005- 008 productivity - cnccnc.fme.vutbr.cz/articles/production_in_focus.pdf · corokey cutting...

8
5 PRODUCTIVITY – HOW YOU CAN IMPROVE IT Input Output In machining, productivity is defined as the ratio between output and input. Input is the resources made available for production in the form of operator, machinery, equipment, workpiece material, toolroom, inventory and overheads. Output is basically what gets done during the available production time. Only three percent of the total production cost is related to the cost of cutting tools. Savings on tool costs will therefore only have a marginal effect and cannot compare with the savings that can be achieved by lowering the production costs through increased output. Cost savings by increasing tool life Tool life Cutting data Cost savings by increasing cutting data Tool life or cutting data 3 % +50% +20% -15% -1%

Upload: others

Post on 21-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

  • 5

    PRODUCTIVITY – HOW YOU CAN IMPROVE IT

    Input

    Output

    In machining, productivity is defined as the ratiobetween output and input.

    Input is the resources made available forproduction in the form of operator, machinery,equipment, workpiece material, toolroom,inventory and overheads.

    Output is basically what gets done during theavailable production time.

    Only three percent of the total production cost isrelated to the cost of cutting tools.

    Savings on tool costs will therefore only have amarginal effect and cannot compare with thesavings that can be achieved by lowering theproduction costs through increased output.

    Cost savings byincreasing tool lifeTool life

    Cutting data

    Cost savingsby increasingcutting data

    Tool life

    or

    cutting data

    3 %

    +50%

    +20% -15%

    -1%

  • 6

    Cost saving effectsModern cutting tools correctly applied and with optimizedcutting data have a major cost saving effect!

    Savings in money

    Productivity increase

    Increase of discountTool life increase

    PRODUCTIVITY – HOW YOU CAN IMPROVE IT

    Benefits from optimized cutting dataCutting speed (vc), feed (fn) and depth of cut (ap) are all parameters thatcan improve the productivity.

    1

    2

    3

    Time

    Depth of cut

    Feed

    Cutting speed

    Time

    Time

    ap

    fn

    vc

    The graph indicates the difference in cost savingeffects of a relative increase of productivityversus discount/tool life. The calculations arebased on the following assumptions:

    Machining cost/hour 500 Cost per component 34 Tool cost 6 Production volume 1000 pcs/month

    Speed and feed will have the biggest impacton productivity improvements.

    Although an increase of these parameters willalso a have big influence on tool life, theproductivity improvements will fullycompensate for an increase in toolconsumption.

    1 500 000

    1 000 000

    500 000

    0

    5% 15% 25% 35% 45%

  • 7

    Use -WM for h

    ighest productiv

    ity

    Use -WF for hig

    hest surface fin

    ish

    Two times the feed rate = Same surface finishSame feed rate = Twice as good surface finish

    Standard insert Wiper insert

    0,8 1,2 CNMG 1,2DNMX 1,6

    Feed, fnmm/r

    Ra µm

    Surface finish

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1

    4,0

    3,0

    2,0

    1,0

    0

    Noseradius

    CNMG 0,8DNMX 1,2

    100%

    PRODUCTIVITY – HOW YOU CAN IMPROVE IT

    Utilize the potential for high feedmachining – use Wiper insertsCoromant’s productivity boosters, the high-productivityWiper inserts for semi-finish and finish turning willhalve your cycle time and give twice as good surfacefinish.Read more about High feed machining and Wiper inserts on page 18-31.

    Dry machiningDry machining is a growing trend in the metal cuttingindustry. Our modern tools are developed to withstandhigh cutting temperatures without losing its hardnessand wear resistance.

    By eliminating coolant you not only eliminate the costof coolant but also the time in maintenance. Therebyyou will improve your productivity.

  • 8

    PRODUCTIVITY – HOW CAN WE IMPROVE IT?

    Shortest time WINS!Reduce downtime in your lathes and turning centres. Coromant Capto quick change tooling can give substantialsavings and improve your overall productivity. Converting toquick change tooling takes minutes and the immediatebenefits are:

    SHORTEST DOWNTIMES • For setups, save 50+ hours per year per

    clamping unit.

    SHORTEST MACHINING TIMES• Due to greater stability.

    NO TURRET MODIFICATIONS• As easy to mount as conventional tools,

    but 5 times faster.

    You can not lose — only improveyour all-round performance!

    ... hours saved per clamping unit per year.

    Clamping units for DIN 69880 (VDI) turrets and otherapplications are also available.

    2000 For optimum internal turning• only one turn is required to lock/unlock the

    cutting head • rear actuated for easy access• adjustable shank length (cut-off if necessary).

    CLAMPING UNITS

    2085 For optimum external turning• less than a half turn is required to lock/

    unlock the cutting head • has an adjustable shank length

    (cut-off if necessary).

    50 +Sh

    ortes

    t tim

    e

    WINS

    !

    More information about Coromant Capto® onpages 214 - 217.

  • 9

    CONVERSION TABLE FOR SCALES OF HARDNESSMany different systems are used in industry for measuring material hardness. The table below compares three of the most common systems.

    Corokey cutting data recommendations are given in Hardness Brinell (HB).

    HB 180 for Steel (CMC code 02.1)

    HB 180 for Stainless steel (CMC code 05.21)

    HB 260 for Cast iron (CMC code 08.2)

    CMC = Coromant Material Classification. Please see Material Cross Reference Liston page 12.

    255 80 76,0 – –270 85 80,7 – 41,0285 90 85,5 – 48,0305 95 90,2 – 52,0320 100 95,0 – 56,2350 110 105 – 62,3385 120 114 – 66,7415 130 124 – 71,2450 140 133 – 75,0480 150 143 – 78,7510 160 152 – 81,7545 170 162 – 85,0575 180 171 – 87,5610 190 181 – 89,5640 200 190 – 91,5660 205 195 – 92,5675 210 199 – 93,5690 215 204 – 94,0705 220 209 – 95,0720 225 214 – 96,0740 230 219 – 96,7770 240 228 20,3 98,1800 250 238 22,2 99,5820 255 242 23,1 –835 260 247 24,0 (101)850 265 252 24,8 –865 270 257 25,6 (102)900 280 266 27,1 –930 290 276 28,5 (105)950 295 280 29,2 –965 300 285 29,8 –995 310 295 31,0 –

    1030 320 304 32,21060 330 314 33,31095 340 323 34,41125 350 333 35,51155 360 342 36,61190 370 352 37,71220 380 361 38,81255 390 371 39,81290 400 380 40,81320 410 390 41,81350 420 399 42,71385 430 409 43,61420 440 418 44,51485 460 437 46,11555 480 – 47,71595 490 – 48,41630 500 – 49,11665 510 – 49,81700 520 – 50,51740 530 – 51,11775 540 – 51,71810 550 – 52,31845 560 – 53,01880 570 – 53,61920 580 – 54,11955 590 – 54,71995 600 – 55,22030 610 – 55,72070 620 – 56,32105 630 – 56,82145 640 – 57,32180 650 – 57,8

    Tensilestrength

    Vickers Brinell Tensilestrength

    Vickers Brinell RockwellRockwell

    N/mm2 HV HRC HRB N/mm2 HV HB HRCHB

    PRODUCTIVITY – HOW YOU CAN IMPROVE IT

  • 10

    DIFFERENCE IN HARDNESS, HBCutting data is given on the ordering pages for the recommended first choice grade in combination with the hardness (HB) in the table.

    If the material being machined differs in hardness from those values, the recommended cutting speed must be multiplied by a factor obtained from the table.

    1) = Coromant Material Classification2) = Hardness Brinell

    If you choose insert CNMG 120416-PM foryour turning operation, the recommendedCoroKey cutting data is given for the firstchoice grade GC4025 and a low alloy steel(CMC code 02.1) with HB 180:

    Cutting depth (ap ) = 3 mm

    Feed (fn ) = 0,40 mm/r

    Cutting speed (vc ) = 225 m/min.

    Should your workpiece material have anotherhardness, e.g. HB 240, the difference betweenthe given HB 180 and HB 240 is + 60. The factor in the table is 0,77.

    The cutting speed adjusted to HB 240 =

    225 m/min x 0,77 = 173,25 m/min ≈ 173 m/min

    EXAMPLE: If the recommended cutting speed (vc ) = 225 m/min. a tool life of 10 minutes gives you: 225 x 1,11 ≈ 250 m /min

    CMC1) HB2) -60 -40 -20 0 +20 +40 +60 +80 +100

    02.1 180 1,44 1,25 1,11 1,0 0,91 0,84 0,77 0,72 0,67

    05.21 180 1,42 1,24 1,11 1,0 0,91 0,84 0,78 0,73 0,68

    08.2 260 1,21 1,13 1,06 1,0 0,95 0,90 0,86 0,82 0,79

    P

    M

    K

    ISO/ANSI

    Increased hardnessReduced hardness

    EXAMPLE:

    Tool life (Mins.)

    Correction factor

    HIGHER METAL REMOVALIf you want to change the cutting speed to obtain higher metal removal rates the new cutting speed values can be calculated from the table.

    10 15 20 25 30 45 60

    1,11 1,0 0,93 0,88 0,84 0,75 0,70

    fn 0,25 0,4 0,7vc 310 265 210

    Note! When increasing the feed (fn mm/r) the surface speed (vc m/min)should be decreased and vice versa, as indicated in the cuttingdata recommendations.

    Feed

    Speed

    PRODUCTIVITY – HOW YOU CAN IMPROVE IT

  • 11

    CONVERSION CHARTSurface speed (vc) — Revolutions per minute (RPM)

    COMPONENT/CUTTER

    CUTTING SPEED (vc), metres/min.

    30 40 50 100 150 200 300 400 500 600 700

    12 795 1060 1326 2652 3979 5305 7957 10610 1326216 597 795 995 1989 2984 3978 5968 7957 9947 1193620 477 637 796 1591 2387 3183 4774 6366 7957 9549 1114025 382 509 637 1273 1910 2546 3819 5092 6366 7639 891232 298 398 497 994 1492 1989 2984 3978 4973 5968 696340 239 318 398 795 1194 1591 2387 3183 3978 4774 557050 191 255 318 636 955 1272 1909 2546 3183 3819 445663 151 202 253 505 758 1010 1515 2021 2526 3031 353680 119 159 199 397 597 795 1193 1591 1989 2387 2785100 95 127 159 318 477 636 952 1273 1591 1909 2228125 76 109 124 255 382 509 764 1018 1237 1527 1782160 60 80 99 198 298 397 596 795 994 1193 1392175 55 71 91 182 273 363 544 727 909 1091 1273200 48 64 80 160 239 318 476 636 795 954 1114

    Ø

    FORMULAS

    vc =1000

    vc = cutting speed m/minn = revolutions / min.Dc = diameter mm

    vc x 1000

    n = spindle speed, revolutions/min.

    vc = cutting speed m/minDc = diameter mm

    vf = n x z x fz

    vf = table feed mm/min.n = revolutions/min.z = number of teethfz = feed mm/tooth

    n =π x Dc

    π x Dc x nSpindle speed, rpm Table feed, mm/min.Cutting speed, m/min.

    EXAMPLE:You are using a 80 mm diameter cutter.

    The cutting speed start value (vc) on the insert box is 200 m/min.

    Find the cutter size in the left column, and cutting speed in the top rowand read the spindle RPM at the intersection: 795 revolutions per minute.

    PRODUCTIVITY – HOW YOU CAN IMPROVE IT

  • 12

    MATERIAL CROSS REFERENCE LIST

    BS SS W.-nr. DIN AFNOR UNI UNE JIS AISI/SAE

    250A53 2085 1.0904 55Si7 55S7 55Si8 56Si7 - 92554360 43C 1412 1.0144 St.44-2 E 28-3 - - SM 400A;B;C A573-814360 50B 2132 1.0570 St.52-3 E36-3 Fe52BFN/Fe52CFN - SM 490A;B;C -150 M 19 2172 1.0841 St.52-3 20 MC 5 Fe52 F-431 5120- - 1.0961 60SiCr7 60SC7 60SiCr8 60SiCr8 - 9062534A99 2258 1.3505 100Cr6 100C6 100Cr6 F.131 SUJ2 521001501-240 2912 1.5415 15Mo3 15D3 16Mo3KW 16Mo3 - ASTM A2041503-245-420 - 1.5423 16Mo5 - 16Mo5 16Mo5 - 4520805M20 2506 1.6523 21NiCrMo2 20NCD2 20NiCrMo2 20NiCrMo2 SNCM220(H) 8620311-Type 7 - 1.6546 40NiCrMo22 - 40NiCrMo2(KB) 40NiCrMo2 SNCM240 8740820A16 - 1.6587 17CrNiMo6 18NCD6 - 14NiCrMo13 - -523M15 - 1.7015 15Cr3 12C3 - - SCr415(H) 5015- 2245 1.7045 42Cr4 - - 42Cr4 SCr440 5140527A60 - 1.7176 55Cr3 55C3 - - SUP9(A) 5155- 2216 1.7262 15CrMo5 12CD4 - 12CrMo4 SCM415(H) -1501-620Gr27 - 1.7335 13CrMo4 4 15CD3.5 / 4.5 14CrMo4 5 14CrMo45 - ASTM A1821501-622 2218 1.7380 10CrMo9 10 12CD9, 10 12CrMo9, 10 TU.H - ASTM A1821503-660-440 - 1.7715 14MoV6 3 - - 13MoCrV6 - -722 M 24 2240 1.8515 31 CeMo 12 30 CD 12 30CrMo12 F-1712 -897M39 - 1.8523 39CrMoV13 9 - 36CrMoV12 - - -524A14 2092 1.7039 34MoCrS4 G - 105WCR 5 - - L1605A32 2108 1.5419 20MoCrS4 - - F520.S - 8620823M30 2512 1.7228 55NiCrMoV6G - 653M31 - - -- 2127 1.7139 16MnCr5 - - - - -830 M 31 2534 - 31NiCrMo134 - - F-1270 -- 2550 1.2721 50NiCr13 55NCV6 - F-528 L6817M40 2541 1.6582 35CrNiMo6 35NCD6 35NiCrMo6(KB) - - 4340530A32 - 1.7033 34Cr4 32C4 34Cr4(KB) 35Cr4 SCr430(H) 5132(527M20) 2511 1.7131 16MoCr5 16MC5 16MoCr5 16MoCr5 - 51151717CDS110 2225 1.7218 25CrMo4 25CD4 25CrMo4(KB) 55Cr3 SCM420SCM430 4130708A37 2234 1.7220 34CrMo4 35CD4 35CrMo4 34CrMo4 SCM432SCCRM3 4137,4135708M40 2244 1.7223 41CrMo4 42CD4TS 41CrMo4 42CrMo4 SCM440 4140,4142735A50 2230 1.8159 50CrV4 50CV4 50CrV4 51CrV4 SUP10 6150

    304S31 2332/2333 1.4350 X5CrNi189 Z6CN18.09 X5CrNi18 10 F.3551 SUS304 304303S21 2346 1.4305 X12CrNiS18 8 Z10CNF 18.09 X10CrNiS 18.09 F.3508 SUS303 303304S15 2332 1.4301 X5CrNi189 Z6CN18.09 X5CrNi18 10 F.3551 SUS304 304304S12 2352 1.4306 X2CrNi18 9 Z2CrNi18 10 X2CrNi18 11 F.3503 SCS19 304L- 2331 1.4310 X12CrNi17 7 Z12CN17.07 X12CrNi17 07 F.3517 SUS301 301304S62 2371 1.4311 X2CrNiN 18 10 Z2CN18.10 - - SUS304LN 304LN316S16 2347 1.4401 X5CrNiMo18 10 Z6CND17.11 X5CrNiMo17 12 F.3543 SUS316 316- 2375 1.4429 X2CrNiMoN18 13 Z2CND17.13 - - SUS316LN 316LN316S13 2348 1.4404 - Z2CND17-12 X2CrNiMo1712 - - 316L316S13 2353 1.4435 X2CrNiMo 18 12 Z2CND17.12 X2CrNiMo17 12 - SCS16 316316S33 2343/2347 1.4436 - Z6CND18-12-03 X8CrNiMo1713 - - 316L317S12 2367 1.4438 X2CrNiMo18 16 Z2CND19.15 X2CrNiMo18 16 - SUS317L 317L321S12 2337 1.4541 X10CrNiTi18 9 Z6CNT18.10 X6CrNiTi18 11 F.3553/F.3523 SUS321 321347S17 2338 1.4550 X10CrNiNb18 9 Z6CNNb18.10 X6CrNiNb18 11 F.3552/F.3524 SUS347 347320S17 2350 1.4571 X10CrNiMoT1810 Z6NDT17.12 X6CrNiMoTi1712 F.3535 - 316Ti- - 1.4583 X10CrNiMoNb1812 Z6CNDNb17 13B X6CrNiMoNb1713 - - 318309S24 - 1.4828 X15CrNiSi20 12 Z15CNS20.12 - - SUH309 309310S24 2361 1.4845 X12CrNi25 21 Z12CN25 20 X6CrNi25 20 F.331 SUH310 310SGrade 260 0125 GG 25 Ft 25 D G25 FG25 - No 35GGrade 300 0130 GG 30 Ft 30 D G30 FG30 - No 45BGrade 350 0135 GG 35 Ft 35 D G35 FG35 - No 50BGrade 400 0140 GG 40 Ft 40 D - - - No 55B

    ISO

    P02.1

    M

    K

    GREAT BRITAIN

    Standard

    SWEDEN

    CMC1

    )

    GERMANY FRANCE ITALY SPAIN JAPAN US

    05.2

    1 =

    Forg

    ed, 1

    5.21

    = C

    ast

    PRODUCTIVITY – HOW YOU CAN IMPROVE IT

    08.2

    1) = Coromant Material Classification

    Contents: