01 yoshitomi mos-ak 08

26
Copyright 2008, Toshiba Corporation. Compact Model Challenges of Compact Model Challenges of Compact Model Challenges of Compact Model Challenges of 65nm RF 65nm RF 65nm RF 65nm RF- - -CMOS technology CMOS technology CMOS technology CMOS technology TOSHIBACorp. Semiconductor Company Sadayuki Yoshitomi ([email protected]) Tadamasa Katoh ([email protected]) Toshifumi Nakanose ([email protected]) Fumie Fujii ([email protected])

Upload: mikeshinoda2011

Post on 18-Apr-2015

30 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 01 Yoshitomi MOS-AK 08

Copyright 2008, Toshiba Corporation.

Compact Model Challenges of Compact Model Challenges of Compact Model Challenges of Compact Model Challenges of

65nm RF65nm RF65nm RF65nm RF----CMOS technologyCMOS technologyCMOS technologyCMOS technology

TOSHIBACorp. Semiconductor CompanySadayuki Yoshitomi ([email protected])Tadamasa Katoh ([email protected])Toshifumi Nakanose ([email protected])Fumie Fujii ([email protected])

Page 2: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 2

CMOS Technology Innovation

CMOS1BSIM3

0.13um

90nm

0.18um

0.25um

0.35um

65nm

40nm

32nm

CMOS2BSIM3・・・・EKV

CMOS3BSIM3・・・・EKV*

CMOS4BSIM4・・・・EKV*

CMOS5BSIM4・・・・PSP・・・・EKV*

CMOS6????

CMOS7????

1995

STIDual Gate / Ti Salicide

Logic Based eDRAM

Cu Interconnect

Low k

Stress controlLow-k II

Strained-Si, High-kLow-k III

Metal Gate High-k

Toshiba’s been a leaderfor many process generations

Release RF-CMOS Technology from 0.13um

CMOS306/Q2

CMOS407/Q2

CMOS508/Q2

EKV available for internal use only

Page 3: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 3

10

100

1000

10 100 1000

Toshiba

TSMC

NXP

ITRS

Cut-off Frequency [GHz]

Lg [nm]

fT Trend and Benchmarking

TOSHIBA’’’’ssss

CMOS5

(65nm)

Page 4: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 4

Agenda

• Challenges of RF scalable model creation of 65nm RF -CMOS technology– Methodology of creation of RF-CMOS scalable model

– Observation of “RF-scaling law”

– Extensional validation issues.

• RF Switch

• High-linear circuits

D iode

C JDB

D iode

C JDS

R

R S UB2

P ort

D R A IN

N um = 2

L

LD

R

R D

R

R S UB1

R

R S UB4

R

R S UB3

C

CFGS

C

CFGD

R

R S

L

LG

R

RG

L

LS

P ort

S O U R C E

N um = 3

P ort

G A TE

N um = 1 M O S F E T_N M O S

c 3_fas t_n

Page 5: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 5

What is needed for RF-CMOS compact model ?• Scalable and compact

– For portability, parasitic elements should be scalable function of • Lg (Gate Length)• Wf (Finger Length)• NF (Finger Numbers)• (SA,SB,SD)

• Accurate for all design purpose– LNA (NQS effect, Thermal noise)

• Linear: S-parameters > 100GHz– De-embedding: SOLT ? TRL ?

– VCO and Mixer (Harmonic distortion, Flicker noise)• Flicker noise close to the carrier.• ACPR, EVM

– Power amplifier• Self Heating• Load-pull

Page 6: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 6

MOSFET : Extrinsic Parasitic elements

Yuhua Cheng et al.(2000b) MOSFET modeling for RF circuit design, Proceeding of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems, D23/1-D23/8

Gm*vgs+Gds*Vds

Page 7: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 7

Simplified Equivalent Circuit when MOSFET= OFF

Port

SB

Num=2

R

RDB

R

RDSB

Port

G

Num=2

Port

D

Num=2

R

RD

Diode

CBDR

RG

C

CGBpulsCGS

I_DC

Gm+Gds

C

CFGD1

Source and Back-gate groundedVG=VD=VS=VB=0

Page 8: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 8

Equivalent Circuit when MOSFET= SI & Linear

Port

SB

Num=2

R

RDB

R

RDSB

Port

G

Num=2

Port

D

Num=2

R

RD

Diode

CBDR

RG

C

CGBpulsCGS

I_DC

Gm+Gds

C

CFGD1

Source and Back-gate groundedVG=VDD, VD=low, VS=VB=0

R

gdsRDSB

RDB

Page 9: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 9

Measure of components from y-parameters

( ) ( )( ) ( )

CBCDCSG

GDBDmGDGDGBDGGDS

mGDmGDGGm

GGDG

GG

GGGC

CCjωCCCCCCRωGY

CCjωCCCRωGY

jωCCRωY

jωRCωY

++=+++++≈

+−+−≈

−−≈

+≈

222

221

212

2211

GD

G

C

C

( )( )( )( )12

1211

1222

12

Re

Im

Im

Im

ZR

YYCC

YYC

YC

DB

GSGB

DB

GD

→+→++=

=

Starting point the formula (12.7a~12.7d) : Christian C.Enz, Eric A. Vittoz , “Charge-based MOS Transistor Modeling” Wiley 2006.

( )( )

( ) ( )

=

=

=

22

211

11

1Re

Im

Re

YR

RR

Y

YR

DSB

SD

G

22ZRe

SI and linear region OFF region

Page 10: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 10

Q1

• Does RG scaling follows classical ohmic-law ?

NfLg

WfkR rgG ⋅

⋅= ρ

K : constant depending on the configuration of gate contact

Page 11: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 11

NO : Gate resistance behaves complex behavior

0

1

2

3

4

5

0.01 0.1 1 10

Lg [um]

No

rma

lize

d g

ate

re

sist

an

ce

Scaling dependence of Rg on gate-length (Lg)

LV NMOSFET

Wf=1um, NF=40

Lg -1

Lgmodel

Meas.

0

1

2

3

4

5

0.01 0.1 1

Lg [um]

No

rma

lize

d R

g

+

g

RGLg

f

RGL

L

KL

N

K 21

Page 12: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 12

Scaling dependence of Rg on Wf/Nf

0

1

2

3

4

5

0 0 .0 5 0 .1 0.1 5

W f/ N f

No

rma

lize

d R

G

LV NMOSFET

Lg=50nm

Wf*NF=40um

model

Meas.NF*Wf-1

NF*Wf

2um*20

0.5um*80

1.0um*40

+

f

RGLf W

KW 3

Page 13: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 13

Q2 Does capacitance scaling has unique behaviour ?

• NO : It is typical behavior

( )( )( )1211

1222

12

Im

Im

Im

YYCC

YYC

YC

GSGB

DB

GD

+→++→

0

1

2

3

4

5

0.01 0.1 1 10Lg [um]

No

rmal

ize

d C

ap

aci

tan

ce

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.001 0.01 0.1 1

Wf/Nf

No

rma

lize

d C

aa

cita

nce

CGB+CGS

CGD

CDB

CGB+CGS

CGD

CDBShorter Wf

More # of NF

CGB

Page 14: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 14

Observation of the RB scaling

0

2

4

6

8

10

12

0.01 0.1 1 10

Lg [um]

No

rma

lize

d R

B

0

0.5

1

1.5

2

2.5

3

0 5 0 100 150 200

Wf*NF

No

rma

lize

d R

B

NF-1*Wf-1

NFWfRsh

NF

WfLgRsh

⋅⋅+⋅⋅ 1

21

Page 15: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 15

RF-CMOS modeling summary

ffRCL NWK

CGBG-B capacitance

RSUB1

RSUB2

RSUB3

RSUB4

Substrate resistance

CFGD CFGS

G-D,G-S overlap capacitance

RG

NQS

Gate resistance

Geometric

dependencyItem nameComponent name

+

+

f

RGLf

g

RGLg

f

RGL

W

KW

L

KL

N

K 321

KCGB,KRGL1, KRGL2, KRGL3,KRCL,KRsh1, KRsh2 : Constants

NfLgKCGB CGB ⋅⋅=

NFWfRsh

NF

WfLgRsh

⋅⋅+⋅⋅ 1

21

Page 16: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 16

Verification of 65nm RF-CMOS via peak-fT

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E-08 1.00E-07 1.00E-06 1.00E-05

Lg [m]

Pe

ak

fT

[H

z]

NMOS

PMOS

model

Meas.

LV MOSFETsWf=1um Nf=40

Page 17: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 17

Model VerificationImprove

NMOSFET Lg=0.3um Wf=20um NF=100

S D

GDeepNwell Pwell

LINE1

LINE2LINE3

449.6145.93Pwell-RPOLY-PADLINE3192.4844.39GATE-RPOLY-PADLINE2

35525.04DeepNwell-RPOLY-

PADLINE1

Lngth of M6S [um]

Length of M1 [um]

PATH

Line width all 0.3um

Page 18: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 18

MOSFETMOSFETMOSFETMOSFET----SwitchSwitchSwitchSwitch

RF1

Gate(Vg)

RF2

BackGate(Vbg) D-Nwell(Vdn)

FET

R=10kΩ(All)

PSUB

D-Nwell B-GateSource

GateDrain

Psub

Deep-Nwell

n

p

n+ n+

STI

寄生ダイオードの導入が必要

P-N Diode

Define

Page 19: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 19

5 Term MOS

BSIM4_NMOS

CORE

Port

G

Num=2

Port

DNW

Num=2

Port

PW

Num=4

Port

PSUB

Num=5

Diode

Dpsubwb

Diode

Dwpwb

C

CGB1

Port

S

Num=3

R

RS

Port

D

Num=1

R

RD

R

RG

R

RSUB2

R

RSUB1

R

RSUB3

R

RSUB4

Diode

Djds

L

LD

L

LS

L

LG

C

CFGS

C

CFGD

Diode

Djdb

Page 20: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 20

Simulation does not match

– NMOSFET Lg=0.3um Wf=20um NF=100• 50MHz~20.05GHz (201 PTS))))

• VG, V_DNW::::0V,2.5V

• VD=VS=0V

Blue:Meas

Red::::Model

Define

Page 21: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 21

Hard Implemantation

Cov_hkRGBCGB

DIO_CJO

Rline1

Rline2

Rline3

Cov_CJW

Analyze

Cpad

Page 22: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 22

Transmission Line

– Lind:Self inductaoce– Rind:Series Resistance– Cox:Cap between Metal and Si– Rs:Loss of Si substrate– Cs:Loss of Si substrate

2.482.031.072.031.972.93Cs [fF]

6094361422436771.5697Rs [Ohm]

7.893.223.373.226.221.86Cox [fF]

21.66.899.266.8917.13.82Rind [Ohm]

0.390.040.170.050.310.02Lind [nH]

M6SM1M6SM1M6SM1

LINE3LINE2LINE1

Improve

Page 23: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 23

Completed schematicImprove

5term MOS

LINE1

transLine

LINE1

TransLine

LINE2

TransLine

LINE2

TransLine

LINE3

TransLine

LINE3

Transline

Page 24: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 24

Comparison before and afterImprove

1E9 1E101E8 3E10

-30

-25

-20

-15

-10

-5

-35

0

freq, Hz

S2

1 [

dB

]

SWEEP.freq, Hz

Eqn Dev=100.9+130.8+207.1+132.0

Dev

570.800

1E

9

1E

10

1E

8

3E

10

5.0E3

1.0E4

0.0

1.5E4

SWEEP.freq, Hz

ma

g(S

21

_e

rr)

VDNW

0.000E02.500E0

Sum_S21_ErrVgsh=0.000E0 Vgsh=2.500E0

1.009E2 1.308E22.071E2 1.320E2

1E9 1E101E8 3E10

-30

-25

-20

-15

-10

-5

-35

0

freq, HzS

21

[d

B]

SWEEP.freq, Hz

Eqn Dev1=5.862+5.202+1.234+0.726 Dev1

13.024

1E

9

1E

10

1E

8

3E

10

20

40

60

0

80

SWEEP.freq, Hz

ma

g(S

21

_e

rr)

VDNW

0.000E02.500E0

Sum_S21_ErrVgsh=0.000E0 Vgsh=2.500E0

-1.234E0 -5.862E0-7.260E-1 -5.202E0

Before after

Page 25: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 25

freq (50.00M Hz to 20.05G Hz)

(S(2

,1))

SW EEP.freq (50.00M Hz to 20.05G Hz)

(zY

68

_I_

fet0

1_

m..

sp

ar_

vg

0.I

CC

AP

_S

WE

PT

_D

AT

A.X

FO

RM

.sd

(2,1

))(z

y6

8_

I_fe

t01

_m

..s

pa

r_v

g2

p5

.IC

CA

P_

SW

EP

T_

DA

TA

.XF

OR

M.s

d(2

,1))

freq (50.00M Hz to 20.05G Hz)

(S(1

,1))

SW EEP.freq (50.00M Hz to 20.05G Hz)

(zy

68

_I_

fet0

1_

m..

sp

ar_

vg

0.I

CC

AP

_S

WE

PT

_D

AT

A.X

FO

RM

.sd

(1,1

))(z

y6

8_

I_fe

t01

_m

..s

pa

r_v

g2

p5

.IC

CA

P_

SW

EP

T_

DA

TA

.XF

OR

M.s

d(1

,1))

freq (50.00M Hz to 20.05G Hz)

(S(2

,1))

SW EEP.freq (50.00M Hz to 20.05G Hz)

(zY

68

_I_

fet0

1_

m..

sp

ar_

vg

0.I

CC

AP

_S

WE

PT

_D

AT

A.X

FO

RM

.sd

(2,1

))(z

y6

8_

I_fe

t01

_m

..s

pa

r_v

g2

p5

.IC

CA

P_

SW

EP

T_

DA

TA

.XF

OR

M.s

d(2

,1))

freq (50.00M Hz to 20.05G Hz)

(S(1

,1))

SW EEP.freq (50.00M Hz to 20.05G Hz)

(zy

68

_I_

fet0

1_

m..

sp

ar_

vg

0.I

CC

AP

_S

WE

PT

_D

AT

A.X

FO

RM

.sd

(1,1

))(z

y6

8_

I_fe

t01

_m

..s

pa

r_v

g2

p5

.IC

CA

P_

SW

EP

T_

DA

TA

.XF

OR

M.s

d(1

,1))

S-Parameter before and afterImprove

Before After

S21

S11

S21

S11

Page 26: 01 Yoshitomi MOS-AK 08

Copyright 2008 TOSHIBA Corporation MOS-AK Meeting 2008 Edinburgh 26

Summary

• 65nm-RFCMOS compact models’ development– Scaling approach based on COLD-measurement and SI & Linear

measurement still works.

– It is possible to get a simple guess by taking look at Y and Z parameters.

– Substrate modeling is needed in case of RF switch which controls back-gate bias.

– All possible modeling efforts by the aid of EM simulation is sure needed.

Thank you !