01.stdtoolkit.intr

Upload: zamz4my

Post on 04-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 01.STDtoolkit.intr

    1/16

    Safe disposal of mine waste,

    including tailings, is gener-

    ally recognized as the single

    largest environmental chal-

    lenge facing the mining

    industry worldwide and a

    major expense for mining

    companies.

    Modern open-pit mining has

    a very high waste-to-prod-

    uct ratio (roughly 99 tonnesof waste to each tonne of

    copper, and even far more

    waste in gold mining), mak-

    ing waste the major product of mining. The Canadian

    mineral industry generates about 650 million tonnes of

    waste per year.1 The storage of this waste poses signifi-

    cant engineering challenges. All over the world, tailings-

    dams are leaking, or breaking, and seeping toxins on a

    daily basis; but recent environmental and social disasters

    in Romania, Guyana, Spain, and the Philippinescaused

    by tailings-dams that bursthave served to focus public

    attention on this problem.

    Mine waste poses an environmental threat not only

    through its volume but also because of its toxicity. Mine

    tailings commonly contain sulfides as well as metals

    such as cadmium, copper, iron, lead, manganese, mercury,

    silver, and zincthat occur naturally in the ore body.

    When sulfides in the tailings are exposed to air they oxi-

    dize. If oxidized tailings come into contact with water,

    environmentally toxic sulfuric acid is produced. This

    process is known as Acid Mine Drainage (AMD). The

    sulfuric acid also accelerates metal leaching in tailings.

    Acid Mine Drainage can have a toxic impact on ground

    and surface water around mines. According to the UnitedStates Environmental Protection Agency, water contami-

    nation from mining poses one of the top three ecological-

    security threats in the world.

    Why Do Mining Companies Want to UseSubmarine Tailings Disposal?Submarine Tailings Disposal is dumping mine tailings

    into the sea through a submerged pipe. In the Western

    Pacific region, mining compa-

    nies argue that Submarine

    Tailings Disposal (STD) 2 is

    the best solution for tailings

    disposal. They say that storing

    tailings on the land in this

    region is riskybecause the

    Western Pacific experiences

    earthquakes; has many moun-

    tainous islands with no place

    for on-land storage; is an areawhere land is urgently needed

    for agriculture; and has high

    rainfall, making tailings dams

    vulnerable to collapse. In modern STD systems, mining

    companies claim that the goal is to deposit tailings into

    deep waters of the sea where there is little oxygen. They

    say that therefore tailings will be less likely to oxidize and

    leach out toxic metals. Mining companies also argue that

    marine life at these depths is not so abundant and it is not

    important to the human food chain.

    By pumping their tailings into the sea, mining companies

    remove unsightly tailings on land. They solve the prob-lems of maintaining tailings impoundments and dams,

    and managing acid mine drainage and metal leaching

    from tailings impoundments, sometimes in perpetuity

    (forever). And in case of a dam failure, mining companies

    avoid the risks of social rage and of expensive clean up.

    Unlike on land, if something goes wrong with an STD

    system, there is little the company, or anyone else, can do.

    The public may not even discover a problem, because it is

    out of sight under the sea. Even if a problem becomes

    known, it is harder to hold a company legally and finan-

    cially responsible.

    STD is also a relatively cheap mine-waste solution. PlacerDomes Dick Zandee wrote in a 1985 article about their

    surface disposal system into Calancan Bay in the

    Philippines that, operation of the current sea-disposal

    system costs less than half as much as the operation of the

    tailings-pond system.3 For the Kitsault mine in Canada,

    which was given a special site-specific exemption in 1979

    to operate an STD system, it was estimated that STD

    would save the company $25 million dollars per year in

    1

    Minings Problem with Waste

    SUBMARINE TAILINGS DISPOSA

    STD TOOLKIT

    INTRODUCTION

    Tailings from Placer Domes Marcopper mine inMarinduque entering the sea at Calancan Bay.

    Photo:CatherineCoumans

  • 8/13/2019 01.STDtoolkit.intr

    2/16

    tailings disposal costs relative to the cost of land-disposal. The

    U.S. Department of the Interior concluded that, on average, STD

    use resulted in a 17% reduction in capital costs and a 1.6%

    increase in operating costs.4

    How is Submarine Tailings Disposal Done?Mines have a long history of dumping their waste into the

    sea. Historically this has been into the shallow, near-shore,

    areas. Even in recent years, shallow surface dumping of tail-

    ings, with very damaging consequences, continues to

    occur, such as at Placer Domes Marcopper mine in the

    Philippines (1975-1991). Since the 1970s, there have been

    Submarine Tailings Disposal systems that have piped tailings

    further out to sea and deposited them under water into interme-

    diate depths, such as the Island Copper Mine in Canada and

    the Atlas mine in the Philippines. These systems also caused

    environmental damage because the tailings did not stay where

    consultants predicted but came back up into more shallow

    areas. This toolkit focuses on deep sea dumping to show that

    there are also serious concerns with this so-called best prac-

    tice. It is important to know that even though the industry and

    its consultants now argue that deep sea disposal is best prac-

    tice, new shallow depth STD systems are still being built, such

    as Newmonts Minahasa Raya Mine in Indonesia (started in

    1996). And even at a modern deep-sea STD mine, such as

    Misima in Papua New Guinea, a large amount of waste (50

    million tonnes) was dumped onto a near shore coral reef

    between 1988-1993.

    What Mining Companies Say: The following is a generalized

    description of STD as mining companies and their consultantssay it should be implemented in modern STD systems. Note that

    there may be differences in systems, depending on site-specific

    characterizations:

    First, the tailings are treated to remove at least some of the most

    harmful chemicals. Then the tailings are piped to a mixing

    tank on the seashore, where they are de-aerated and mixed and

    diluted with seawater. Some companies say that the water

    should be drawn up from the deeper sea so that the tailings take

    on the density, temperature, and salinity of the water of that

    depth and so that the sea creatures in the shallow water are not

    disturbed by the water intake. The tailings are pumped into the

    sea through a submerged pipe. Most mining consultants say that80 to 100 meters deep is sufficient to put the tailings below the

    thermocline, the euphotic zone, and the mixed surface layers.

    When the tailings leave the pipe they should form a density

    current, a coherent flow that has been described as looking

    like tooth paste that descends to the deep reaches of the sea.

    This descending density-current occurs because the tailings are

    heavier than the surrounding water and because gravity pulls

    them downwards. A seabed slope of minimally 12% is thought

    to be needed to move the tailings along the seabed, away from

    the pipe. When the tailings settle on the sea floor, they are

    expected to smother the benthic life that exists there. Not yet

    known is whether the benthic organisms can regenerate and co-

    exist with the tailings.At all STD mines worldwide there have been the following

    impacts:

    1. Pipe breaks

    2. Wider than expected dispersal of tailings

    3. Smothering of the Benthic organism

    4. Increased turbidity

    5. Introduction of metals and milling agents (chemicals, such as

    cyanide, used for extraction of the desired metals, and deter-

    gents and frothing agents to float out the metals) into the sea.

    Where STD is Practiced, and Proposed SitesThe first mines to use STD were the Atlas Mine, in the

    Philippines, and the Island Copper Mine, in Canada (both in

    1971) and the Jordan River Mine, in Canada, and the Black

    Angel Mine, in Greenland (both in 1972.) In all of these cases,

    the mines dumped at relatively shallow depths and experienced

    serious problems with wider than predicted dispersal (spreading

    out) of tailings, turbidity, and metal leaching. Even after it

    became well known that these mines were damaging marine

    environments, the Island Copper Mine, the Black Angel Mine,

    and the Atlas Mine continued using STD into the 1990s. (TheAtlas Mine is still operating.)

    STD is currently being practiced in the following places:

    In Chile at the Huasco Iron Pelletising Plant operated by

    Compania Minera del Pacifico

    In Indonesia at Minahasa Raya and Batu Hijau mines both

    operated by Newmont Corporation

    In Turkey at the Cayeli Bakir Mine operated by Inmet Mining

    In Papua New Guinea at the Lihir Mine operated by Lihir

    Management Company and Rio Tinto

    In Papua New Guinea at the Misima Mine operated by Placer

    Dome

    In England at the Boulby Potash Mine operated by Cleveland

    Potash

    In the Philippines at the Atlas Mine operated by Atlas

    Consolidated Mining and Development Corporation

    STD TOOLKIT

    2

  • 8/13/2019 01.STDtoolkit.intr

    3/16

    Mining Companies and ConsultantsPromoting STD

    The Mining CompaniesThe main mining companies pushing for STD in the Western

    Pacific region are among the biggest multinational mining compa-

    nies: BHP Billiton, Placer Dome, Newmont (now merged with

    Franco-Nevada and Normandy), Inco, Falconbridge, and Rio

    Tinto. Many of these companies are notorious for the trail of disas-

    trous mining projects they have left behind around the globe (Ok

    Tedi, Marcopper, Grasberg, Bougainville). In February 2001, BHP,

    Placer Dome, Newmont, Rio Tinto, Western Mining Corporation,

    Anglo American, and Falconbridge organized a meeting in

    Vancouver, Canada, with several non-governmental organizations

    to discuss STD, an indication of the concern that companies have

    about public opposition. Nonetheless, industry representatives at

    the meeting insisted that STD should be evaluated on scientific

    grounds only and that science proves that STD is an acceptable

    waste-disposal option. They said that they will continue to practice

    STD.6 (See: Science and Submarine Tailings Disposal)

    Introduction

    3

    Indonesia Awak Mas Sulawesi Mas Mindo Mining

    Toka Tindung Sulawesi AuroraGag Island BHP Billiton, PT Gag Nickel

    Central Malaku Ingold, an associate of Inco

    Halmahara, North Maluku Weda Bay Minerals and PT A neka Tambang

    Jember, East Java PT Jember Metals and PT Banyuwangi Minerals

    Banyuwangi, East Java PT Jember Metals and PT Banyuwangi Minerals

    East Java PT Jember Metals and PT Banyuwangi

    Papua New Guinea Simberi Island Nord Australex

    Woodlark Highlands Pacific

    Ramu Highlands Pacific

    Philippines Tampakan, Mindanao Previously Western Mining Corp.

    Mindoro Oriental Crew Development Corporation

    Kingking, Mindanao not available

    Rapu Rapu Lafayette

    Solomon Islands Bugotu Mine Bogotu Nickel

    Fiji Namosi Mine Nittetsu Mining Co. Ltd.

    New Caledonia Boa-Kaine Iscor

    Nakety Argosy Minerals Inc.

    Prony not available

    Koniambo FalconbridgePanama Petaquilla Irian Resources, Teck & Inmet Mining

    Note: It appears that public protest has prevented the Rapu Rapu mine from getting a permit to use STD; the permit for the mine in

    Mindoro Oriental was withdrawn, (See: The Successful Struggle Against STD in Mindoro, Philippines); and the future of Ramu

    mine is uncertain (see:Ramu nickel cobalt mine). Canadian mining giant Inco planned to use STD at its proposed Goro mine in

    New Caledonia, but they reverted to land based.

    STD is NOT being practiced, or proposed with any realistic chance of success, in the United States, Canada, and Australia. These

    three countries are home to most of the mining companies that want to use STD in the Western Pacific. STD is effectively banned in

    the U.S. and Canada under regulations that protect water and fish. (See:Canadian Legislation on Submarine Tailings Disposal.)

    Australia is considered unsuitable for STD for geological reasons.5

    Country Location Company

    Proposed STD Mines

  • 8/13/2019 01.STDtoolkit.intr

    4/16

    The ConsultantsAll of these mining companies make use of small groups of con-

    sulting firms that specialize in STD, some since the 1970s.

    These firms are: Rescan Environmental Services Ltd. (Rescan),

    Natural Systems Research Environmental Consultants (NSR

    Consultants), Dames and Moore, and Woodward-Clyde. Lesswell known, but active, is Lorax Environmental Services

    (Lorax). Reports from these firms, commissioned by the mining

    companies, are presented to governments and local communities

    as impartial, scientific assessments. But these reports are not

    peer reviewed, they are not published, and they are frequently

    not even available to the public upon request. In fact, these con-

    sulting companies have never been known to advise against

    STD, and they have a professional and financial interest in pro-

    moting STD. These consultants may report on areas of con-

    cern, but they always refer optimistically to mitigation or to

    technical adaptations that can be made - or they refer to con-

    cerns as acceptable risk.Rescan and NSR Consultants have had their hands on almost

    every STD project to date, as well as many more that are being

    planned. Rescan was involved from the start in advising at

    Island Copper, Kitsault, Black Angel, Marcopper, Cayeli Bakir,

    Misima, Minahasa Raya, and many more. NSR Consultants

    have been, and currently, are involved in many STD projects

    and proposals in the Western Pacific (see section: A Look at the

    Industry). In spite of serious problems at many of the mines that

    Rescan has been associated with (for example, Black Angel) and

    is associated with (for example, Minahasa Raya), this company

    discusses the problems with these STD systems as learning

    experiences, turning them into a selling point by arguingRescan has the longest history with STD.

    Importantly, certain individuals in these companies are personal-

    ly involved in promoting STD as a technology. Most notable of

    these are Derek Ellis, Clem Pelletier and George Poling of

    Rescan, Stuart Jones and David Gwyther, of NSR; and Tom

    Pederson, of Lorax. They give talks at conferences around the

    globe and interact with the media. Of greater concern, some

    have presented themselves as independent experts to govern-

    ments trying to decide whether STD is safe for their country.

    They have done this by presenting themselves as academics,such as Tom Pedeson and Derek Ellis, whom have had appoint-

    ments at universities, despite their links to consulting firms.

    Some have even visited communities as independent experts and

    given advice on whether the community should accept STD.

    Derek Ellis of Rescan has made STD his career; he was

    involved in the Island Copper Mine, the very first STD mine.

    But he has also presented himself as an impartial expert advisor

    to governments and communities.

    The Need for Independent Review of Consultants Studies

    Only recently have independent assessments been made of min-

    ing industry consultants studies. Two recent cases indicate that

    such independent assessments should be done more frequently.

    The consultants for Highlands Pacific Ltd. proposed Ramu

    Nickel Cobalt Mine in Papua New Guinea were NSR

    Consultants. Two independent reviews have been done of NSRs

    Environmental Impact Assessmentone in 1999, commissioned

    by the Mineral Policy Institute of Australia, and the other in

    2001, commissioned by the Evangelical Lutheran Church of

    Papua New Guinea. (See Ramu Case Study.) In 2000, the

    United States Geological Survey (USGS) completed an inde-

    pendent study on behalf of the people of Marinduque,

    Philippines who were not comfortable with the assurances of

    Placer Dome and their consultants, Woodward-Clyde, that STD

    would be environmentally benign. (See: The SuccessfulStruggle Against STD in Marinduque, Philippines)

    Written by Catherine Coumans, MiningWatch Canada

    STD TOOLKIT

    4

    1 Environmental Mining Council of British Columbia.Acid

    Mine Drainage: Mining and Water Pollution Issues in

    BC. 1998. p. 3.

    2 Submarine Tailings Disposal is now also being called

    Managed Submarine Tailings Placement and Deep Sea

    Tailing Placement. While the industry is trying to imply

    greater control over the tailings, these terms all cover

    the same process: dumping mine waste into the sea

    through a submerged pipe.

    3 Zandee, D. Tailing Disposal at Marcopper Mining

    Corporation. Asia Mining. p. 35-45. 1985.

    4 US Department of the Interior. Potential for Submarine

    Tailings Disposal to Affect the Availability of Minerals

    from United States Coastal Areas. Bureau of Mines,

    OFR 101-93. 1993.

    5 Jones, Stuart and David Gwyther.Deep Sea Tailing

    Placement. 2000. p. 7.

    6 Summary to MiningWatch Canada from NGO participants

    in a multi-stakeholder meeting called, Deep Sea Tailings

    Disposal in Vancouver, February 27, 2001.

  • 8/13/2019 01.STDtoolkit.intr

    5/16

    Most of the scientific studies on Submarine Tailings Disposal

    (STD) have been paid for by mining companies wanting to use

    STD technology to dump mine waste into the ocean. Most ofthis scientific work has been done by a handful of environmental

    consulting companies that specialize in STD science and tech-

    nology. These include Dames and Moore, Woodward-Clyde,

    Rescan Consultants Inc. (Rescan), Natural Systems Research

    Consultants (NSR), and Lorax Environmental Services.

    Some of these companies offer cradle to grave services, mean-

    ing they conduct studies mining companies need to get environ-

    mental permits from governments, including baseline studies; they

    conduct monitoring studies during the life of the mine; and when

    the mine is ready to close down, they conduct closure studies.

    These studies are not peer reviewed, not published, and fre-quently not available to the public. In a clear conflict of interest,

    these consultants also sometimes act as independent advisors to

    governments on the science and technology of STD. There are

    too few independent scientific studies on various aspects of STD

    and too few independent site specific reviews of the

    Environmental Impact Assessments produced by mining indus-

    try consultants.

    Mining companies and their consultants commonly make the

    following arguments:

    1. Science and technology are the only things a community

    should consider when trying to decide if STD is an acceptableoption for mine waste disposal.

    2. Mining companies now have the scientific ability to evaluate a

    site on its environmental acceptability for STD.

    3. Mining companies have the technology to implement STD in

    a way that makes it safe for the marine environment.

    These mining industry assertions are not true.

    Whether or not STD should be used is simply not a matter of sci-

    ence; its a matter ofsocial acceptability, both at the government

    and local community level. What level of predicted damage to

    the marine environment is a community willing to accept? What

    level of risk of unpredicted(and unpredictable) damage are the

    people who will be immediately affected willing to accept?

    Too often, it is impossible for communities to consider these

    options because information about risks associated with a proj-

    ect are not made available to them. Too often, communities are

    given a choice between land-based risks and risks of ocean dis-

    posal and are not presented with development choices that are

    alternatives to mining.

    In every known case of STD, scientific predictions and state-of-

    the art technology have not been able to protect marine environ-

    ments from serious predicted impacts (such as the smothering oforganisms on the sea bottom), as well as the risks of unpredicted

    impacts. Every STD system to date has suffered documented,

    unpredicted environmental damage or system failures.1

    Limits to ScienceSTD poses such a high degree of risk for substantial unpredicted

    and unpredictable long term impacts because little is known

    about the deep-sea ecosystem. New and unexpected discoveries

    are being made all the time, such as the discovery of living

    organisms near hot thermal vents, the discovery of 263 species

    of fish and 37 species of sharks and rays in the deep sea (230-

    1,860 meters depth) of New Caledonia of which 40% were newto science2, and the discovery of pinnacle reefs at depths of

    80-100 meters.3 These reefs are believed to play a crucial role as

    a spawning ground for fish. They are also at a depth at which

    most mine consultants say it is safe to start discharging tailings.

    Because so little is known about deep sea ecosystems, its benthic

    organisms (those on the seafloor) and the role they play in the

    vertically integrated food chain in the ocean, it is reckless to

    assume the impact of hundreds of thousands of tons of metal

    enriched tailings will not be detrimental. Adopting the

    Precautionary Principal, STD should not be considered until the

    deep-sea ecosystem has been thoroughly studied by independent

    scientists so that its ecological role and value is better understood.

    Technology by which to study the sea is improving, enabling sci-

    entists to better assess and recognize unacceptable environmental

    impacts not previously thought to be detrimental.4 Current tech-

    nology still cannot adequately model the deep-sea ecosystem

    well enough to provide information about impacts of tailings in

    the sea over many years. For example, scientists recognize that

    we simply do not have the ability to adequately model water

    movement and sediment movement sufficiently to be able to

    forecast exactly how solids will disperse in the sea over time.5 In

    addition to scientific deficiencies, there are also technological

    weaknesses in STD systems. (See: Pipe Breaks below.)

    Many impacts of STD have not yet been studied and many ques-

    tions remain unanswered. For example:

    No research has been done on the effects of tailings on biolu-

    minescence, the ability of some marine organisms to manufac-

    ture their own light in order to find food.6

    No answer exists to the question of what would happen to tail-

    ings on the sea bottom during an earthquake at sea.

    Science and STD

    5

    Science and Submarine Tailings Disposal

  • 8/13/2019 01.STDtoolkit.intr

    6/16

    No answer exists to the question of how to control or mitigate

    damage if an STD system fails, if unexpected upwelling

    occurs or if a pipe breaks, spreading tailings into shallow,

    coral-rich areas.

    Known Risks Related to STDIn discussions with local communities and governments, mining

    companies and their consultants make claims about the environ-

    mental acceptability of STD and they claim STD, or Deep Sea

    Tailing Placement is proven technology.7 But there are known

    risks related to STD that mining companies and their consultants

    either do not discuss with local communities or tend to minimize

    their severity by speaking of mitigating measures that can be

    taken or good monitoring systems that will warn people when

    a problem does occur. Especially during the pre-permitting

    phase, there is not enough transparency about the risks associat-

    ed with STD.

    What Mining Companies and ConsultantsClaim

    If de-aerated tailings mixed with sea water are deposited by pipebelow the mixed surface layers, below the euphotic zone, and

    below a thermocline onto a sea bed with a sufficient slope so

    that the tailings flow through gravity into the deep waters of the

    ocean, then tailings will stay together in a density current like

    toothpaste. Companies and consultants claim that tailings will not

    be able to come back up above the thermocline, will not signifi-

    cantly leach out metals, will not damage corals and will not nega-

    tively affect marine organisms, fish in general or particularly

    species that make up part of the human food chain.8

    STD TOOLKIT

    6

    Plume Shearing: Tailings do not stay together in a densitycurrent. When tailings leave the pipe to enter the sea, fine tail-

    ings particles always break off from the main stream and float

    away. This is called plume shearing. These tailings are some-

    times caught between ocean layers and can travel this way for

    many kilometers.9 If they take on a rotation, tailings may maintain

    their density for hundreds of kilometers.10 Plume shearing can also

    happen when discharged tailings encounter discontinuities or

    places in the ocean where two layers of water meet with different

    temperature or density. Plume shearing exposes heavy metals to

    the food chain because fish either ingest tailing particles whole or

    take up leached metals through their gill membranes.11 Plume

    shearing also increases turbidity (makes water less clear), inhibit-ing photosynthesis by reducing the amount of light that penetrates

    into the water column. It also drives away some commercially

    valuable fish species (such as tuna) and poses a threat to fish

    because tailings contain sharp and pointy particles that may dam-

    age fish skin and gills and cause infection.12

    The Misima Mine, Papua New Guinea: Owned by Canadian

    mining company Placer Dome, the Misima mine is often held

    up as a model of how an ideal STD system should work.

    However, plume shearing at the Misima mine happens at a

    112-meter depth, where the tailings leave the pipe and also at

    depths between 150 and 1,000 meters. Deepwater snapper, an

    edible species of fish, swim between 100-300 meters depth, so

    metals in the tailings that shear off may be absorbed by the

    snapper and passed up the food chain to people.13 The degree

    of turbidity is measured by the amount of Total Suspended

    Solids (TSS) in the plumes. TSS in plumes from the Misima

    Mine can be as high as 51 milligrams per liter (mg/l).

    Consultants for Misima (NSR Consultants) minimize this num-

    ber by saying that the TSS is only 51 mg/l,14 but this is far

    higher than allowable under Canadian law. (See: Canadian

    Legislation on Submarine Tailings Disposal.)

    Thermoclines and Upwelling: A thermocline is a layer inthe ocean where the temperature changes rapidly. The water above

    and below the thermocline differs significantly in both temperature

    and density and acts as a natural barrier between two layers.

    Mining companies often present the thermocline as a natural and

    impermeable barrier that will keep tailings out of the mixed sur-

    face layers of the ocean. In fact, thermoclines are not necessarily

    stable barriers. They may become thicker or thinner at different

    times of the day or year, and they may come and go with seasons.

    There may be multiple thermoclines in some places while others

    will not have any. Studies by Professor Rizal Max Rompas from

    Sam Ratulangi University indicate that there is no thermocline in

    Buyat Bay, Sulawesi, Indonesia, where Newmont says it is dispos-

    ing tailings at a depth of 82 meters from its Minahasa Raya mine.

    Studies show that the thermocline throughout Indonesian waters is

    deeper than 150 meters.15 Independent scientists have also shown

    that there are a lot of sources of energy at work in the sea that can,

    in fact, push deeper water back up through the thermocline into the

    more shallow and biologically productive layers of the sea.16 This

    is known as upwelling. In addition to upwelling-favourable sur-

    face winds, other sources of energy include internal waves, bottom

    currents on a sloping seabed, and tidal flows, as well as more

    unusual events such as earthquakes at sea or tsunamis.

    Proposed Ramu Mine, Papua New Guinea: An independentstudy found that in Astrolabe Bay, in the Madang Province, a

    bottom current moving towards the shoreline, with mid-depth

    currents moving offshore, is suggestive of upwelling, and this

    can not be ruled out on the available evidence.17 This study

    also found that internal waves could act as periodic pumps

    to bring some of the STD slurry to much higher levels, where

    other processes could bring it higher yet.18In 1999, an inde-

    pendent study by the Mineral Policy Institute stated that: If

    this occurs it will have a significant impact on the productivity

    and ecology of Astrolabe Bay and the Madang coastline.19

    What we know

  • 8/13/2019 01.STDtoolkit.intr

    7/16

    BioAvailability of Dangerous Metals andChemicals: Tailings that contain sulfides are prone to oxida-tion, acid drainage, and metal leaching. Metals leaching out of

    tailings in the sea are a problem because they may become

    bioavailable, meaning they may be absorbed by marine life and

    accumulate in the food chain, potentially affecting the health ofmarine life and of people who rely on food from the sea. Mining

    consultants argue that putting tailings in seawater largely solves

    these problems because there is less oxygen available in seawater

    (so slower oxidation) and seawater is alkaline (which counters

    acidity). These two factors prohibit acid drainage and metal leach-

    ing.20 Consultants also say that by de-aerating tailings (removing

    some oxygen), before they are piped into the sea and by deposit-

    ing them in the deep sea, which has less oxygen than the mixed

    surface layers, the problem of metal leaching is essentially solved.

    However, in addition to plume shearing and upwelling (see

    above), the following describes how STD still does introduce dan-

    gerous metals and chemicals into the marine environment.

    Readily Available Metals in Tailings Effluent:Dangerous metals that are already dissolved, or otherwise avail-

    able in tailings, may be introduced to the sea immediately when

    tailings leave the pipe, such as at the Misima Mine.

    Misima Mine, Papua New Guinea: In the case of Placer

    Domes Misima gold mine the tailings contain residual cyanide

    from the gold extraction process. Before being released into the

    sea the tailings are first diluted on shore with seven parts of sea-

    water to one part tailing in a mixing tank to reduce the con-

    centration of cyanide and other contaminants.21Even after this

    dilution, the tailings contain such high levels of cyanide that they

    do not meet Papua New Guineas water quality criteria for

    seawater.22 Therefore, Placer Dome was granted a very large

    area in the sea around the outfall of the pipe, called a mixing

    zone, within which the seawater is polluted with cyanide and

    other chemicals at levels not otherwise allowed by Papua New

    Guinea.23 This mixing zone in the sea extends 42 meters above

    the end of the pipe (which is at a 112 meter depth), and 488

    meters below the pipe. The mixing zone is about 2.5 km wide at

    the top, tapering down to about a kilometer wide at the bottom.

    In addition to available cyanide, at the boundaries of the mixing

    zone, copper levels exceeded United States Environmental

    Protection Agency (USEPA) criteria, and lead levels exceeded

    Australian and USEPA criteria fortotal metal analysis.24

    Pipe Breaks: Pipes that transport tailings to the sea are noto-rious for breaking and leaking tailings, both on land and in the

    sea. Part of the problem is that tailings are very abrasive. At sea,

    pipes are also vulnerable to landslides, shipping, storms, and

    tsunamis. When pipes break at sea this can have a serious

    impact on shallow and coral-rich areas. Pipe breaks are not only

    a characteristic of old STD systems, but of every STD system.

    When pipes break at sea the spilled tailings can have a serious

    impact on marine life in the shallow areas and on coral reefs.

    Minahasa Raya, Indonesia: Pipes have broken in the newest

    STD systems, such as at Newmonts Minahasa Raya Mine in

    Indonesia. The pipe broke at sea in 1998, first at 46 meters

    depth and later at 10 meters depth, seriously impacting coral

    reefs and marine life. A team of researchers led by Prof. Rizal

    Max Rompas from Sam Ratulangi University stated, The min-ing activities of PT. Newmont Minahasa Raya in Minahasa

    regency and Bolaan Mongondow need to be reviewed. High lev-

    els of several toxic compounds were found at Buyat Bay. The

    amount of toxic compounds in seawater has reached over the

    tolerable threshold allowed by government law, PP no 20,

    1990. Moreover, the research has found some indication of con-

    tamination of the planktons and pelgic fish live in that area

    Highly toxic compounds in Buyat Bay include those which are

    bio-accucumulative and carcinogenic. 25

    Misima Mine, Papua New Guinea: Pipes have also broken at

    what many in the mining industry consider to be a model STD

    mine, Placer Domes Misima Mine in Papua New Guinea. Thetailings pipe at Misima broke in 1997, at 55 meters depth, and

    again, in 2001, at 13 meters depth. It took Placer Dome six

    months before the pipe was fixed in 1997. Placer did not fix the

    pipe break of December 2001 until February 20, 2002. During

    each of these pipe breaks at sea, cyanide and metal enriched

    tailings particles were pumped into the shallow, oxygenated,

    euphotic zone that is abundant with sea life. Furthermore, by

    releasing tailings and cyanide at the shallow depths of 55

    meters and 13 meters, Placer Dome was no longer in compli-

    ance with the conditions of its permit as these shallow areas

    fall outside of the mixing zone Placer was granted.

    Batu Hijau, Indonesia: This mine started in 1999 and has

    already had two pipeline breaks because of inadequate pipe

    materials and quality control.

    Atlas Copper Mine, Philippines: The pipeline was wiped out

    by a typhoon.

    Metal Solubility and Availability in Seawater: Whenexposed to oxygen, sulphides in tailings can oxidize and, in com-

    bination with water, produce acids that can leach metals out of

    tailings. STD proponents26 argue that these metals will leach out

    less readily under water, where there is less oxygen. But some

    metals are actually quite soluble in seawater, even in deep, less

    oxygenated seawater, as became apparent in the case of the BlackAngel Mine. Should metals find their way to the more oxygenated

    surface layers through upwelling, plume shearing, or pipe breaks,

    then oxidation and leaching is likely for certain metals, as shown

    through the research on tailings in the sea at historic copper mines

    in Newfoundland. Independent scientists also predict metal leach-

    ing from tailings in the case of the proposed Ramu Mine.

    Black Angel Mine, Greenland: Golder Associates have

    noted that even in the case of the Black Angel Mine, where

    tailings were deposited in a deep fjord, assumptions about

    Science and STD

    7

  • 8/13/2019 01.STDtoolkit.intr

    8/16

    the potential solubility of the ore minerals in a marine envi-

    ronment proved to be wrong. Although the sulfide minerals

    were considered to be insoluble, the soluble hydroxide, car-

    bonate and sulfate phase of Cu [copper], Pb [lead], Zn

    [zinc], and Cd [cadmium] that formed during the milling

    process were quickly released to the seawater as tailingswere deposited into the nearby fjord.27

    Historic Copper Mines in Newfoundland, Canada: A three

    year, ongoing study by scientists from Natural Resources

    Canada, Fisheries and Oceans Canada, and Memorial

    University of Newfoundland aims to study the chemical and

    eco-toxicological impacts of tailings that were deposited in the

    near shore environment by two copper mines in the 1950s and

    1960s. A paper presented in 200128 represents their initial find-

    ings, which include the following: That even though oxygen is

    reduced by a water cover, some sulfide minerals may actually

    leach out metals more easily in salt water because chemical

    reactions that produce an electric current are enhanced by thesalt. The extent of weathering [of tailings] in many cases

    appears to be more intensive in the saline versus fresh water

    medium, likely because the former is a stronger electrolyte to

    enhance the electron transfer process. In addition, data clearly

    show that Pb [lead] leaching is enhanced under saline versus

    fresh cover. Ni [nickel] leaching also appears to be enhanced

    under a saline water cover while the data for Cu [copper] and

    Zn [zinc] are inconclusive. This study also shows that metals

    from these tailings that were dumped in the sea did appear to

    bioaccumulate in marine life: Concentrations of Cu [copper],

    V [vanadium], Mn [manganese], Co [cobalt], and Fe [iron],

    were significantly higher in the soft tissue of blue mussels(Mytilus edilis) and soft shelled clams (Myra arenaria) in the

    vicinity of Little Bay [tailings site] compared to the control site.

    Significant species effects were also detected with the blue mus-

    sels generally having higher concentrations of all metals

    Seaweed species Fucus anceps and Ascophyllum nodosum from

    the Little Bay area displayed similar patterns of enrichment.

    Proposed Ramu Mine, Papua New Guinea:According to

    Gregg Brunskill, an independent scientist who has reviewed

    the studies of NSR Consultants for the proposed Ramu Nickel

    Cobalt mine, one has to expect a zone of very unusual sea-

    water chemistry within a radius of about 1 km (landward and

    seaward) of the pipeline orifice.29

    He states, There will bevery high concentrations of ammonia (being oxidized by bac-

    teria to nitrate), sulfate, Mn, and enhanced metal concentra-

    tions (Ni, Cr, Co, Hg, and Cd) in the dissolved phase.Of the

    abundant trace metals in the sediment, Cr (6) may be the most

    soluble in oxygenated seawater. Ammonia and nitrate are

    powerful fertilizers in nutrient deficient tropical coastal

    waters.30 Brunskill notes there will be a very large oxida-

    tion power from the high concentrations of MnOOH and

    FeOOH. Some releases of all trace metals in tailings tooxic

    andanoxicpore water and oxic overlying sea water can be

    expected.31 (idem). Brunskill also notes that the impact of

    a trend of more frequent El Nino events in the area suggests

    cooler surface waters in the Bismarck Sea, and deeper mixing

    of the surface waters off the north coast of Papua New

    Guinea which means the oxygenated layers in which metalsmore readily leach out will penetrate more deeply than cur-

    rently modeled by NSR consultants.

    Metal Uptake in Organisms from UndissolvedMetals in Tailings: Metals can accumulate in marine organ-isms even if tailings are not oxidized and leaching metals. If,

    through a pipe break, upwelling, or plume shearing, tailings end

    up in shallow areas where marine life is abundant, then metals

    can be absorbed through absorption of whole tailings, as has

    apparently been the case at the Marcopper Mine.

    Marcopper Mining Corporation, Philippines:Researcher

    C.P. David has been able to show that unoxidized tailings

    entered the near-shore environment because of a tailings spill

    at Placer Domes Marcopper mine in 1996. This rapidly led to

    an increase in concentrations of copper, manganese and iron

    in Ihatub corals. The spike in copper concentrations

    observed in the 1996-1997 growth bands of the Ihatub corals

    are attributed to the input of mine tailings into the near-shore

    environment starting in 1996. This increase is quite distinct as

    it is 5 to 7 times that of the perceived baseline value.32

    Reagents and Floating Chemicals: Reagents and flota-tion chemicals are used to separate desired metals from crushed

    rock. There are not many studies that show the impact on the

    marine environment from reagents mixed with tailings. Butsome of these chemicals are known to increase the solubility of

    metals in the marine environment.33

    Metals Moved Biologically by Vertical Migration:Marine scientist Marcus Sheaves has noted that sea creatures do

    not necessarily confine themselves to one layer or depth of the

    ocean. Therefore, significant volumes of metals from tailings

    deposited at great depths may make their way up to higher sea-

    water levels and into the human food chain through the vertical

    migration from the depths to higher layers by plankton and fish

    that have absorbed tailings or leached metals, and by fish from

    the higher layers traveling down to the lower levels to feed. 34

    Seabed Slope: STD proponents admit that the slope of theseabed must be steep enough to allow tailings to move away

    from the pipe to deeper waters.35 But mining consultants are still

    promoting STD in places that do not meet these conditions.

    Minahasa Raya, Indonesia:At the Minahasa Raya gold mine,

    the pipeline into Buyat Bay lays along the floor of the bay and

    discharges tailings at an 82-meter depth, according to US-

    based Newmont Corporation, the company that owns and

    operates the mine. The seabed is so flat that the tailings create

    STD TOOLKIT

    8

  • 8/13/2019 01.STDtoolkit.intr

    9/16

    a mound around the pipe outfall and ejected tailings bubble

    up creating a volcano-like effect. Consultants for this project

    were Rescan of Vancouver. It is hard to understand why a

    modern mine such as Newmonts Minahasa Raya was given

    permission to be built.

    Proposed Ramu Mine, Papua New Guinea: The seabed at the

    proposed Ramu Mine does not have a steep slope in sections.

    This means that tailings are likely to pile up in places rather

    than flow together in a density current to the deeper parts of

    the ocean. Based on the depth cross-section accumulation

    seems most likely near the discharge point and at around the

    450 m ocean depth contour, where the slope abruptly flattens

    from 16 degrees to 7 degrees. Massive build-up is significant

    because of the potential for subsequent tsunamigenic slump.36

    Marine scientist John Luick warns that a sudden slump of piled

    up tailings could cause a tsunami.37

    Dispersion of Tailings in the Sea:By dispersion of tail-

    ings we mean how widely they are spread in the sea. Consultants

    have not done a very good job of predicting how large the eco-

    logical footprint of tailings in the sea will be. Consulting firm

    Golder Associates note that [o]n the basis of Island Copper

    Mine, Kitsualt Mine and Black Angel Mine, STDs have resulted

    in dispersal of tailings to a greater extent than predicted. This

    applies to dispersal in both deep water receiving environment

    (i.e. bottom of fjord) and in shallow waters.38 Golder Associates

    also admits that, our knowledge of the physics governing solids

    transport is relatively poor. Many models exist for predicting

    movement in the marine environment, however, most of these are

    virtually untested and are indeed based on inappropriate parame-

    terizations [measurable features].39

    Benthic Smothering and Recolonization: We knowthat in all STD systems benthic (sea bottom) marine life is

    smothered and wiped out by tailings. There are very few exam-

    ples of older, discontinued STD systems that we can study to see

    whether tailings can be recolonized with organisms once the

    dumping stops. What evidence we do have from the Island

    Copper Mine and the Kitsault Mine indicates that there may be

    some new creatures that establish themselves on the tailings but

    that they are not the same as the creatures that were there before

    and there is a loss of biodiversity.40 We also know that certain

    species will avoid settled tailings on the seabed, such as yel-

    lowfin sole and tanner crabs.41

    Sustainability: One of the principles of sustainability is touse and reuse the earths resources frugally. STD degrades and

    destroys two resources, the marine environment and earths met-

    als. Not only do we know that STD smothers life, poisons on the

    ocean floor and that it puts potentially lethal and sub-lethal met-

    als into the marine environment, it also places potentially useful

    metals out of our reach. On land, ways are being found to mine

    tailings for the many useful metals they still contain.

    Site Specific Independent Scientific StudiesCan Support Struggles against STDTo date, most of the scientific studies on STD in the tropics have

    been generated by the mining industry and its consultants. This

    means that local governments and communities have almost no

    access to impartial information. However, as more tailings findtheir way into the sea, a growing body of independent scientific

    work on the physical and geo-chemical effects of tailings in the

    marine environment is emerging.

    There are at least two reasons that independent scientific

    research should be encouraged.

    1. Firstly, independent studies are increasingly showing that the

    scientific claims in support of STD, made by the industry and

    its consultants, are based on inadequate and incomplete infor-

    mation. A review of independent scientific research shows that

    the more independent information that becomes available, the

    stronger is the overall scientific argument against STD.

    2. Secondly, calling for an independent scientific assessment of a

    mining companys studies can be a very powerful strategic

    tool in a communitys struggle to stop STD.

    Independent scientific data can play a very important role in

    supporting regulatory authorities who find it hard to turn down a

    permit for STD, especially in cases where this would mean that

    a mine cannot go ahead for environmental or financial reasons.

    The United States Geological Survey (USGS) recently complet-

    ed an independent study on behalf of the people of Marinduque,

    who have been demanding that Placer Dome not use STD on

    their island in the Philippines.

    The USGS report outlines the extensive information that must be

    gathered in order to adequately assess whether STD is an accept-

    able option.42 The USGS found that it appeared that Placer Dome

    had not conducted all necessary studies.43 In fact, gathering this data

    would likely prohibit many projects from going ahead as the costs

    and the time it would take to complete this work would be prohibi-

    tive for many mining companies. The USGS concluded that the

    studies it had been able to review did not provide sufficient evi-

    dence that STD would be environmentally safe. In fact, they con-

    cluded that: Due to the substantial amounts of soluble salts in the

    tailings and the strong ability of chloride in sea water to complex

    metals from tailings, there is considerable potential that a highlyacidic, metal enriched , and environmentally detrimental plume

    would develop in the ocean around the tailings discharge point dur-

    ing tailings disposal.44 In January of 2001, just months after the

    USGS report came out, the Philippine Department of Environment

    and Natural Resources decided not to give a permit for STD and

    Placer Dome finally backed away from the plan to use STD.

    This case and others indicate that a critical scientific assessment

    of studies conducted by mining industry consultants will likely

    Science and STD

    9

  • 8/13/2019 01.STDtoolkit.intr

    10/16

    show that not all necessary data has been gathered, faulty

    methodology has been used, contradictory models have been

    used, and overly optimistic conclusions have been drawn from

    the available data.45

    By Catherine Coumans, MiningWatch Canada

    Reviewed by John Luick, National Tidal Facility,

    Australia, The Flinders University of South Australia

    STD TOOLKIT

    10

    1 This is true for the original STD systems that go back to

    the 1970s, as well as for the most recent systems. It is

    true for Island Copper, Kitsault, the Black Angel Mine,

    Misima, Minahasa Raya, and Batu Hijau etc. See, for

    example, U.S. Department of the Interior Case Studies

    of Submarine Tailings Disposal: Volume II- Worldwide

    Case Histories and Screening Criteria OFR 37-94,

    1994; Golder Associates, 1996. Assessment of Metal

    Mine Submarine Tailings Discharge to Marine

    Environments; Review of the Coral Reef and Nearshore

    Environment, Misima Mine, Papua New Guinea, NSR

    Consultants, Oct. 1999.

    2 Sheaves. M. 2001.In Mineral Policy Institute, A Review

    of the Risks Presented by the Ramu Nickel Project to theEcology of Ast rolabe Bay. P.64.

    3 http://geology.cr.usgs.gov/pub/open-file-reports/ofr-00-

    0397/ p.36

    4 http://geology.cr.usgs.gov/pub/open-file-reports/ofr-00-

    0397/ p.36

    5 Golder Associates, 1996. Assessment of Metal Mine

    Submarine Tailings Discharge to Marine Environments.

    p.43.

    6 New Scientist, November 2000. Tails of Woe. p. 46-49.

    7 NSR Consultants, January 2000. Deep Sea Tailing

    Placement. . 1.

    8 See, for example, the claims made by NSR Consultants,

    January 2000. Deep Sea Tailing Placement. p. 2.

    9 Mineral Policy Institute, February 1999. Environmental

    Risks Associated with Submarine Tailings Discharge in

    Astrolabe Bay, Madang Province, Papua New Guinea. p.

    5.

    10 Luick, J. 2001. In Mineral Policy Institute, A Review of

    the Risks Presented by the Ramu Nickel Project to the

    Ecology of Astrolabe Bay. p. 45.

    11 Sheaves, M. 2001.In Mineral Policy Institute, A Review

    of the Risks Presented by the Ramu Nickel Project to the

    Ecology of Astrolabe Bay. p. 75.

    12 Sheaves, M. 2001.In Mineral Policy Institute, A Review

    of the Risks Presented by the Ramu Nickel Project to the

    Ecology of Astrolabe Bay. p. 75.

    13 NSR Consultants, April 1997. Review of Submarine

    Tailings Disposal: Misima Mine, Papua New Guinea. p.

    10.

    14 NSR Consultants, April 1997. Review of Submarine

    Tailings Disposal: Misima Mine, Papua New Guinea.p.13.

    15 Pariwono, John. August 2, 1999. Suara Pembaruam.

    16 Luick, J. 2001. In Mineral Policy Institute, A Review of

    the Risks Presented by the Ramu Nickel Project to the

    Ecology of Astrolabe Bay. p. 37.

    17 Luick, J. 2001. In Mineral Policy Institute, A Review of

    the Risks Presented by the Ramu Nickel Project to the

    Ecology of Astrolabe Bay. p.40.

    18 Luick, J. 2001. In Mineral Policy Institute, A Review of

    the Risks Presented by the Ramu Nickel Project to the

    Ecology of Astrolabe Bay. p. 42.

    19 Mineral Policy Institute, February 1999. Environmental

    Risks Associated with Submarine Tailings Discharge in

    Astrolabe Bay, Madang Province, Papua New Guinea. p.8.

    20 NSR Consultants, January 2000. Deep Sea Tailing

    Placement. p. 2.

    21 NSR Consultants, April 1997. Review of Submarine

    Tailings Disposal: Misima Mine, Papua New Guinea. p.

    8.

    22 NSR Consultants, April 1997. Review of Submarine

    Tailings Disposal: Misima Mine, Papua New Guinea.

    p.18.

    23 NSR Consultants, April 1997. Review of Submarine

    Tailings Disposal: Misima Mine, Papua New Guinea.

    p.21.

    24 NSR Consultants, April 1997. Review of Submarine

    Tailings Disposal: Misima Mine, Papua New Guinea.

    p.21.

    25 Quoted on Jatam Home page: www.jatam.org April2001.

    26 NSR Consultants, January 2000. Deep Sea Tailing

    Placement. p. 2.

    27 Golder Associates, 1996. Assessment of Metal Mine

    Submarine Tailings Discharge to Marine Environments.

    p.54.

    28 Blanchette, M.C., et al, 2001A Chemical and

    Ecotoxicological Assessment of the Impact of Marine

    Tailings Disposal. Published in Proceedings from the

    Fort Collins Tailings and Mine Waste conference by

    Balkema.

    29 Brunskill, Gregg J. 2001. In Mineral Policy Institute, A

    Review of the Risks Presented by the Ramu Nickel

    Project to the Ecology of Astrolabe Bay. p. 52.

    30 Brunskill, Gregg J. 2001. In Mineral Policy Institute, A

    Review of the Risks Presented by the Ramu NickelProject to the Ecology of Astrolabe Bay. p. 52.

    31 Brunskill, Gregg J. 2001. In Mineral Policy Institute, A

    Review of the Risks Presented by the Ramu Nickel

    Project to the Ecology of Astrolabe Bay. p. 52.

    32 C.P. David, 2000, Tracing a Mine Tailings Spill Using

    Heavy Metal Concentrations in Coral Growth Bands:

    Preliminary Results and Interpretation. Coral Reef

    Symposium Proceedings, Bali, Indonesia.

    33 Golder Associates, 1996. Assessment of Metal Mine

    Submarine Tailings Discharge to Marine Environments.

    p.54.

    34 Sheaves, M. 2001.In Mineral Policy Institute, A Review

    of the Risks Presented by the Ramu Nickel Project to the

    Ecology of Astrolabe Bay. p. 73.

    35 NSR Consultants, January 2000. Deep Sea Tailing

    Placement. p. 3.

    36 Luick, J. 2001. In Mineral Policy Institute, A Review of

    the Risks Presented by the Ramu Nickel Project to the

    Ecology of Astrolabe Bay. p. 44.

    37 Luick, J. 2001. In Mineral Policy Institute, A Review of

    the Risks Presented by the Ramu Nickel Project to the

    Ecology of Astrolabe Bay. p. 46.

    38 Golder Associates, 1996. Assessment of Metal Mine

    Submarine Tailings Discharge to Marine Environments.

    p. 106.

    39 Golder Associates, 1996. Assessment of Metal Mine

    Submarine Tailings Discharge to Marine Environments.

    p. 43.

    40 Golder Associates, 1996. Assessment of Metal Mine

    Submarine Tailings Discharge to Marine Environments.p. 110.

    41 Sheaves, M. 2001.In Mineral Policy Institute, A Review

    of the Risks Presented by the Ramu Nickel Project to the

    Ecology of Astrolabe Bay. p. 75.

    42 http://geology.cr.usgs.gov/pub/open-file-reports/ofr-00-

    0397/ p. 34-36.

    43 http://geology.cr.usgs.gov/pub/open-file-reports/ofr-00-

    0397/ p. 36.

    44 The USGS report can be found at:

    http://geology.cr.usgs.gov/pub/open-file-reports/ofr-00-

    0397/ p. 2.

    45 Mineral Policy Institute, 2001. A Review of the Risks

    Presented by the Ramu Nickel Project to the Ecology of

    Astrolabe Bay. p. 7.

  • 8/13/2019 01.STDtoolkit.intr

    11/16

    STD Effectively Banned in the USMining companies often say that STD is legal in the United

    States. But the way the Clean Water Actis written, it effectively

    rules out STD as an option for tailings disposal. Although sever-

    al companies have applied for exemptions to the regulations, no

    proposed mining companies in the U.S. have ever approved a

    final plan for submarine tailings disposal. And currently, there

    are no mines operating in the U.S. using STD.

    A statement from the Environmental Protection Agency (EPA)1

    says, Pursuant to provisions of the Clean Water Act (CWA),

    discharges of pollutants into waters of the U.S. require a

    National Pollutant Discharge Elimination System (NPDES) per-

    mit. Effluent limitation guidelines established under the CWA

    prohibit the discharge of process water from new mills into

    waters of the U.S. (including process water contained in tail-ings). The no discharge effluent limitation guidelines are what

    effectively prohibits the use of STD.

    No mines in the United States currently use STD, as the prac-

    tice is prohibited by regulation, says an EPA official.2

    The Clean Water Act: A SummaryThe Clean Water Act(CWA) was enacted in 1948 as the Federal

    Water Pollution Control Act. In 1977, the act was renamed the

    Clean Water Actand in 1991 it was reauthorized.3 It aimed to

    reduce or eliminate the pollution of interstate waters and tributaries

    and clean up surface and underground waters. Currently the CWA

    covers water quality programs, standards and procedures that gov-ern allowable discharges and other aspects of water management.

    The Clean Water Actstrives to restore and maintain the chemi-

    cal, physical, and biological integrity of the nations water. The

    act sets up a system of water quality standards, discharge limita-

    tions, and permits.4 The CWA aimed to attain a level of water

    quality that provides for the protection and propagation of fish,

    shellfish, and wildlife, and provides for recreation in and on the

    water and eventually to eliminate pollutants in navigable waters.

    Before discharging substances into U.S. waters, a permit must first

    be issued through the National Pollution Discharge Elimination

    System (NPDES), which is run under the EPA. To get the permit,

    the EPA must be assured that proposed discharge complies with

    all applicable effluent limitations and water quality standards.5

    Submarine tailings are comprised of effluent waste water andextraction reagents (see: Introduction). This process typically

    contains suspended solids in the range of 200,000 to 600,000

    mg/lover 10,000 times the maximum allowed by law.

    Further Regulations Relevant to STDThe EPA designs discharge standards based on the best pollu-

    tion-control technology that exists for each industry. Existing

    mines are required to conform to best practicable technology

    (BPT) or best available technology (BAT) as defined by the

    EPA. In addition, all new mines must conform to the New

    Source Performance Standards (NSPS), which essentially elimi-

    nate discharge altogether.6

    Discharges that come from a localized source (like a pipe) or

    point source discharges, must conform to the stricter of two

    standards: Technology-based effluent guidelines contained in

    Code of Federal Regulations Title 40 (Protection of

    Environment) or state-regulated water quality standards.

    The total amounts of various substances that may be discharged

    in effluent are listed within the Code of Federal Regulations,

    Part 440, known as the Ore Mining and Dressing Point Source

    Category, Subpart J.

    To achieve its objectives, the CWA embodies the concept of all

    discharges into United States waters being unlawful, unless

    specifically authorized by a permit from the NPDES. The law

    has civil, criminal, and administrative enforcement provisions

    and also citizen suit enforcement, meaning that community

    members can file lawsuits against an operation.7 If granted,

    [t]he permit will contain limits on what you can discharge,

    monitoring and reporting requirements, and other provisions to

    ensure that the discharge does not hurt water quality or peoples

    health. In essence, the permit translates general requirements of

    the CWA into specific provisions tailored to the operations of

    each person discharging pollutants. 8

    By Kevin Dixon, PhD Candidate, Department of Southand Southeast Asian Studies, U.C. Berkeley

    American Legislation

    11

    American Legislation Pertaining to STD

    1United States Environmental Protection Agency, Region

    10, Final Summary Report of Submarine Tailings

    Disposal, Submarine Tailings Disposal Studies for the

    Alaska Juneau Gold Mine Project, Seattle, Washington,

    January 22 1999, p. 10.

    2 McGrath, Patricia, United States Environmental Protection

    Agency Region 10. Discharge Permitting and

    Environmental Assessment Issues Associated with

    Submarine Tailings Disposal for the Alaska-Juneau Mine

    Project, February, 1998, p. 1.

    3 United States Bureau of Reclamation, Federal Water

    Pollution Control Act of 1948 (Clean Water Act) . Online.

    www.usbr.gov/laws/cleanwat.html, April 15, 2002.

    4Ibid.

    5 Ibid.

    6 United States Code of Federal Regulations Title 40,

    Protection of the Environment, Subchapter N, Part 440:

    Effluent Guidelines and Standards, Amendment to Ore

    Mining and Dressing Point Source Category; Effluent

    Limitations Guidelines and New Source Performance

    Standards; Environmental Protection Agency 40 CFR

    Part 440. US GPO via GPO Access. Online:

    http://www.access.gpo.gov/nara/cfr/cfrhtml_00/Title_40/

    40cfr440_00.html, April 14, 2001.

    7 Copeland, Claudia (Specialist in Environmental Policy,

    Environment and Natural Resources Policy Division,

    January 20, 1999; made available by The Committee for

    the National Institute for the Environment).

    Congressional Research Service Report for Congress:

    Clean Water Act: A Summary of the Law. Online:

    http://cnie.org/NLE/CRSreports/water/h2o-32.cfm, April

    15, 2002.

    8United States Environmental Protection Agency, Office of

    Wastewater Management. Permit Issuance Process

    Frequently Asked Questions: What is an NPDES Permit.

    Online: http://cfpub.epa.gov/npdes/faqs.cfm?program_id=1,

    April 15, 2002.

  • 8/13/2019 01.STDtoolkit.intr

    12/16

    Under the Canadian federal Metal Mining Liquid Effluent

    Regulations (MMLER) coastal metal mine operations are not

    permitted to discharge tailings to submarine receiving environ-

    ments.1 Canadas Fisheries Act contains prohibitions against

    the destruction of fish habitat under Section 35, while Section

    36 contains prohibitions against the release of deleterious sub-

    stances, (meaning harmful substances), into waters frequented

    by fish (meaning where fish live).

    In 1977, the Metal Mining Liquid Effluent Regulations

    (MMLER) were enacted under the Fisheries Act and they set

    limits on the percentage of certain metals allowed in mine

    effluent (liquid waste generated from the mine) dumped into the

    environment.

    These regulations mandate that the amount of Total Suspended

    Solids (TSS) released in mine effluent per month may not

    exceed an average of 25 milligrams per litre. This effectively

    prohibits the release of tailings into water frequented by fish,

    as tailings usually have a TSS measure of at least 200,000 to

    600,000 mg/l.

    The Island Copper Mine on Vancouver Island in Canada started

    dumping its tailings into the sea in 1971, as one of the first STD

    mines in the world. Because it was already operating when the

    MMLER regulations were enacted, it fell under conditions set

    out in MMLER that exempted existing operations from the

    MMLER requirements. Island Copper was allowed to continue

    using STD until it closed in 1996.

    Even Tougher Regulation Seals STDs Fate

    New legislation set to go into effect in 2002, called the Metal

    Mining Effluent Regulation (MMER), is a modernization and

    strengthening of the old MMLER regulations. These new regu-

    lations uphold and strengthen legislation banning the release of

    tailings into waters frequented by fish. When they go into effect

    the allowable limit of TSS will become just 15 milligrams per

    liter per month.

    New MMER legislation makes it even more difficult to get an

    exemption for STD. In order to get one, a company will have to

    ask for the MMER regulation itself to be amended, which

    requires approval from the Governor in Council and Cabinet.

    Such a request will also trigger the Canadian Environmental

    Assessment Act and provincial environmental regulations, mak-

    ing a request for an exemption transparent and open to public

    comment.

    The Kitsault Mine: Canadas Only Exceptionunder the old regulationsUnder the old MMLER, if a mining company wanted to dump

    tailings into the sea it had to ask for a unique site-specific exemp-

    tion from the Fisheries Act and the MMLERs. Only one exemp-

    tion has ever been given since the MMLERs came into effect in

    1977 and that was to the Kitsault Mine, in British Columbia,

    Canada. The Kitsualt Mine, managed by a subsidiary of Cyprus

    Amax Metals Company from the US, was exempted and allowed

    to dump tailings into a marine fjord called Alice Arm.

    The Canadian government had to enact special regulationsknown as the Alice Arm Tailings Deposit Regulations to grant

    the exemption. The mine only operated between 1981 and 1982,

    but the exemption caused a national controversy and raised diffi-

    culties for the government. Although the mining industry has

    repeatedly asked for other exceptions to be made, there have

    been none and as a part of the new MMER legislation,

    Environment Canada (Canadas Environment Ministry) has for-

    mally repealed the Alice Arm Tailings Deposit Regulations.

    Environmental Consequences of Kitsault andIsland Copper

    Both in the case of the Island Copper Mine and the KitsaultMine, scientific studies have shown that the tailings did not

    behave as the consultant scientists predicted. Tailings from both

    mines spread more widely than predicted and moved into shal-

    lower and more biologically productive areas. They created

    more turbidity than predicted, driving away mobile species,

    smothering native species, and creating loss of rare organisms

    and reduced biodiversity. In the case of Island Copper, studies

    also show increased bioavailability of metals and bioaccumula-

    tion of metals in local biota.2

    By Catherine Coumans, MiningWatch Canada

    1 Golder Associates Ltd. April 4, 1996. Report on Assessment of Metal Mine Submarine

    Tailings Discharge to Marine Environments. p. 1.

    2 Golder Associates Ltd. April 4, 1996. Report on Assessment of Metal Mine Submarine

    Tailings Discharge to Marine Environments. p. 109.

    STD TOOLKIT

    12

    Canadian Legislation on Submarine TailingsDisposalSTD Effectively Banned in Canada Since 1977

  • 8/13/2019 01.STDtoolkit.intr

    13/16

    Over a period of 26 years NSR has worked on more than 400projects. In particular, NSR has carved out a niche working on

    mining projects involving the dumping of tailings into rivers

    and oceans. Since 1982, NSR has advised companies on 24

    ocean disposal projects which have been clustered in nine coun-

    triesIndonesia (6), Papua New Guinea (5), New Caledonia

    (5), the Philippines (3), Chile (1), Fiji (1), the Solomon Islands

    (1), Cuba (1) and Canada (1).

    NSR goes beyond scientific advice to engage in corporate public

    relations work. In a promotional brochure NSR advertises that

    it provides advocacy support and strategic advice to clients and

    offers environmental services for the planning and permitting of

    new resource development projects, principally for the miningand petroleum industries. This includes education of stake-

    holders with an introductory video on DSTP, strategic advice on

    stakeholder involvement and the negotiation of regulatory/per-

    mit conditions. The type of NSRs work can be seen in the fol-

    lowing portfolio of recent contracts:

    When BHP was desperately seeking to defeat legal action by

    PNG landowners over the impact of tailings dumped in the

    Fly River, NSR was hired to provide assistance.

    NSR advised Placer Pacific on river dumping of tailings in the

    Strickland River from the Porgera mine in Papua New

    Guinea.2

    When NSR was contracted by Minorco Services to advise on

    the proposed Weda Bay Nickel Project on Halmahera Island

    in Indonesias Maluku province in 1998, it advised on the

    ocean disposal of mine wastes as well as on non-technical

    issues i.e., permitting/public opinion/NGOs.3

    When Placer Pacific was seeking Fijian government approval

    for the Namosi project, NSR was brought in to do presentations

    on ocean disposal of mine wastes to government officials.4

    NSR was also hired in 1999 by the Philippine Department of

    Environment and Natural Resources to provide advice to the

    Mines and Geoscience Bureau on the formulation of a DSTP

    policy for the Philippines.5

    Two years earlier, Western Mining Corporation (WMC) had

    hired NSR to advise it of the prospects of ocean disposal of

    mine wastes being used at WMCs controversial Tampakan

    project and the implications on the 1972 London Dumping

    Convention.6

    In 1998 Rio Tinto hired NSR to evaluate environmental issues

    in reopening the Bougainville copper mine.7

    NSR is actively involved in the promotion ofSTD to the mining industry.In a letter from the Director of NSR, Stuart Jones, to the Senior

    Vice President of the giant mining house Anglo American Plc in

    June 2000, this point is made clear:

    You mentioned that there is resistance to the concept of DSTP

    [STD] from your CEO. In my experience we find the same

    reaction in just about every person who has had no prior expo-

    sure to the concept. The senior management and the Board of

    Directors of two of NSRs new clients (Falconbridge and Sherrit

    International) had similar concerns. The approach adopted in

    both cases was for NSR to prepare a short briefing paper and

    then make a detailed presentation to senior management (two

    hours) and a short presentation to the Board of Directors (one

    hour). I did the presentation to Sherritt in February this year

    and both myself and our senior marine biologist (Dr David

    Gwyther) made the presentations to Falconbridge in March of

    this year (both in Toronto). We were told that the effect of the

    presentation was in both cases, that senior management and the

    Board of Directors felt comfortable with the concept of DSTP

    and were happy for DSTP to be consideredIf you think it

    would help we would be pleased make a presentation to your

    CEO on the subject.8

    It is an issue of legitimate public concern to ensure that scientif-ic consultancy firms engaged to provide analysis in the mining

    industry continue to maintain an independence and detachment

    from their clients in the mining industry. It is only when these

    conditions are met that governments, stakeholders and the com-

    munity generally can have complete confidence that scientific

    analysis and reports are provided on a truly independent basis.

    Written by Philip Shearman, PhD Candidate

    1 See also:A review of risks presented by the Ramu Nickel Project to the ecology ofAstrolabe Bay, Mineral Policy Institute. pgs. 3235, 2001.

    2 NSR, Mining in High Rainfall Tropical environments: Project Listing,

    www.nsrenv.com.au, 15 November 1999, page 9.

    3 NSR , Mining: Deep Sea Tailing Placement (DSTP) Project Listing, www.nsrenv.com.au,

    undated

    4 NSR, Deep Sea Tailing Placement: Project Listing, op cit, page 1.

    5 NSR, Deep Sea Tailing Placement: Project Listing, op cit, page 5.

    6 NSR, Deep Sea Tailing Placement: Project Listing, op cit, page 5.

    7 Natural Systems Research Environmental Consultants, Mining in High Rainfall Tropical

    Environments: Project Listing, Online: www.nsrnv.co.au, 15 November, 1999, page 9.

    8 Letter from Stuart Jones, Director, NSR to Dr John Groom, Senior Vice President, Safety,

    Health and Environment, Anglo American plc, London, UK; dated 7 June, 2000.

    A Look at the Industry

    13

    A Look at the IndustryAn analysis of Natural Systems Research Consultants1

  • 8/13/2019 01.STDtoolkit.intr

    14/16

    Overview TextsThe following texts provide information about

    Submarine Tailings Disposal (STD) in general.They provide examples and case studies of par-ticular sites, information about the political,social and environmental context in which STDtakes place, and scientific information aboutSTD.

    Briefing Document, Environment Canada Meetingon Metal Mine Submarine Tailings Disposal,Briefing Document, 952-1928, Simon FraserUniversity-Harbour Centre, Vancouver, B.C.,March 22nd 1996. [This is a Canadian govern-ment text.]

    Moody, R. Into the Unknown Regions: The Hazardsof STD. April 2001. International Books,Utrecht, Netherlands. [This is an excellent criti-cal overview of the current status of STD, its

    politics and players.]

    National Academy of Sciences, Disposal in theMarine Environment: An OceanographicAssessment, Published by NAS, 1976.

    Proceedings from the International Conference onSubmarine Tailings Disposal, April 23-30, 2001,Manado, Indonesia, forthcoming from JATAM,Jakarta, Indonesia. [This forthcoming volume of

    proceedings will cover social, scientific, legisla-tive and global political and economic aspectsof STD.]

    Salomons, W. and U. Forster (eds). 1988. Chemistryand Biology of Solid Waste, Dredged Materialand Mine Tailings. Springer-Verlag, Germany.[This volume is a frequently referred to sourceof papers on STD. Some are by authors whoalso make their living as mining industry con-

    sultants on STD, for example, Ellis, D. CaseHistories of Coastal and Marine Mines.]

    The Rawson Academy of Aquatic Science, July 21,1992. A Critical Review of MEND StudiesConducted to 1991 on Subaqueous Disposal ofTailings. [Some of these studies were conductedby mining industry consultants who make theirliving preparing studies for STD systems. Forexample Rescan Environmental Services Ltd.]

    U.S. Department of the Interior 1993. Case Studiesof Submarine Tailings Disposal: Volume 1-North American Examples, OFR 89-93. [Thistext is a useful overview of STD mines. It hasthe appearance of being an impartial review, butit has a lot of input from the mining industryand the consultants they hire for STD systemsand this is reflected in the text.]

    U.S. Department of the Interior. OFR 37-94, 1994.Case Studies of Submarine Tailings Disposal:Volume IIWorldwide Case Histories andScreening Criteria. [This text is a usefuloverview of STD mines. It has the appearanceof being an impartial review, but it has a lot ofinput from the mining industry and the consult-ants they hire for STD systems and is reflectedin the text.]

    USEPA, Subaqueous Disposal of Mine Tailings: ALiterature Review, July 1995. (See EPAContract No. 68-W4-0030).

    Independent Scientific StudiesA major problem at the moment is that there are not

    enough independent scientific and social studiesthat have been done on the actual and potentialimpacts of STD. Most STD studies are stillbeing done by mining industry consultants whoare being paid by the industry. Many of theseconsultants have made careers by promotingSTD. These studies are not peer reviewed, theyare not always published, and sometimes miningcompanies refuse to provide them to the public.

    The following documents represent some of theimportant independent studies that do exist. Notsurprisingly, they raise numerous serious con-cerns about the actual and potential physical,biological and chemical effects of STD.

    On Island Copper, Canada (closed)Assessment of Metal Mine Submarine Tailings

    Discharge to Marine Environments. GolderAssociates Ltd., Burnaby, British Columbia,Canada. Submitted to Environment Canada,Environmental Protection Branch. April 4,1996. [A study commissioned by the governmentof Canada.]

    Goyette, D. and Nelson, H. 1977. MarineEnvironmental Assessment of Mine WasteDisposal into Rupert Inlet, British Columbia(Surveillance Report/EPS PR 77-110). Fisheriesand Environment Canada. [Government ofCanada]

    Goyette, D., Marine Tailings Disposal Case Studies,Environmental Protection Service, PacificRegion, Vancouver, B.C., Presented at: MiningEffluent Regulations/Guidelines and Effluent

    Treatment Seminar, Banff,Alberta, Dec. 9-10, 1975.

    Marshall, I.B. 1982, Mining Land Use and theEnvironment. Environment Canada. (see p.181.) [Not a study itself but a summary of con-clusions from other studies.]

    Thompson, J.A.J., Paton, D.W. 1975. Chemicaldelineation of a submerged mine tailings plumein Rupert and Holberg Inlets, B.C. FisheriesResearch Board of Canada Technical Report.

    Thompson, J.A.J., Paton, D.W. 1976. Further Studiesof Mine Tailings Distribution in Howe Sound,B.C., Fisheries Research Board of Canada,Manuscript Report Series, No. 1383, PacificEnvironment Institute, West Vancouver, B.C.

    Waldichuk, M. and Buchanan, R.J. 1980Significance of Environmental Changes due toMine Waste Disposal into the Rupert Inlet.Fisheries and Oceans Canada, British ColumbiaMinistry of Environment.

    On Black Angel, Greenland (closed)Asmund, G. Bollingberg, H.J., and Bondam, J. 1975.

    Continued environmental studies in Qaumaujukand Agfardlikavsa fjords. Greenland Geol.Survey. Greenland report 80:53-61.

    Bollingberg, H.J. and Johansen, P. 1979. Lead inspotted wolf-fish, Anarhichas minor, near alead-zinc mine in Greenland. J. Rish.Res.Bd. of

    Canada, 36:1023-1028.

    Loring, D. H. and Asmund, G. 1989. Heavy metal

    contamination of a Greenland Fjord by minewastes. Environmental Geology and WaterScience, Vol 14: 61-71.

    On Kitsault, Canada (closed)Changes in marine benthic community structure in

    Alice Arm (1977 to 1995) after ceasing molyb-denum mine tailings discharge. RegionalMaunscript Report 97-01. Prepared by Dr.Brenda J. Burd for Environment Canada,Environmental Protection Branch. March 1997.

    Demill, D., Environmental Protection ServiceEnvironment Canada, Pacific Region,Environmental Studies in Alice Arm andHastings Arm, Part V Baseline and InitialProduction Period-AMAX/Kitsault Mine-Submersible Observations and Otter Trawls,1980-1982, EPS-PR-83-05, 1983.

    Goyette, D., Christie, P. 1982. EnvironmentalProtection Service Environment Canada, PacificRegion, Environmental Studies in Alice Armand Hastings Arm, British Columbia, Part IIIInitial Production Period, AMAX/KitsaultMine-Sediment and Tissue Trace Metals, May-June and October, 1981,

    Regional Program Report 82-14, November 1982.

    Goyette, D., Thomas, M., Heim, C. 1985.Environmental Protection Service EnvironmentCanada, Pacific Region, Environmental Studiesin Alice Arm and Hastings Arm, BritishColumbia, Part IV-AMAX/Kitsault

    Mine-Transmissometry and Water Chemistry-July

    and October, 1982, Regional Program Report85-03, March 1985.

    On Ramu, Papua New Guinea(proposed)Brunskill, G.J. Critique of geochemical and sedi-

    mentation aspects of the Ramu Nickel JointVenture proposal for deep sea tailings disposalin Astrolabe bey and the Vitiaz Basin, PapuaNew Guinea. In, Mineral Policy Institute, Areview of risks presented by the Ramu NickelProject to the ecology of Astrolabe Bay, 2001.

    Luick, J. L. 2001. A review of the physical oceanog-raphy of Arolabe Bay and coastal northeastPapua New Guinea with reference to the pro-posed submarine dischsarge of mine wastes. InMineral Policy Institute, A review of risks pre-

    sented by The Ramu Nickel Project to the ecol-ogy of Astrolabe Bay, 2001.

    Mineral Policy Institute, 1999. Environmental Risksassociated with Submarine tailings discharge inAstrolabe Bay, Madang Province, Papua NewGuinea: A discussion paper commissioned bythe Mineral Policy Institute, Sydney, Australia.February.

    Mineral Policy Institute, 2001. Areview of risks pre-sented by The Ramu Nickel Project to the ecol-ogy of Astrolabe Bay.

    Sheaves, M. 2001. An analysis of the ecology ofAstrolabe Bay in relation to the Ramu Nickel

    STD TOOLKIT

    14

    Submarine Tailings Disposal Literature Review

  • 8/13/2019 01.STDtoolkit.intr

    15/16

    Literature Review

    15

    Cobalt Mine. In Mineral Policy Institute, Areview of risks presented by The Ramu NickelProject to the ecology of Astrolabe Bay, 2001.

    Ursula Kokolo et al, National Fisheries Authority,Fisheries Management and Industry SupportDivision Recommendations on the RamuNickel Project Environmental Plan Port

    Moresby, March 31, 1999.

    On Marcopper, Philippines (closed)David, C.P. 2000. Tracing a Mine Tailings Spill

    Using Heavy Metal Concentrations in CoralGrowth Bands: Preliminary Results andInterpretation. Coral Reef SymposiumProceedings, Bali, Indonesia. In Press

    David, C.P. 2000. Heavy metal concentrations insediments from a near-shore marine environ-ment impacted by a mine tailings spill,Marinduque Island, Philippines. J ApplGeochem, in review.

    United States Geological Survey, 2000. AnOverview of Mining-Related Environmental andHuman Health Issues, Marinduque Island,

    Philippines: Observations from a Joint U.S.Geological SurveyArmed Forces Institute ofPathology Reconnaissance Field Evaluation,May 12-19, 2000. U. S. Geological SurveyOpen-File Report 00-397

    This report is available online at:http://geology.cr.usgs.gov/pub/open-file-reports/ofr-00-0397/

    On Atlas Mine, Philippines (operating)Alino, P.M. 1984. The effects of mine tailings on the

    structure of coral communities in Toledo, Cebu.Presented during 3rd Symposium on OurEnvironment, Signapore, 27-29th March.

    On Minahasa Raya, Indonesia

    (operating)Kumurur, V.A. 2001. Tentang posisi pipa buanganmenurut peta Bakorsurtanal. Page. 39-42 inAnonymous (ed.). Minamata ke Minahasa:Pencemaran lingkungan di Teluk Buyat akibataktivitas pertambangan PT. Newmont MinahasaRaya. Walhi Sulawesi Utara.

    Lasut, M.T. & L.L. Lumingas. 1998. Akumulasilogam pada beberapa jenis biota laut di perairansepanjang semenanjung Minahasa, Prop.Sulawesi Utara. Laporan Penelitian. FakultasPerikanan & Ilmu Kelautan. Dibiayai olehProyek Pengkajian dan Penelitian IlmuPengetahuan Dasar Tahun 1997/98 dengan kon-trak nomor: 52/PPIPD/DPPM/97/PPIPD/1997.16 hal.

    Lasut, M.T. & V.A. Kumurur. 2001. Penurunan kual-itas lingkungan perairan Teluk Buyat akibataktifitas tambang PT. Newmont Minahasa Raya.Page 15-20 in Anonymous (ed.). Minamata keMinahasa: Pencemaran lingkungan di TelukBuyat akibat aktivitas pertambangan PT.Newmont Minahasa Raya. Walhi SulawesiUtara.

    Lasut, M.T. 2001. Kajian lepas tentang dampak aki-bat kegiatan pertambangan PT. NewmontMinahasa Raya (NMR): PT. NMR juga meng-hasilkan merkuri (Hg).Dalam Anonymous(ed.). Minamata ke Minahasa: Pencemaran

    lingkungan di Teluk Buyat akibat aktivitas per-tambangan PT. Newmont Minahasa Raya. WalhiSulawesi Utara.

    Rompas, R.M. 1991. Telah Tingkat Polutan MerkuriDi Perairan Pantai Bolaang Mongondow DariKegiatan Tambang Emas. Hasil Penelitian atasbiaya Badan Penelitian dan Pengembangan

    Pertanian. Departemen Pertanian lewat proyekAgriculture Research Management. Bogor.

    Rompas, R.M. 1995. Toksikologoi Lingkungan.Bahan Penataran Toksikologi KerjasamaUNSRAT dan CIDA/SFV. ProyekPengembangan Perguruan Tinggi IndonesiaTimur (P3TIT). Manado.

    WALHI , Juni 2000. Laporan Lapangan -Dokumentasi di bawah air.

    WALHI, 1999. Participative Community Mapping,NorthSulawesi.

    YaniSagaroa, 2001, Dampak Tailings TerhadapEkosistem Pesisir dan Kelautan, Makalah semi-nar tailing PT NNT Aman Bagi Siapa, WalhiNTB -UKPKM Media Unram.

    On Historic mines, Newfoundland,Canada (closed)Blanchette, M.C., et al, 2001A Chemical and

    Ecotoxicological Assessment of the Impact ofMarine Tailings Disposal. Published inProceedings from the Fort Coll ins Tailings andMine Waste conference by Balkema.

    Some Studies by the Mining Industry &their Consultants on STDThere are a handful of consulting firms that conduct

    the majority of studies on STD on behalf of themining industry. Among these are: Dames and

    Moore, Woodward-Clyde, Rescan ConsultantsInc., Lorax Environmental Services Ltd., andNatural Systems Research Consultants (NSR).

    There are also individuals associated with thesecompanies, some of who also hold academicpositions at universities, who publish and speakon STD separately from their consulting firms,but who primarily support STD as a technology.These are, for example, Derek Ellis, associatedwith Rescan, Stuart Jones and David Gwyther,associated with NSR, and Tom Pederson, associ-ated with Lorax.

    Dames and Moore. 1991. Final Report on Tailings.Philippines.

    Dames and Moore. 1999. Draft Review of RamuNickel Project Environmental Plan Deep SeaTailings Placement System. For, Office ofEnvironment and Conservation, Papua NewGuinea.

    Ellis, D.V. 1997. Guidelines for Screening Sites forDeep Submarine Tailings Placement (DSTP).Unpublished.

    Ellis, D.V. and C Heim, 1985. Submersible surveysof benthos near a turbidity cloud. In, MarinePollution Bulletin, vol. 16, no. 5, pp. 197-203.Britain.

    Ellis, D. V., 1982. Marine Tailings Disposal, AnnArbour Science, Ann Arbour.

    Ellis, D.V. and Hoover, P.M., 1990. Benthosrecolonising mine tailings in British ColumbiaFjords. Marine Mining. 9:441-457.

    Ellis, D.V., G.W. Poling & R.L. Baer. 1995a.

    Submarine tailings disposal (STD) for mines: anintroduction. Marine Geo-resources and Geo-technology 13: 3-18.

    Ellis, D.V., T.F. Pedersen, G.W. Poling, C. Pelletier& I. Horne. 1995b. Review of 23 years of STD:Island Copper Mine, Canada.Marine Geo-resources and Geo-technology 13: 59-99.

    Jones, S. and David Gwyther. January 2000. DeepSea Tailing Placement. Available from NSREnvironmental Consultants Pty Ltd.

    Jones, S. February 12, 1999. Managing Mine Wasteand TailingThe Deep Sea Tailing PlacementProcess. Paper presented at Mining Philippines99Moving into the Next Millenium, Manila.

    Jones, S. 1998. Potential for Deep Sea TailingPlacement in the Asia Pacific Region.Singapore, Asia Pacific Mine Tailings andWaste Management Summit.

    Jones, S.G. and D.V. Ellis. 1995. Deep water STD atthe Misima Gold and Silver Mine, Papua NewGuinea in Marine Georesources andGeotechnology, vol. 13, 183-200.

    Pederson, T. F. 1985. Early diagenesis of copper andmolybdenum in mine tailings and natural sedi-ments in Rupert and Holberg inlets, BritishColumbia. Can. J. Earth Sci. 22, 1474-1484.

    I.L. Littlepage, D.V. Ellis, I. McInerney, 1984.Marine Disposal of Mine Tailings in MarinePollution Bulletin, Volume 15, no 7, Britain.

    Natural Systems Research Consultants. 1997. RamuNickel Project Environmental Plan InceptionReport. Victoria, Australia.

    Natural Systems Research Consultants. 1997.Review of Submarine Tailings Disposal: MisimaMine, Papua New Guinea.

    Natural Systems Research Consultants. 1999.Review of the Coral Reef and NearshoreEnvironment, Misima Mine Papua New Guinea.

    Poling