硕士研究生学位论文 - web.pkusz.edu.cn

79
硕士研究生学位论文 题目: AMOLED 像素补偿技术及 高性能基准源研究 名: 易水平 号: 1601213962 系: 深圳研究生院 业: 微电子学与固体电子学 研究方向: 微纳电子器件与集成技术 导师姓名: 焦海龙 讲师 二〇一九

Upload: others

Post on 27-Mar-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

<4D6963726F736F667420576F7264202D20414D4F4C4544CFF1CBD8B2B9B3A5BCBCCAF5BCB0B8DFD0D4C4DCBBF9D7BCD4B4D1D0BEBF2DCEA2B5E7D7D32D313630313231333936322DD2D7CBAEC6BD2E646F6378>


OLED

-

CMOS




II
References for Active Matrix Organic Light Emitting Diode
Displays
Directed by Hailong Jiao
ABSTRACT
Active matrix organic light-emitting diode (AMOLED) display is regarded as the next-
generation mainstream display due to the advantages of fast response, wide viewing angle,
high contrast, high saturation, low power consumption, and low cost. AMOLED is widely
used in flexible and transparent displays. However, due to the issues such as the drift of thin
film transistor (TFT) threshold voltage, non-uniform mobility, and degradation of OLED, the
prevalence of AMOLED is still constrained. To obtain better display effect, these undesirable
factors must be eliminated or at least mitigated. A systematic research on two existing
compensation technologies is carried out in this thesis: intra-pixel circuit compensation and
peripheral compensation. The main contributions of this thesis are as follows.
First of all, a voltage-programming pixel circuit with mobility compensation is proposed.
While compensating the threshold voltage variation, the proposed pixel circuit can also
compensate the non-uniformity of mobility. Only two control signal lines are required, which
can effectively reduce the complexity of the peripheral driver integrated circuit (IC) and
increase the aperture ratio of the pixel array. Furthermore, the propsoed pixel circuit is suitable
for microdisplay. The mobility compensation structure can effectively increase the data input
range by controlling the discharge time of the data input stage.
Second, an alternative voltage-programming pixel circuit also with mobility
compensation is proposed. This circuit utilizes the fact that the source voltage of the driving
TFT (TD), namely the anode voltage of OLED, follows the change of the mobility to maintain
the gate voltage of TD through the coupling effect of capacitance during the emission stage.
Therefore, the gate-source voltage can be tuned to reduce the influence of mobility non-
uniformity on the saturation current of TD (the OLED luminous current). Furthermore, the
timing of the pixel circuit is simple. The scan line can be multiplexed to realize continuous
ABSTRACT
III
input of data, which can simplify the design of the timing control circuit and improve the pixel
aperture ratio.
Third, based on the importance of the reference in the peripheral compensation, a high
power supply rejection ratio (PSRR), low temperature coefficient (TC), and variable output
voltage mode bandgap reference is studied. By adding a PSRR enhancement structure, a
cascode current mirror, and a negative feedback loop in the startup circuit, the PSRR of the
reference output is increased. Furthermore, the high-order compensation of the reference
output is achieved by utilizing the mismatch of the current.
Fourth, a hybrid current mode voltage reference with low temperature coefficient and low
power consumption is proposed. The different temperature characteristics of the BJT-based
and MOS-based references in the subthreshold region are used to obtain this current mode
reference with ultra-low temperature coefficient. This proposed reference is especially suitable
for circuits that are with low supply voltage and require low power consumption.
Finally, a hybrid current mode voltage reference with ultra-wide range of operating
temperature is proposed. The negative temperature characteristics of BJT and sub-threshold
MOS are used to make high-order compensation. Furthermore, the low-temperature
segmentation compensation module is added to widen the operating temperature range of the
circuit. This reference can be applied for circuits operating at low supply voltage and
extremely wide temperature range.

IV

2.1 ........................................................................... 12
2.1.1 .................................................................................... 12
2.1.2 ........................................................................................................ 14
2.2 ........................................................................... 18
2.2.1 .................................................................................... 19
2.2.2 ........................................................................................................ 20
2.3 ................................................................................................................... 22
3.2 ................................................................................................... 26
3.3 ....................................... 27
3.3.1 ............................................................................ 27
3.3.2 .................................................................................... 30
3.3.3 ........................................................................................................ 34
3.4 ................................................................................................................... 37
.................................................................................... 38
4.1 ........................................................................................... 39
4.2 ....................................................................................................... 42
4.3.1 ........................................................................................ 44
4.4.1 ........................................................................................ 52
4.4.2 ........................................................................................................ 54
4.5 ........................................................................................... 56
4.5.1 .................................................................................................... 57
4.5.2 ................................................................................................ 59
4.6 ..................................................................................................................... 62
............................................................................................................ 63

Active Matrix Liquid Crystal Display, AMLCD
AMLCD 80%
AMLCD
TFT
AMLCD
1. 2.
3. AMLCD
OLED
1.1 OLED
ELElectroluminescence
OLED Bernanose Vouaux
EL[1] 10 Pope
OLED
[2] W. Helfrich 1965
100 V 5%

[3]1983 R. H. Partridge PVCz
[4] 1987 OLED
C.W. Tang Steve
Van Slyke OLED
10 V 1%[5]
OLED C.W. Tang Alq3
40% Alq3 3~5 10 V

2
Friend
OLED [7] 1998 OLED
[8] OLED
AMOLED OLED
OLED OLED

“”OLED 1.1a Al
ITO EIL HIL N
P
1.1b OLED
/ EIL HIL / ETL
HTL EML ETL HTL //
EML
BGR

OLED LCD
[11]
[12]OLED

OLED PMOLED AMOLEDOLED

TFT PMOLED

TFT-
LCD AMOLED TFT PMOLED

a b
1.3 aPMbAM

60 Hz 60
VDD
OLED
TD
CS1
PMOLED
N 16.7/N ms

× Ldisplay


PMOLED [14][15]
PM AM
TFT OLED
1.1 PMOLED AMOLED
PMOLED AMOLED

IC

OLED AMOLED
2T1C 1.2b TS TD
CS CS TD

OLED
AMOLED PMOLED
PM
AM
AM OLED
1.2 AMOLED
AMOLED PMOLED OLED [16]
OLED
OLED OLED
AMOLED a-Si:HTFT
LTPSTFT IGZOAOSTFT
a-Si:H TFT
[18][19][20] AMOLED
LTPS TFT [21][22][23] IGZO TFT
AOS TFT a-Si:H LTPS TFT
TFT [24][25][26]OLED
OLED
1.2 AMOLED
TFT Type NMOS CMOS NMOS
TFT Uniformity Good Poor Good
Channel Mobility 1 cm 2 /Vs 50-100 cm
2 /Vs 5~50 cm
2 /Vs
Mask Numbers 4~5 5~11 4~5
Cost/Yield Low/high High/low Low/high
Resolution Low High High

6
1.3b 2T1C
TS
TD CS
IOLED OLED

21 ( )
W I C V V V
L 1.1
VDATAVOLED VTHOLED
VOLED OLED VTH_OLED1.1
IOLED OLED
TFT OLED OLED
OLED OLED
OLED
OLED





OLED


12
34
1.4a TD
VHIGH VREFVREF < VHIGH - VTH TD -
VTHTD
- VREF + VTHTD
[29][30][31]
VTHVTH
VTH OLED


VREF VLOWVLOW < VREF - VTH TD
VDD TD TD TD
TD TD VREF
TFT
OLED
OLED


[33]
OLED
OLED






IPIXEL IPIXEL
= IREF

OLED


trimming





CMOS






a-IGZO TFT




TDT1~T4CS1
CS2 2.1b

1234

1
VDD T1T2 CS1
A B OLED T3
VL VREFVREF = 0 T4 C
2
VSCAN2 T2T3T4 VSCAN1 T1
TD -TD A
T2TD T3 TD A VL + VTH_TD
3
VSCAN1 VSCAN2 T1 T2T3T4
0 VDATA CS2 CS1 CS2
A TD -TD A
ΔVµ_TD
S S
C C

2.2
2.2T k = µ • COX • (W/L)_TDµ
COX TFT W L TFT
CS1
V V Ck

VSCAN1 VSCAN2 T2T3 CS2
OLED T1TD OLED B
TD A B
OLED TD

C C C C C 2.4
OLED TFT OLED TFT
OLED µ
ΔVµ_TD ΔVµ_TD T
2.1.2
RPIRensselaer Polytechnic Institue IGZO TFT
Thin Film Transistor and Advanced Display Lab
OLED TFT OLED
I-V IGZO TFT OLED OLED
COLED
TFT OLED 2.1

WT1~T4 (µm) 3.5 VSCAN (V) -5~15
L (µm) 3.5 VDATA (V) 0~10
CS1 (pF) 0.5 CS2 (pF) 0.3
AMOLED
2
4
6
8
10
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0
5
10
15
20
2.3 OLED OLED
2.2 VAVBVA - VB IOLED VREF = 0VDATA = 5 V
A
B VA - VB
OLED

Current Error Rate, CERCER =IOLED1 - IOLED/ IOLED IOLED IOLED1
OLED TD -

16
0.6 V ~ + 0.6 V 0.5 V 4
V 2.3 10% TD
0.4 V
TD ΔVTH_TD = 0.4 V 2T1C
26.1% 77.6%
10% 11.6%
0 1 2 3 4 5 6 7 8 9 10 0
200
400
600
800
1000
1200
1400
a
0 1 2 3 4 5 6 7 8 9 10 -60 -50 -40 -30 -20 -10
0 10 20 30 40 50 60 70 80 90
coventional 2T1C V
b
2.4 VTH_TD±0.4 V 2T1C aOLED b

0 5 10 15 20 25 30 35 40 0
1
2
3
4
5
6
VGS_TD
VGS_TD
VGS_TD
a
0 1 2 3 4 5 6 7 8 9 10 -30
-20
-10
0
10
20
30
2.5 a-b±30%OLED

OLED 2.5a
μ - VGS_TD μ
- 2.5
b 30%OLED 6%
TFT
VTH
- VGS_TD = VGS_TH
TFT TFT -
- VGS μ
μ

0 1 2 3 4 5 6 7 8 9 10 0
200
400
600
800
1000
1200
% )
2.6 ΔVTH_TD = ±0.4 V ΔVTH_TD = 0.4 V OLED
2.6 OLED VTH_TD±0.4 V VTH_OLED 0.4 V
OLED
TFT OLED VTH_TD VTH_OLED 0.4 V
15.1%
OLED OLED
OLED
OLED OLED
AMOLED
2.2.1
2.7a CS1
-
a b
1
VEM(n) VSCAN(n) T1T2 T3
T3 A VDD T1T2 B VB
VHIGH
VEM(n)T1 BC
TD TD VB T2 TD TD
VB VTH_TD + VTH_OLEDVTH_TD VTH_OLED TD OLED
3
VSCAN(n+1)A T4 0 B
CS1 VB
VDATA VDD
VEM(n)T1 TD TD
OLED OLED
OLED TD VC VOLED(µ) OLED

2 _ ( )(| | )
C W I V V V
L
2.6
2.6OLED TD VTH_TD OLED
VTH_OLEDVOLED(μ)VOLED(μ)VTH_OLED
VOLED(μ) μ
VOLED(μ) VOLED(μ)
VTH_OLED OLED VTH_OLEDOLED VOLED(μ)
OLED


2.9 0.5 V
8% 2.10
±30%
OLED
0
5
10
15
V C
0 200 400 600 800 1000 1200 1400 1600 1800 2000
IOLED
-4 -3 -2 -1 0 1 0
200 400 600 800
VTH = 0V VTH_TD = -0.5V VTH_OLED = +0.5V VTH_TD = +0.5V
I O L
VDATA (V)
-10 -8 -6 -4 -2 0 2 4 6 8 10
C E
% )
2.9 ΔVTH_TD = ±0.5 V ΔVTH_OLED = 0.5 V IOLED
Reset VTH extraction Data coupling Emission

22
-4 -3 -2 -1 0 1 -30 -25 -20 -15 -10 -5 0 5
10 15 20 25 30
C E
5T2C
CS1
OLED



30%OLED
6% VTH_TD±0.4 V VTH_OLED 0.4 V
OLED 15.1%
OLED

AMOLED
0.5V 8%
CS1
OLED

Types of signal line 1 3 1 3 2 2
VTH variation No Yes No Yes Yes Yes
OLED degradation No Yes No Yes Yes Yes
Mobility deviation No No Yes No Yes Yes
IR-drop No Yes Yes Yes Yes Yes

24

3.1

“1”
[39]

DAC
Gamma [45][46]
8-bit 10-bit Gamma 10-bit
8-bit 10-bit 11-bit
AMOLED
PTL 1-bit
PTL

[47]
8-bit Gamma DAC 8-
bit DAC VDATA VTH
VDATA + VTH 8-bit DAC
11-bit DAC 1/4
3.2
Compensation Block
OLED IPIXEL IREF

Pixel [1][1]
Pixel [1][2]
Pixel [2][1]
Pixel [2][2]
Pixel [n][1]
Pixel [n][2]
Pixel [1][m]
Pixel [2][m]
Pixel [n][m]
Look_up Table, LUT

IPIXEL
IPIXEL = IREFIREF
LUT TCON Gate Driver Data Driver
Gate Driver VSCAN VFB


VFB VSCAN
AMPEN C Vref
Vref < VOLEDVFB VSCANT2T3
VDATA T2 A T1 B OLED
AMOLED
OLED Ipixel T3 Cp
C C Vref C
C Ipixel
IFBIFB Iref
C1
C1C2 Vref IFB > Iref
VOUT
OLED
ΔVBE

MN Q1Q2 Q2Q1
VREF
Q3 - VEB3 Q1Q2 - ΔVEB
AMOLED
R 3.1
r r
T T
ln = T
VEB VTln(T/Tr)
Tr
r r r r
T kT T T T V ln T q T T T 3.2
PSRR


[ ( ) ]g ma B A mdd dd oav g v v g v r 3.3
1 1( )A m dd g Qv g v v r 3.4

30
3 1 2( )B m dd g Qv g v v R r 3.5
5 2 3( )( )ref m dd g Qv g v v R r 3.6
gmaroa gmddroa Ai Addgm1
gm2gm3 M1M2M3 rQ1rQ2rQ3 Q1Q2Q3
gm1 = gm2 = gm3 = gm
20 log ref
v A g R r r

Add = 1 vref/vdd

3.8 Strat Up
IBIASPSRR PSRR EnhancementBGR
CoreV-VV-I

ln =( )
+ T
R R R
ln =( )
+ T
R R R 3.10
ln =( )
( + ) T
3.11ROUT R2 32
trimming 3.9 R2
A PM6 B
AMOLED
NM17
C
Vg1
IB
Vg2
trimming trimming
trimming —
R— TC

32
VREF R I
3.9 trimming D<0:N-1> N
2N 2N
N = 5R20 = 0.8R2ΔR = 0.4R2/2N 10000
17 S17
V-V


AB PMOS
NMOS 1/f
PSRR 3.8 PSRR
3.6 PM3 PM4 VDD AB
VDD B R1 A
Vg1 VDD PTAT
PM1PM2 PM3PM4
VDD
PM2PM4 PM4 PM2

VDD IB

NM15 NM14 VDD PSRR
PM15 VDD Vc VDD
PTAT
3.8 Ileak 0
3.8 VDDX VXNM12
Y VY NM11 Z VZ
AMOLED


3.8 PM1 PM2 I1 I2
I1 I2 ΔIεS = ΔI/I I2/I1 = 1 + εS
εS 1 R1
2 1 1 1
V V V I ln N lnN
R R R 3.13
2 2
R lnN 3.14
poly
2 2 2 1 2( )[1 ( ) ( ) ]r r rR R T B T T B T T 3.15
3.15B1 B2 R2 B1 < 0B2 > 0
3.13.23.143.15

1 (
3
2
2
r
ref
q T T T






m = (R2/R1)lnN
N R1 M R2 R2
3.1 R2 m

34
ΔI“M”

3.10 AMOLED
2.5~4.5 V
3.11 3.11a Vref “M”
3.11bTT Corner 2.19 ppm/°C
V-V
Vref_H Vref_LVref
FS TC 1.95 ppm/°C FF TC
14.61 ppm/°C 3.12 PSRR
PSRR PSRR -80 dB
PSRR 3.8 NM12
PSRR PSRR
W12 = 2 μm -112 dB
AMOLED
-40 -20 0 20 40 60 80 100 120 1.1833
1.1834
1.1835
1.1836
1.1837
1.1838
0.29540
0.29545
0.29550
0.29555
0.29560
0.29565
0.29570
2.5110
2.5115
2.5120
2.5125
2.5130
2.5135
-60 -40 -20 0 20 40 60 80 100 120 140 1.170
1.175
1.180
1.185
1.190
1.195
1.200
V re
f( V

36
10-1 100 101 102 103 104 105 106 107 108 109 1010
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
+ PSRR Enhancement
P S
R R
WNM12 = 1.5 m
WNM12 = 2 m
WNM12 = 2.5 m
WNM12 = 3m
B.
3 trimming
3.13 Sample1Sample2 Sample3 1.1 mV3.7 mV
8.9 mV 4.99 ppm/°C17.85 ppm/°C 46.85 ppm/°C
3.14 BGR PSRR
5 Hz 30 MHz PSRR -76.1
dB @ 10 Hz-69.8 dB @ 1 kHz-44.9 dB @ 10 MHz

1.2948
-40 -20 0 20 40 60 80 100 120 140
V re
f ( V
PSRR TC CSMC
0.25μm
PSRR
LDO
-40~130 °C
4.99 ppm/°C PSRR -80 dB
3.3 V 37 μA

3.4

38


BJT MOS

VREF=(αICTAT+βIPTAT)RO
BJT
4.2 VREF
1 1 2( ln / / )REF T EB OV V MN R V R R 4.2
MN Q2Q1 PM1PM2
MN R1R2 RO

a b
Vref
RO
PM
I
VDD
VSS
RO1
Vref
RO
PM
I
VDD
VSS
rQ
Q
4.3 1.2 V
μA BJT- 0.6 V
I VT 26 mV rQ kΩ
kΩ RORO1 PN
RO
[53][54][55]
[56]
4.4
VREG VDD VREF
VREF VOUT


4.6

io
1
_ 4 1 _ 4 _ 2 _ 2
o o o m NM
d s N M d s N M d s PM
v vv i g v
r r r 4.3
r r
_ 3 _ 2
/ / / / (1 )(1 )i
ds PM ds NMo O v ds PM ds NM
o m NM ds NM m PM ds PM
r rv R r r
i g r g r

I1 I2 _ 2ds PMr _ 2ds NMr
_ 4ds NMr _ 3 _ 3 1m PM ds PMg r
_ 4 _ 3 _ 3
R g g r
M4
_ 4 _ 31 m NM ds PMg r VDDVREG PSRR
_ 2 _ 2 _ 4 _ 3 _ 3
1 20lg 20lg 20lg
reg o V
dd o ds PM ds PM m NM m PM ds PM
v R PSRR
4.7
VREG
[62][61]
BJT - VBE
MOS - VGS

MOS
BJT


1 1 2 2( )REF PTAT PTAT CTAT OUTV N I N I N I R 4.8
IPTAT1
PTAT IPTAT1 NM1
NM2 - R1
1 1 1 1
R R 4.9
n 1~3 [58][59]
ln(10) (1 )S T
R R 4.11
( ) )/ ( ( ) 1
r r
T R
T k V ln T T T T
T q T T 4.13

2 3 0 1 2 3( )REF OUTV a a T a T a T R 4.14
a0a1a2 a3
0
R q R T q
4.16
2
C RT qR q
4.18
N2R2M2NRN1R1 M1 a1a2
Tr
R 5-bit trimmingtrimming MC
sigma 2~3 trimming 4.9b trimming
R
4.9 a trimming b trimming
4.9a trimming [57][58]

2 1 ~
2N2N-1…2 R 1
2N R MOS
MOS
4.9b 02 02
2 1

1 R R R
R MOS

4.3.2
SMIC 0.18-μm CMOS Cadence Spectre

4.10 1.2 V
1.3 V TC
1.3 V~2.5 V 1.5 V-35~105 ºC TC
0.96 ppm/ ºC
PSRR
PTAT
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
0.00
50.00
100.00
150.00
200.00
250.00
300.00
350.00
400.00
( pp
m /°
C )
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 121.60
121.80
122.00
122.20
122.40
122.60
122.80
123.00
123.20
123.40
123.60
0
2
4
6
8
10
12
14
16
18
20
-40 -20 0 20 40 60 80 100 120 122.004
122.006
122.008
122.010
122.012
122.014
122.016
122.018
122.020
122.022
122.024
100 101 102 103 104 105 106 107 108 109 -70
-60
-50
-40
-30
-20
-10
0
4.12 1.5 V
Monte Carlo trimming
TC PSRR
0 4 8 12 16 20 24 28 32 36 40 44 0
20
40
20
40
60
C ou
20
40
60
V ref
C ou


4.13b

PM3NM3 4.13b VDD
X VX PM1 Y VY NM2
Z VZ NM3 X VX-VY-
VZ-VX PSRR

PSRR
4.14 PSRR
PM1 PM2
-30
-25
-20
-15
-10
-5
0
5
10

121.60 121.80 122.00 122.20 122.40 122.60 122.80 123.00 123.20 123.40 123.60
0 2 4 6 8 10 12 14 16 18 20
121.80 121.84 121.88 121.92 121.96 122.00 122.04 122.08 122.12
0 4 8 12 16 20 24 28 32 36 40 44
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 120.94
120.96
120.98
121.00
121.02
121.04
121.06
121.08
121.10
VDD (V)
0 2 4 6 8 10 12 14 16 18 20 22 24
-80 -70 -60 -50 -40 -30 -20 -10
0
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10
0 10
100 101 102 103 104 105 106 107 108 109
-120 -100
)
value(PSRR "V" 1.3) (dB) value(PSRR "V" 1.8) (dB) value(PSRR "V" 2.3) (dB) value(PSRR "V" 1.4) (dB) value(PSRR "V" 1.9) (dB) value(PSRR "V" 2.4) (dB) value(PSRR "V" 1.5) (dB) value(PSRR "V" 2.0) (dB) value(PSRR "V" 2.5) (dB) value(PSRR "V" 1.6) (dB) value(PSRR "V" 2.1) (dB) value(PSRR "V" 1.7) (dB) value(PSRR "V" 2.2) (dB)
freq (Hz)


1.3~2.5 V -35~105 ºC

1.5 V 13 μA PSRR -57.55 dB
-76.87 dB -77.15 dB 1.3 V -71.17 dB 1.4 V -
84.24 dB 2.1 V -112 dB


4.17
PTAT

1 2( )REF PTAT CTAT OUTV N I N I I R 4.19
PTAT Q1Q2 R1
1 1
R R 4.20
2 5 2
R 4.21
r r
T T 4.22
I V V nV
I 4.23
( ) ( ) ( ) THTH TH r V rV T V T B T T ln(10) (1 )S
OX
VREF- +
A
53
2 3 0 1 2 3( )REF OU TV a a T a T a T I R 4.24

2
N kT a V V T B T
R q
R q R T q
4.26
2
R qT C Iq
4.19
PM6 PM7 PM8 PM9
NM6 NM7 PM7 PTAT

54
β1β2 TL TL PM7
NM7 PM8 NM7
PM7 M7 PM8 PM8
PM8 M7 ΔI
PM9
PM7 NM7 NM7
PM8
PM7 NM7 ΔI
2 1
T T
β1β2 TL
β
4.4.2
4.20
4.20
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
154.00
155.00
156.00
157.00
158.00
159.00
148 152 156 160 164 0 4 8
12 16 20 24 28 32 36 40 44
V ref
C ou
C ou
4.22 1.5V MC
4.20 1.1~2.5 V
4.21b
1.5 V PSRR -50 dB 4.21a
PM8 -15~140 ºC
-50~140 ºC 5.13 ppm/ºC
-15 ºCPM8 4.22 1.5 V Monte
Carlo
TC
100 101 102 103 104 105 106 107 108 109 -55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
-60 -40 -20 0 20 40 60 80 100 120 140
154.58
154.60
154.62
154.64
154.66
154.68
154.70
154.72
154.74
100 101 102 103 104 105 106 107 108 109
-80
-60
-40
-20
0
freq (Hz)
value(PSRR "V" 1.3) (dB) value(PSRR "V" 1.7) (dB) value(PSRR "V" 2.1) (dB) value(PSRR "V" 1.4) (dB) value(PSRR "V" 1.8) (dB) value(PSRR "V" 2.2) (dB) value(PSRR "V" 1.5) (dB) value(PSRR "V" 1.9) (dB) value(PSRR "V" 2.3) (dB) value(PSRR "V" 1.6) (dB) value(PSRR "V" 2.0) (dB) value(PSRR "V" 2.4) (dB) value(PSRR "V" 2.5) (dB)
4.23
1.5 V PSRR-48.58 dB-74.48
dB


-15~140 ºC -50~140 ºC 1.5 V
5.13 ppm/ºC 7.43 μA





58
R BJT

dummy BJT
1:8 3×3 4×3 OPA


triple ring latch-up

4.5.2
0.18-μm CMOS Mentor Graphics Calibre
Cadence Spectre
1.5V
122.39 122.40 122.41 122.42 122.43 122.44 122.45 122.46 122.47 122.48 122.49 122.50
-40 -20 0 20 40 60 80 100 121.600
121.605
121.610
121.615
121.620
121.625
121.630
121.635
1.8 ppm/ºC


100 101 102 103 104 105 106 107 108 109
-80
-70
-60
-50
-40
-30
-20
-10
0
-40 -20 0 20 40 60 80 100 120 140
154.50
154.55
154.60
154.65
154.70
154.75
4.1

0.13 0.18 0.18 0.18 0.18 0.18
V 1.2 4.4~5.6 0.6~1.2 0.9~2 1.3~2.5 1.3~2.5
µA 120 50 0.03 0.085 13 7.43
mV 735 2500 218.3 411.9 122 154.7
ºC -40~120 -60~150 -40~125 -40~125 -35~100 -50~140
TCppm/ºC 9.3 0.42 23.5 33.7 1.11 4.94
PSRRdB -30@
mm 2 0.063 0.075 0.11 0.021 0.014
100 101 102 103 104 105 106 107 108 109
-80
-70
-60
-50
-40
-30
-20
-10
0

AMLCD




IGZOAOS
IGZO TFT
AOS TFT TFT
OLED AMOLED


64






65

[1] Bernanose A, Comte M, Vouaux P. A new method of emission of light by certain organic
compounds[J]. Journal de Chimie Physique, 1953, 50: 64-68.
[2] Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals[J]. The Journal of
Chemical Physics, 1963, 38(8): 2042-2043.
[3] Helfrich W, Schneider W G. Recombination radiation in anthracene crystals[J]. Physical Review
Letters, 1965, 14(7): 229.
1983, 24(6): 733-738.
[5] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied physics letters, 1987, 51(12):
913-915.
[6] Tang C W, VanSlyke S A, Chen C H. Electroluminescence of doped organic thin films[J]. Journal of
Applied Physics, 1989, 65(9): 3610-3616.
[7] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated
polymers[J]. Nature, 1990, 347(6293): 539-541.
[8] Baldo M A, O'brien D F, You Y, et al. Highly efficient phosphorescent emission from organic
electroluminescent devices[J]. Nature, 1998, 395(6698): 151-154.
[9] Han C W, Pieh S H, Pang H S, et al. 15inch RGBW panel using twostacked white OLED and color
filter for largesized display applications[C]// SID Symposium Digest of Technical Papers. Oxford, UK:
Blackwell Publishing Ltd, 2010, 41(1): 136-139.
[10] Kuni S, Šego Z. OLED technology and displays[C]// Proceedings ELMAR-2012. IEEE, 2012: 31-35.
[11] Sang H J, Hong K L, Chang Y K, et al. 15-inch AMOLED display with SPC TFTs and a symmetric
driving method [C]// SID Symposium Digest of Technical Papers, 2008, 39(1): 101-104.
[12] Ukai Y. TFT-LCDs as the future leading role in FPD [C]// SID Symposium Digest of Technical Papers,
2013, 44(1): 28-31.
[13] Aziz H, Popovic Z D, Hu N X, et al. Degradation mechanism of small molecule-based organic light-
emitting devices[J]. Synthetic Metals, 1996, 80(1): 7-10.
[14] Baldo M. The electronic and optical properties of amorphous organic semiconductors[J]. Journal of
the Optical Society of America, 1952, 42(12): 898-903.
[15] Nakamura S, Mukai T, Senoh M, et al. InxGa(1−x)N/InyGa(1−y)N superlattices grown on GaN films[J].
Journal of applied physics, 1993, 74(6): 3911-3915.
[16] Gu G, Forrest S R. Design of flat-panel displays based on organic light-emitting devices[J]. IEEE
Journal of selected topics in quantum electronics, 1998, 4(1): 83-99.
[17] Dawson R M A, Kane M G. Pursuit of active matrix organic light emitting diode displays[C]// SID
Symposium Digest of Technical Papers, 2001, 32(1): 372-375.

66
[18] Matsuura N, Zhao W, Huang Z, et al. Digital radiology using active matrix readout: amplified pixel
detector array for fluoroscopy[J]. Medical Physics, 1999, 26(5): 672-681.
[19] Watanabe H. Statistics of grain boundaries in polysilicon[J]. IEEE Transactions on Electron Devices,
2007, 54(1): 38-44.
[20] Wang L, Sun L, Han D, et al. A hybrid a-Si and Poly-Si TFTs technology for AMOLED pixel
circuits[J]. Journal of Display Technology, 2014, 10(4): 317 - 320.
[21] Meng Z, Wong M. Active-matrix organic light-emitting diode displays realized using metal-induced
unilaterally crystallized polycrystalline silicon thin-film transistors[J]. IEEE Transactions on Electron
Devices, 2002, 49(6): 991-996.
[22] Chen T F, Yeh C F, Lou J C. Investigation of grain boundary control in the drain junction on laser-
crystalized poly-Si thin film transistors[J]. IEEE Electron Device Letters, 2003, 24(7): 457-459.
[23] Li J, Kang K, Roy K. Variation estimation and compensation technique in scaled LTPS TFT circuits
for low-power low-cost applications[J]. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2009, 28(1): 46-59.
[24] Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on
polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors[J].
Applied Physics Letters, 2009, 95(1): 013503.
[25] Lee J S, Chang S, Koo S M, et al. High-performance a-IGZO TFT with gate dielectric fabricated at
room temperature[J]. Electron Device Letters IEEE, 2010, 31(3): 225-227.
[26] Mativenga M, An S, Jin J. Bulk accumulation a-IGZO TFT for high current and turn-on voltage
uniformity[J]. IEEE Electron Device Letters, 2013, 34(12): 1533-1535.
[27] Kim Y, Kanicki J, Lee H. An a-InGaZnO TFT pixel circuit compensating threshold voltage and
mobility variations in AMOLEDs[J]. Journal of Display Technology, 2014, 10(5): 402-406.
[28] Lin C L, Lai P C, et al. Pixel circuit with parallel driving scheme for compensating luminance variation
based on a-IGZO TFT for AMOLED displays[J]. Journal of Display Technology, 2016, 12(12): 1681-
1687.
[29] Yi S, Wu J, Liao C, et al. An a-IGZO TFT AMOLED pixel circuit to compensate threshold voltage
and mobility variations[C]// 2018 25th International Workshop on Active-Matrix Flatpanel Displays
and Devices (AM-FPD). IEEE, 2018: 1-4.
[30] Kim D, Kim Y, Lee S, et al. High resolution a-IGZO TFT pixel circuit for compensating threshold
voltage shifts and OLED degradations[J]. IEEE Journal of the Electron Devices Society, 2017, 5(5):
372-377.
[31] Leng C, Wang L, Zhang S. An AMOLED pixel circuit with negative VTH compensation function[C]//
IDW’13, 2013: 416-418.
[32] Wu J, Yi S, Liao C, et al. New AMOLED pixel circuit to compensate characteristics variations of
LTPS TFTs and voltage drop[C]// 2018 25th International Workshop on Active-Matrix Flatpanel
Displays and Devices (AM-FPD). IEEE, 2018: 1-4.
[33] Bang J S, Kim H S, Park S H, et al. 50.2: A Real-time TFT compensation through power line current
sensing for high-resolution AMOLED displays[C]// SID Symposium Digest of Technical Papers. 2014,
45(1): 724-727.

67
[34] Jeon J Y, Jeon Y J, Son Y S, et al. A double zeros compensated direct fast feedback current driver for
medium to large AMOLED displays[J]. Circuits & Systems I Regular Papers IEEE Transactions on,
2012, 59(10): 2197-2209.
[35] Jeon Y J, Jeon J Y, Son Y S, et al. A high-speed current-mode data driver with push-pull transient
current feedforward for full-HD AMOLED displays [J]. Solid-State Circuits, IEEE Journal of, 2010,
45(9): 1881-1895.
[36] Lin C L, Chang F C, Lai P C, et al. A charge-pump-based current feedback method for AMOLED
displays[J]. Journal of Display Technology, 2013, 9(10): 783-786.
[37] Yang J H, Jeon J Y, Kim H S, et al. A Novel current-mode driving technique for real-time image
compensation in AMOLED displays[C]// SID Symposium Digest of Technical Papers, 2012, 43(1):
647-650.
[38] Bang J S, Kim H S, P S H, et al. A real-time TFT compensation through power line current sensing
for high-resolution AMOLED displays[C]// Sid Symposium Digest of Technical Papers, 2015, 45(1):
724-727.
[39] Li H G, Yin X Y, Zhang Z Y. High-precision mixed modulation DAC for an 8-bit AMOLED driver
IC[J]. Journal of Display Technology, 2015, 11(5): 423-429.
[40] Jeon J Y, Jeon Y J, Son Y S, et al. A direct fast feedback current driver using an inverting amplifier
for high-quality AMOLED displays[J]. IEEE Transactions on Circuits & Systems II Express Briefs,
2012, 59(7): 414-418.
[41] Ono S, Miwa K, Maekawa Y, et al. VT compensation circuit for AMOLED displays composed of two
TFTs and one capacitor[J]. IEEE Transactions on Electron Devices, 2007, 54(3): 462-467.
[42] Lin Y C, Shieh H P D, Kanicki J. A novel current-scaling a-Si: H TFTs pixel electrode circuit for
AMOLEDs[J]. IEEE Transactions on electron devices, 2005, 52(6): 1123-1131.
[43] Lin C L, Chang W Y, Hung C C. Compensating pixel circuit driving AMOLED display with a-IGZO
TFTs[J]. IEEE Electron Device Letters, 2013, 34(9): 1166-1168.
[44] Song S J, Nam H. In-pixel mobility compensation scheme for AMOLED pixel circuits[J]. Journal of
Display Technology, 2015, 11(2): 209-213.
[45] Umeda K, Hori Y, Nakajima K. A novel linear digital-to-analog converter using capacitor coupled
adder for LCD driver ICs [C]// SID Symposium Digest of Technical Papers, 2008, 39(1): 885-888.
[46] Yin P Y, Lu C W, Hsu C Y, et al. An 11-bit two-stage hybrid-DAC for TFT LCD column drivers[C]//
2013 4th International Conference on Intelligent Systems, Modelling and Simulation. IEEE, 2013:
631-635.
[47] Wang C, Leng C, Lam H M, et al. A peripheral compensation scheme for AMOLED with data voltage,
VTH and aging information analogously added in Pixel circuit[C]// SID Symposium Digest of
Technical Papers, 2016, 47(1): 1250-1253.
[48] Fan J, Wang C, Lam H M, et al. A high accuracy current comparison scheme for external compensation
circuit of AMOLED displays[J]. SID Symposium Digest of Technical Papers, 2016, 47(1): 1261-1264.
[49] Razavi B. Design of analog CMOS integrated circuits[M]. , 2005.
[50] Tsividis Y P. Accurate analysis of temperature effects in IC-VBE characteristics with application to

68
bandgap reference sources[J]. EEE Journal of Solid-State Circuits, 1980, 15(6): 1076-1084.
[51] Lin S L, Salama C A T. A VBE(T) model with application to bandgap reference design[J]. IEEE Journal
of Solid-State Circuits, 1985, 20(6): 1283-1285.
[52] Malcovati P, Maloberti F, Fiocchi C, et al. Curvature-compensated BiCMOS bandgap with 1-V supply
voltage[J]. IEEE Journal of Solid-State Circuits, 2001, 36(7): 1076-1081.
[53] Wang L, Zhan C, Tang J, et al. Analysis and design of a current-mode bandgap reference with high
power supply ripple rejection[J]. Microelectronics journal, 2017, 68: 7-13.
[54] Brooks T L, Westwick A L. A low-power differential CMOS bandgap reference[C]// Proceedings of
IEEE International Solid-State Circuits Conference-ISSCC'94. IEEE, 1994: 248-249.
[55] Zhu Y, Fei L, Yang Y, et al. A -115dB PSRR CMOS bandgap reference with a novel voltage self-
regulating technique[C]// Custom Integrated Circuits Conference. 2014.
[56] Qu Y, Peng X H, Hou L G, et al. A 0.662ppm/°C high PSRR CMOS bandgap voltage reference[C]//
IEEE International Conference on Solid-state & Integrated Circuit Technology. 2017.
[57] Gray P R, Hurst P, Meyer R G, et al. Analysis and design of analog integrated circuits[M]. Wiley,
2001.
[58] Rudenko T, Kilchytska V, Colinge J P, et al. On the high-temperature subthreshold slope of thin-film
SOI MOSFETs[J]. IEEE Electron Device Letters, 2002, 23(3): 148-150.
[59] . CMOS [M]. , 2012.
[60] Jiang J, Shu W, Chang J S. A 5.6 ppm/°C temperature coefficient, 87-dB PSRR, sub-1-V voltage
reference in 65-nm CMOS exploiting the zero-temperature-coefficient point[J]. IEEE Journal of Solid-
State Circuits, 2017, 52(3): 623-633.
[61] Duan Q, Roh J. A 1.2-V 4.2-ppm/°C high-order curvature-compensated CMOS bandgap reference[J].
IEEE Transactions on Circuits and Systems I: regular papers, 2015, 62(3): 662-670.
[62] Wang R, Lu W, Zhao M, et al. A Sub-1ppm/°C current-mode CMOS bandgap reference with piecewise
curvature compensation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(3):
904-913.
[63] Huang C, Zhan C, He L, et al. A 0.6-V minimum-supply, 23.5 ppm/°C subthreshold CMOS voltage
reference with 0.45% variation coefficient[J]. IEEE Transactions on Circuits and Systems II: Express
Briefs, 2018, 65(10): 1290-1294.
[64] Wang L, Zhan C, Tang J, et al. A 0.9-V 33.7-ppm/°C 85-nW sub-bandgap voltage reference consisting
of subthreshold MOSFETs and single BJT[J]. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2018 (99): 1-5.

69


[1] Yi S, Wu J, Liao C, et al. An a-IGZO TFT AMOLED pixel circuit to compensate threshold voltage
and mobility variations[C]// 2018 25th International Workshop on Active-Matrix Flatpanel Displays
and Devices (AM-FPD). IEEE, 2018: 1-4.
[2] Yi S, Huo X, Liao C, et al. An a-IGZO TFT pixel circuit for AMOLED display systems with
compensation for mobility and threshold voltage variations[C]// 2018 IEEE International Conference
on Electron Devices and Solid State Circuits (EDSSC). IEEE, 2018: 1-2.
[3] Wu J, Yi S, Liao C, et al. New AMOLED pixel circuit to compensate characteristics variations of
LTPS TFTs and voltage drop[C]// 2018 25th International Workshop on Active-Matrix Flatpanel
Displays and Devices (AM-FPD). IEEE, 2018: 1-4.
[4] Huo X, Liao C, Wu J, Yi S, et al. An OLEDoS pixel circuit with extended data voltage range for high
resolution micro-displays[C]// SID Symposium Digest of Technical Papers. 2018, 49(1): 1373-1376.
[5] Wu J, Wang Y, Huo X, Yi S, et al. An AMOLED LTPS-TFT pixel circuit using mirror structure to
compensate Vth variation and voltage drop[C]// 2018 IEEE International Conference on Electron
Devices and Solid State Circuits (EDSSC). IEEE, 2018: 1-2.
[6] Wang Y, Liao C, Ma Y, Wu J, Yi S, et al. P-48: Integrated a-IGZO TFT gate driver with programmable
output for AMOLED display[C]// SID Symposium Digest of Technical Papers. 2018, 49(1): 1377-
1380.

[1] ,
CN109119029A
CN108806607A
CN108806591A
CN108962145A
CN108766356A
……