e

g

f

Node a introduces 1 register )*∈,

-* ⟩|# a ⟩|0

Node a applies CNOTS )*∈,

-* ⟩|# a ⟩|#

Node a sends the second register to c )*∈,

-* ⟩|# a ⟩|# c

)*∈,

-* ⟩|# a ⟩|# c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers)

*∈,-* ⟩|# a ⟩|# c ⟩|# ⟩|# ⟩|#Node c applies CNOTS

)*∈,

-* ⟩|# a ⟩|# c ⟩|# b ⟩|# e ⟩|# dNode c sends the registers to b,e,d……

Page 25: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Implementation of the Oracle in O(D) rounds

oracle

a

cb d

ef

g

V={a,b,c,d,e,f,g}1. “Broadcast” this state, which gives

!"∈$

%" ⟩|( a ⟩|( b ⟩|( c ⟩|( d ⟩|( e ⟩|( f ⟩|( g

The nodes implements the classical protocol for computing the eccentricity, which gives

!"∈$

%" ⟩|( a ⟩|( b ⟩|( c ⟩|( d ⟩|( e ⟩|( f ⟩|( g ⟩|011(() a

2.

[ecc(a) ≤ D rounds]

3. The nodes revert Step 1 [ecc(a) ≤ D rounds]

!"∈$

%" ⟩|( a ⟩|0 a !"∈$

%" ⟩|( a ⟩|011(() a

Initially node a owns !"∈$

%" ⟩|( a

[≤ D rounds]

Page 26: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

can be done locally(i.e., without communication)

Usual Grover Algorithm (from Nielsen-Chuang, page 251)

m m

O( n) timesm = O(log n)

m mm

G ≡

independent of f

independent of f

depends on f(depends on the graph)

solution

independent of f

To implement the oracle, the node a needs to communicate with the other nodesTotal number of rounds of communication = O( n x number of rounds to implement the oracle)

= O( n x D)

We compute of the diameter by implementing this circuit in the distributed setting:One arbitrary node (say, node a) will implement this circuit

Page 27: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

The Upper Bound

Classical Quantum (our results)

Exact computation (upper bounds) !(#)[Holzer+12, Peleg+12]

!( #%)

ü We have just described a O( # x D)-round quantum distributed algorithm for computing (with high probability) the diameter

ü With further work, the complexity can be reduced to O( #% ) rounds

Page 28: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

The Lower Bounds

ü reduce DISJOINTNESS to the distributed computation of diameter [Frischknecht+12]

classical lower bound

ü the (two-party) communication complexity of DISJOINTNESS is Ω(n) bits [Kalyanasundaram+92]

unconditional quantum lower boundü same reduction from DISJOINTNESS to the diameterü the (two-party) communication complexity of DISJOINTNESS is Ω( !) qubits [Razborov03]

Classical Quantum (our results)

Exact computation (upper bounds) "(!)[Holzer+12, Peleg+12]

"( !%)

~

Exact computation (lower bounds) &Ω(!)[Frischknecht+12]

&Ω( ! + %) [unconditional]&Ω( !%) [conditional]

via two-party communication complexity

conditional quantum lower boundü if the quantum distributed algorithm for diameter uses few quantum memory per

node, then the computation of DISJOINTNESS can be done using few messages ü the (two-party) r-message communication complexity of DISJOINTNESS is

Ω() + !/)) qubits [Braverman+15]

Page 29: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

Quantum Computation of the Diameter: Summary

Classical Quantum (our results)

Exact computation (upper bounds) !(#)[Holzer+12, Peleg+12]

!( #%)

~

3/2-approximation (upper bounds) !( # + %)[Lenzen+13,Holzer+14]

!(' #% + %)

(3/2-ε)-approximation (lower bounds) (Ω(#)[Holzer+12,Abboud+16]

(Ω( # + %) [unconditional]

Exact computation (lower bounds) (Ω(#)[Frischknecht+12]

(Ω( # + %) [unconditional]

main result: sublinear-round quantum computation of the diameter

(Ω( #%) [conditional]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

first gap between classical and quantum for an important problem in the CONGEST model of distributed computing

ü Our upper bounds are obtained by showing how to implement quantum search in a distributed setting

ü Interesting research direction: find other applications of this technique

Page 30: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

6#������*3,-)(

%�/��"1'6#������ �6#������7+

�&2.50�!8$������&������� 94�6#�&�������������

F. Le Gall and F. Magniez. Sublinear-Time Quantum Computation ofthe Diameter in Distributed Networks. Proceedings of the 37th ACMSymposium on Principles of Distributed Computing (PODC 2018).Also arXiv: 1804.02917.

����������

Page 31: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

&���� ����%�!���

��#���$�&��������&���� ���'�

����������

QUANTUM SUPREMACY(�*�$�&���������� ")

����������

S. Bravyi, D. Gosset and R. König. Quantum Advantage with ShallowCircuits. ArXiv: 1704.00690. Plenary talk at QIP 2018.

Page 32: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

� �������

n������ ������������

Page 33: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

���������

n"������������� ���

⟩|0⟩|0⟩|0

⟩|0⟩|0⟩|0

n "����

H

H

H

H

H

H

⟩|0⟩|0

H

H ≡ Controlled Z gate

�"���� #��������$X���Y���!����

Page 34: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

���������

n"������������� ���

⟩|0⟩|0⟩|0

⟩|0⟩|0⟩|0

n "����

H

H

H

H

H

H

⟩|0⟩|0

H

H ≡ Controlled Z gate

�"���� #��������$X���Y���!����

Page 35: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

&(�@��%$@:

⟩|0⟩|0⟩|0

⟩|0⟩|0⟩|0

n H4# !

H

H

H

H

H

H

⟩|0⟩|0

H

H

nH4# !�&(�@��%$@:�C���

≡ Controlled Z gate

1H4# !�K��')'�7��LX26�Y26�E>��

Theorem [Barrett et al. 06]E>B=�/5�0.�A;�� ���Ω(n)%�("�G+�8D

z1

z2

z8

……

……

……

….

0.��,I?�93�-<��������

H4��G+�����8D��J

[Le Gall, Nishimura, Rosmanis 18]ME>B=�/5�0.�F*�� ���Ω(n)%�("�G+�8D

z1z2

z3

z4

z5z6

z7

z8

Page 36: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

[Bravyi et al. 17]

⟩|0⟩|0⟩|0

⟩|0⟩|0⟩|0

n W;"�

H

H

H

H

H

H

⟩|0⟩|0

H

H

z1

z2

z8

……

……

……

….

<EJ�W;8U�OD

Theorem [Barrett et al. 06]SKPI�4=�53�OD������Ω(n)%�)!�V/�@R

7�4=�OD�����53��JΩ(log n)�8U�@RY1(�$*�B:�2G�����JΩ(log n)�@RZ

[<EJW;8U�0.A�MH-TFY+���TF� P≠NP ����H-�,<Z

53��1XL�B:�2G �������

z1z2

z3

z4

z5z6

z7

z8

nW;"� �&)�N��%#NC�Q���6W;"� �Y��'*'�?��ZX9>�Y9>�SK��

Page 37: 東京大学¢ quantum algorithms for combinatorial triangle finding [Le Gall 2011] ¢ quantum algorithms for pattern matching [Montanaro2014] ¢ quantum algorithms for distributed

��SM0HB(6HB

4�C��/F;M0� ��!�,� M0������ N?

����������

QUANTUM SUPREMACYQ3T#F;M0� ��!� &%5 @AR

����������

(6HB LE�-O�2��+'(6��������PK�M0(6�������)�"��

17=�M0.J &%5 >:$I8

[Le Gall and Magniez 2018]

[Bravyi, Gosset and König 2017]

9G<S��HBD* P�M0.J ��� &%5 >:$I8