02 - sdh introduction

96
SDH intro, 060320.ppt Introduction to SDH Module of SDH and 6325 FP 1.1 Training (KTI) 16-03-2006 / Flemming Gerdstrøm

Upload: kunwar-sandeep-s-chauhan

Post on 03-Feb-2016

31 views

Category:

Documents


3 download

DESCRIPTION

sdh introduction

TRANSCRIPT

Page 1: 02 - SDH Introduction

SDH intro, 060320.ppt

Introduction to SDHIntroduction to SDH

Module of SDH and 6325 FP 1.1 Training (KTI) 16-03-2006 / Flemming Gerdstrøm

Page 2: 02 - SDH Introduction

2SDH intro, 060320.ppt

Course planCourse plan

> The background for SDH (including “History”)

> SDH basics, including

> Topics and Case studies

> The End (of part one, or of….)

> Introduction to Functional modelling

> Key standards

> How to find a standard and other relevant material

Page 3: 02 - SDH Introduction

3SDH intro, 060320.ppt

Analogue telephony

Digital telephony

SONET

SDH

Digitally based telephony transmission systems developed in the ‘60s and early ‘70s

Development of the Synchronous Optical NETwork (SONET) started in mid ‘80s at Bellcore

First international Synchronous Digital Hierarchy (SDH) standard based on SONET work in ‘88

TMN

Time lineTime line

(PDH)

Time lineTime line

Optical Telecom. Network (OTN) from late 90sOTN

SDH and SONET (and TMN) evolve in parallel

Page 4: 02 - SDH Introduction

4SDH intro, 060320.ppt

A/D

8 kHz / 8 bit

64 kbit/s

BUT........

> different analog-to-digital coding, and

> different multiplexing of multiple channels

PDH basics I – A/DPDH basics I – A/D

Page 5: 02 - SDH Introduction

5SDH intro, 060320.ppt

30:1mux

4:1mux

4:1mux

4:1m ux

4:1m ux

64 kbit/s 2048 kbit/s("2 M bit/s")

8448 kbit/s("8 M bit/s")

34 368 kbit/s("34 M bit/s")

139 264 kbit/s("140 M bit/s")

564 992 kbit/s("565 M bit/s")

(to line term inal)

PDH basics II - MultiplexingPDH basics II - Multiplexing

Page 6: 02 - SDH Introduction

6SDH intro, 060320.ppt

Hierarchy level Hierarchical bit rates based on a first level of:

1 544 kbit/s 2 048 kbit/s

0 64 kbit/s 64 kbit/s

1 1 544 kbit/s 2 048 kbit/s

2 6 312 kbit/s 8 448 kbit/s

3 32 064 kbit/s 44 736 kbit/s 34 368 kbit/s

4 97 728 kbit/s (note 1) 139 264 kbit/s

5 (note 2) (-) 564 992 kbit/s

[Japan] [North Am.] [Europe plus...]

Note 1: equipment using proprietary rates, e.g. ~274 Mbit/s, have been seen.Note 2: references to a line rate of (about) 400 Mbit/s has been seen.

PDH basics III - Multiplexing hierarchiesPDH basics III - Multiplexing hierarchies

Page 7: 02 - SDH Introduction

7SDH intro, 060320.ppt

140/34

34/8

8/2

34/140

8/34

2/8

2 M bit/s

140 M bit/s 140 M bit/s

• extensive asynchronous multiplexing/demultiplexing required

(lots of PLLs etc.)!

• inflexible upgrading

• limited/proprietary supervision (no management standards)

PDH basics IV - ‘Add/Drop multiplexer’PDH basics IV - ‘Add/Drop multiplexer’

Page 8: 02 - SDH Introduction

8SDH intro, 060320.ppt

• identified need for new/more cross-connect and add/drop functions, but

• PDH multiplexing inflexible

• identified need for more comprehensive management functions (“dynamic” control, performance reporting, etc.)

• (only fixed rate signals addressed by PDH)

Synchronous multiplexing !

The network needs behind SONETThe network needs behind SONET

Page 9: 02 - SDH Introduction

9SDH intro, 060320.ppt

1

2Order of transmission

F

B

B

B

B B

B

B

B

N x M Bytes

N ROWS

M COLUMNS

F denotes an 8-bit frame byteB denotes an 8-bit signal byte

F FFF

Serial signal stream:

Synchronous signal structureSynchronous signal structure

time

Page 10: 02 - SDH Introduction

10

SDH intro, 060320.ppt

• few asynchronous multiplexing/demultiplexing stages

• very inflexible upgrading

• comprehensive supervision (management standards)

2 M bit/s

m ap/dem ap

synchronousm ux/dem ux

{ Find the…. - error(?) }

SDH/SONET Add/Drop multiplexerSDH/SONET Add/Drop multiplexer

Page 11: 02 - SDH Introduction

11

SDH intro, 060320.ppt

155.520 Mbit/s serial signal

9 BYTES + 261 BYTES = 270 BYTES 270 BYTES x 9 = 2430 BYTES

2430 BYTES/FRAME x 8 BITS/BYTE x 8000 FRAMES/SEC = 155.520Mbit/s

125us

1 2 3 4 5 6 7 8 9

2430 bytes

261 bytes9 bytes 261 bytes9 bytesOverhead payload

F F F F

261 bytes9 bytes

261 bytes9 bytes

261 bytes9 bytes

261 bytes9 bytes

261 bytes9 bytes

261 bytes9 bytes

261 bytes9 bytes

261 bytes9 bytes

STM Frame (I) - The STM-1 frameSTM Frame (I) - The STM-1 frame

Page 12: 02 - SDH Introduction

12

SDH intro, 060320.ppt

Overhead(OH)

Payload

OH Payload

STM-1 frame:

Higher order Virtual Container:

(Large) client signal(mapped)

OH

Payload

OH

Payload

OH

Payload. . .

(Small) client signal

Lower order Virtual Containers:

STM Frame (II) - Multiplexing in the payload areaSTM Frame (II) - Multiplexing in the payload area

Page 13: 02 - SDH Introduction

13

SDH intro, 060320.ppt

2

3

N

125 us

1

Order oftransmission

1

2

3

1 2 3

8. . .

bit:

one byte:interleave depth no.

STM Frame (III) - The STM-N frameSTM Frame (III) - The STM-N frame

Page 14: 02 - SDH Introduction

14

SDH intro, 060320.ppt

125 us

Sequence ofTransmission

1

2

3> STM-N, N=4 => 622.08 Mbit/s

STM Frame (IV) - An STM-4 frame exampleSTM Frame (IV) - An STM-4 frame example

Page 15: 02 - SDH Introduction

15

SDH intro, 060320.ppt

OH Payload

OH Payload

Overhead(OH)

Payload

. . .

OH Payload

STM-N frame:

Higher order Virtual Containers:

. . .

1

2

N

STM Frame (V) - STM-N multiplexingSTM Frame (V) - STM-N multiplexing

Page 16: 02 - SDH Introduction

16

SDH intro, 060320.ppt

* Both electrical and optical interfaces

Synchronous Transport Module

Line RateMbit/s

STM-1

STM-4

STM-16

STM-64

STM-256

155.520

622.080

2488.320

9953.280

39813.120

(*)

SDH signal hierarchy and line ratesSDH signal hierarchy and line rates

(**)

** Proprietary electrical interfaces

Page 17: 02 - SDH Introduction

17

SDH intro, 060320.ppt

TU-2

TU-12

TU-11

VC-2

VC-12

VC-11

C-2

C-12

C-11 1544 kbit/s

2048 kbit/s

6312 kbit/sTUG-2x1

x3

x4

C-3

C-4

TU-3 VC-3TUG-3x1

44736 kbit/s34368 kbit/s

139264 kbit/sAU-4

AU-3

VC-4

VC-3

x3

x7

x7

x3

x1STM-N

xNAUG

Pointer processing

Multiplexing

Aligning

Mapping

Groups

SDH Multiplexing structure, basic (ITU-T)SDH Multiplexing structure, basic (ITU-T)

Note: These are the rates of the tributary

signals and not theC-n capacities!

Page 18: 02 - SDH Introduction

18

SDH intro, 060320.ppt

TU-2

TU-12

VC-2

VC-12

VC-11

C-2

C-12

C-11 1544 kbit/s

2048 kbit/s

6312 kbit/sTUG-2x1

x3

C-3

C-4

TU-3 VC-3TUG-3x1

139264 kbit/sAU-4 VC-4

x7

x3

x1STM-N

xNAUG

Pointer processing

Multiplexing

Aligning

Mapping

44736 kbit/s34368 kbit/s

Groups

SDH Multiplexing structure, ETSISDH Multiplexing structure, ETSI

‘Real’ SDH !

Page 19: 02 - SDH Introduction

19

SDH intro, 060320.ppt

mux/demux/cross-connect

mapping mapping

(more)STM-Ns

STM-N STM-N

(more)STM-Ns

HO LOtributaries

SDH/SONET Cross-connectSDH/SONET Cross-connect

Page 20: 02 - SDH Introduction

20

SDH intro, 060320.ppt

Alignment of signalsAlignment of signals

Input signal at:

Port A: F F F

Port B: F F

Port C:

Port D:

etc.

F F F

F F

Common frame phase on all output signals:note *)

Port A:

Port B:

F F F

F F F

etc.

Page 21: 02 - SDH Introduction

21

SDH intro, 060320.ppt

Overhead(OH)

Ideally:

Overhead:

In reality:

Pointer

Overhead(OH)

POH

(C-4)

POH

(C-4)

Placing the HO VC in the STM-1 framePlacing the HO VC in the STM-1 frame

Page 22: 02 - SDH Introduction

22

SDH intro, 060320.ppt

The AU-4:POH

(VC-4)

AU pointer

The AUG:

(AU pointer)

( SOH )(VC-4)

POH

Placing the HO VC in the STM-1 frame (II)Placing the HO VC in the STM-1 frame (II)

Page 23: 02 - SDH Introduction

23

SDH intro, 060320.ppt

AU-4 frame phase at input:

POH

(C-4)

AU pointerincoming frame start

AU-4 frame phase at output:

time

AU pointeroutgoing frame start P

OH

(C-4)

Adjusting the pointer from input to outputAdjusting the pointer from input to output

Page 24: 02 - SDH Introduction

24

SDH intro, 060320.ppt

Pointer

Pointer

(Overhead)

(Overhead)

(Overhead)

(Overhead)

Virtual Container

Rate adaptation: the pointer mechanismRate adaptation: the pointer mechanism

Page 25: 02 - SDH Introduction

25

SDH intro, 060320.ppt

Pointer

PointerVirtual Container

“+1”

Positive pointer justificationPositive pointer justification

Page 26: 02 - SDH Introduction

26

SDH intro, 060320.ppt

Pointer

PointerVirtual Container

“-1”

Negative pointer justificationNegative pointer justification

Page 27: 02 - SDH Introduction

27

SDH intro, 060320.ppt

Placing LO VCs in the HO VC (I)Placing LO VCs in the HO VC (I)

> Mapping of three TUG-3s into a (V)C-4:

1 2 3 4 5 6

1A 2B 3C

7 8 9

1A 2B 3C

10

1A

FIXED STUFFVC-4 POH

. . . .

1TUG-3(A)

1TUG-3(B)

1TUG-3(C)

1 86 1 86 1 86

1A 2B 3C

261

1A 2B 3C

Page 28: 02 - SDH Introduction

28

SDH intro, 060320.ppt

Placing LO VCs in the HO VC (II)Placing LO VCs in the HO VC (II)

> Mapping a VC-3 into a TUG-3 (via TU-3):

H1

H2

H3

Fixe

d st

uff

J1

B3

C2

G1

F2

H4

F3

K3

N1

86 Columns

TUG-385 Columns

VC-3

VC-3 POH

Page 29: 02 - SDH Introduction

29

SDH intro, 060320.ppt

Placing LO VCs in the HO VC (III)Placing LO VCs in the HO VC (III)

> Mapping VC-2, VC-12 and VC-11 into a TUG-3 (via TUG-2 and TUs):Fi

xed

stuf

f

86 Columns

(7 * TUG-2)TU-2PTR

Fixe

d st

uff

TUG-2

POH

VC-2

TU-12PTRs

.......

TUG-3TUG-2

POH

VC-12

POH

VC-12

....

3 * VC-12 (or 4 * VC-11)in 1 * TUG-2

Page 30: 02 - SDH Introduction

30

SDH intro, 060320.ppt

Placing LO VCs in the HO VC (IV)Placing LO VCs in the HO VC (IV)

> Mapping a TU-2, TU-12 and TU-11 into a TUG-2:

74 5 61 2 3 8 9 7 8

7

56

12

3

12

3

12

3

12

3

8 0 8 2 8 4 8 67 9 8 1 8 3 8 5

Page 31: 02 - SDH Introduction

31

SDH intro, 060320.ppt

Numbering of TUs: The (K,L,M) schemeNumbering of TUs: The (K,L,M) scheme> TUs (LO VCs) are numbered by the so-called

(K,L,M) scheme, where:

> K is the number of the TUG-3, i.e. 1 to 3

> L is the number of the TUG-2, i.e. 1 to 7

> M is the number of the TU-12, i.e. 1 to 3 or the number of the TU-11, i.e. 1 to 4.

> For TU-3, L=M=0

> For TU-2, M=0

> Examples:

> A TU-3 (VC-3) in the first TUG-3 is numbered; (1,0,0)

> The first TU-12 (VC-12) in the last TUG-2 in the last TUG-3 is numbered: (3,7,1)

> The scheme can be augmented by including the number of the VC-4 in the STM-N frame so that any LO VC within the STM-N signal can be unambiguously identified. Furthermore, in equipment you also augment with ’port no.’ (in module), ’slot no.’, ’shelf and rack no.’

Page 32: 02 - SDH Introduction

32

SDH intro, 060320.ppt

TU multiframing (I)TU multiframing (I)

> Each TU-12 frame consists of 4 columns of 9 rows, i.e. 36 bytes in total per frame; correspondingly for the TU-2 and TU-11 frames.

> Carrying a 2 Mbit/s payload requires at least 32 bytes.

> This would leave 4 bytes for a pointer, path overhead and any mapping overhead; too little!

> Hence a multiframe is defined.

Page 33: 02 - SDH Introduction

33

SDH intro, 060320.ppt

TU multiframing (II)TU multiframing (II)

V C -11 V C -1 2 V C -2

T UV CV 1V 2V 3V 4

X X X X X X 0 0

X X X X X X 0 1

X X X X X X 1 0

X X X X X X 11

V 1

V 2

V 3

V 4

V 5

2 6 3 5 1 07

2 6 3 5 1 07

2 6 3 5 1 07

2 6 3 5 1 07

1 04 1 40 4 28

N 2

K 4

T U -n V C -n

Page 34: 02 - SDH Introduction

34

SDH intro, 060320.ppt

Container-4

Container-4

AUG

VC-4 POH

AU-4 PTR

SOH AUG

VC-4

VC-4 AU-4

VC-4AU-4 PTR AUG

STM-N

Logical association

Physical association

Payload 140 Mbit/s

Mapping of a 140 Mbit/s signal into STM-NMapping of a 140 Mbit/s signal into STM-N

Page 35: 02 - SDH Introduction

35

SDH intro, 060320.ppt

TUG-2

TUG-3

STM-N

VC-1 POH

TU-1 PTR

TUG-3

VC-1

TU-1

Container-1

Container-1

VC-1

VC-1TU-1 PTR

AU-4 PTR AU-4

AUG

VC-4

VC-4AU-4 PTR

SOH AUG AUG

VC-1TU-1 PTR

TUG-2 TUG-2

TUG-3 TUG-3VC-4 POH

Logical association

Physical association

Payload 2 Mbit/s

Mapping of a 2 Mbit/s signal into STM-NMapping of a 2 Mbit/s signal into STM-N

Page 36: 02 - SDH Introduction

36

SDH intro, 060320.ppt

Exercise I – SDH Multiplexing Exercise I – SDH Multiplexing

Exercise:

Show the multiplexing structure for an STM-4 signal carrying: - one 140 Mbit/s signal - three 34 Mbit/s signals, and - one hundred and twenty-six 2 Mbit/s signals

Page 37: 02 - SDH Introduction

37

SDH intro, 060320.ppt

126 x 2048 kbit/s

1 x 139264 kbit/s

3 x 34368 kbit/s

Exercise I - SDH Multiplexing; hintsExercise I - SDH Multiplexing; hints

STM-4 AUG

x

AUG

AUG

AUG

AU-4 VC-4 ? 4

. . .

. . .

. . .

Other blocks to use:

C-3 C-4VC-3TU-3TUG-3

TUG-2 TU-12 VC-12 C-12

VC-4AU-4

Page 38: 02 - SDH Introduction

38

SDH intro, 060320.ppt

63 x 2048 kbit/s

C-4 1 x 139264 kbit/sAU-4STM-4 AUG

Exercise I - SDH Multiplexing – SolutionExercise I - SDH Multiplexing – Solution

x 4

VC-4

VC-12TU-12TUG-2AUG TUG-3

x 3AU-4 VC-4 x 7 x 3

C-12

VC-3TU-3TUG-3AUGx 3

AU-4 VC-4 C-3

VC-12TU-12TUG-2AUG TUG-3

x 3AU-4 VC-4 x 7 x 3

C-12 63 x 2048 kbit/s

3 x 34368 kbit/s

> Additional question: What if you only have 63 x 2 Mbit/s (and the same # of 140 Mbit/s and 34 Mbit/s signals) ?

Page 39: 02 - SDH Introduction

39

SDH intro, 060320.ppt

63 x 2048 kbit/s

C-4 1 x 139264 kbit/sAU-4STM-4 AUG

Exercise I - SDH Multiplexing – Solution, part 2Exercise I - SDH Multiplexing – Solution, part 2

x 4VC-4

VC-12TU-12TUG-2AUG TUG-3AU-4 VC-4

C-12

VC-3TU-3TUG-3AUG AU-4 VC-4 C-3 3 x 34368 kbit/s

> What if you only have 63 x 2 Mbit/s (and the same # of 140 Mbit/s and 34 Mbit/s signals) ?

AU-4 1 x VC-4 ‘Unequipped’

TUG-3x 3 1 x VC-3 ‘Unequipped’

x 1 TU-3

TU-12TUG-2 63 x VC-12 ‘Unequipped’x 7

x 3

or

or

x 3

x 3 x 7 x 3

VC-4

or

someotherwell-definedsignal

AUG

or

1 x AU-4 AIS

orsome well-defined signalVC-m

Page 40: 02 - SDH Introduction

40

SDH intro, 060320.ppt

OVERHEAD – types and use

Page 41: 02 - SDH Introduction

41

SDH intro, 060320.ppt

Basic overhead useBasic overhead use

> Alignment (e.g. framing)

> Channel identification (trace identifier)

> Bit error monitoring (e.g. parity)

> Remote indications

> Payload structure indication

> Data channel

> Auxiliary (data) channel

> Protection signalling channel

> ... plus others depending on the layer

Page 42: 02 - SDH Introduction

42

SDH intro, 060320.ppt

RSOH = Regenerator section overhead MSOH = Multiplexer section overhead

9 bytes 261bytes

9 rows

A1 A1 A1 A2 A2 A2 J0

B1 E1 F1 RSOH

D1 D2 D3

Administrative Unit Pointer(s) Payload

B2 B2 B2 K1 K2

D4 D5 D6

D7 D8 D9 MSOH

D10 D11 D12

S1 M1 E2

STM-1 Section overhead (SOH)STM-1 Section overhead (SOH)

Page 43: 02 - SDH Introduction

43

SDH intro, 060320.ppt

STM-1 overhead useSTM-1 overhead use

> Alignment (e.g. framing)

> Channel identification (trace identifier)

> Bit error monitoring (e.g. parity)

> Remote indications

> Payload structure indication

> Data channel

> Auxiliary user and data channels

> Protection signalling channel

> ... plus others depending on the layer

=> A1, A2

=> J0

=> B1, B2

=> M1, K2

=> ((H1, H2))

=> D1-D3, D4-D12

=> F1, E1, E2

=> K1, K2

=> S1

Page 44: 02 - SDH Introduction

44

SDH intro, 060320.ppt

STM-N SOH - example for STM-4STM-N SOH - example for STM-4

Page 45: 02 - SDH Introduction

45

SDH intro, 060320.ppt

VC-4 Path overhead (POH)VC-4 Path overhead (POH)

column:

1 2 261

J1

B3

C2

G1

F2 payload area

H4 (261 columns x 9 rows)

F3

K3

N1

Page 46: 02 - SDH Introduction

46

SDH intro, 060320.ppt

VC-12 Path overheadVC-12 Path overhead

Multiframe #1

V5 byte 1

payloadarea

byte 35

J2 byte 1

Multiframe #2 payloadarea

byte 35

N2 byte 1

Multiframe #3 payloadarea

byte 35

K4 byte 1

Multiframe #4 payloadarea

byte 35

The multiframe is indicated by the VC-4 POH H4 byte (bits [7:8])

BIP-2 REI (RFI) RDISignal Label

V5:

(undefined)

K4:

multiframe and extended signal label

virtual concatenation OH

Page 47: 02 - SDH Introduction

47

SDH intro, 060320.ppt

VC-n overhead useVC-n overhead use

> Alignment (e.g. framing)

> Channel identification (trace identifier)

> Bit error monitoring (e.g. parity)

> Remote indications

> Payload structure indication (signal label)

> Data channel

> Auxiliary user and data channels

> Protection signalling channel (APS)

> ... plus others depending on the layer and use

(H1, H2)

J1

B3

G1

C2

-

F2, F3

K3

H4, N1

VC-4, VC-3:

(V1, V2, H4 )

J2

V5

V5

V5 (,K4)

-

-

(K4)

K4, N2

VC-12:*)

Page 48: 02 - SDH Introduction

48

SDH intro, 060320.ppt

Definition of specific OH elements on the following slides

Page 49: 02 - SDH Introduction

49

SDH intro, 060320.ppt

The Trail Trace Identifier (TTI)The Trail Trace Identifier (TTI)

> For SDH a 16-byte TTI format is defined:

[Table 9-1/G.707/Y.1322] – 16-byte TTI format

Byte #

Value (bit 1, 2, …, 8)

1 1 C1 C2 C3 C4 C5 C6 C7

2 0 X X X X X X X 3 0 X X X X X X X 4 0 X X X X X X X : : :

15 0 X X X X X X X 16 0 X X X X X X X

NOTE 1 – 1000 0000 0000 0000 in bit 1 of each byte is the trace identifier frame alignment signal.

NOTE 2 – C1C2C3C4C5C6C7 is the result of the CRC-7 calculation over the previous frame. C1 is the MSB.

NOTE 3 – XXXXXXX represents a Recommendation T.50 character.

> Inserted in bytes J0, J1, J2

> When unused J0/J1/J2 should contain all-ZEROes

Page 50: 02 - SDH Introduction

50

SDH intro, 060320.ppt

Bit error monitoring; BIP-nBit error monitoring; BIP-n

> B1, B2, B3 and V5[1:2] are used for ’Bit interleaved parity’ (BIP): BIP-8, BIP-24N, BIP-8 and BIP-2, respectively.

> BIP is even parity calculated over the relevant bits in the frame and inserted in the next frame

> ”Bit interleaved” means that for BIP-n ’n’ parity calculations done in parallel

Page 51: 02 - SDH Introduction

51

SDH intro, 060320.ppt

Bit error monitoring; BIP-8 in B1Bit error monitoring; BIP-8 in B1

> Example: B1 (BIP-8):

A1 A1 A1 A2 A2 A2 J0

B1 E1 F1

D1 D2 D3

Administrative Unit Pointer(s) Payload

B2 B2 B2 K1 K2

D4 D5 D6

D7 D8 D9

D10 D11 D12

S1 M1 E2

A1 A1 A1 A2 A2 A2 J0

B1 E1 F1

D1 D2 D3

etc.

etc.etc.

etc.

. . .etc.

etc.

Page 52: 02 - SDH Introduction

52

SDH intro, 060320.ppt

Bit error monitoring; BIP-24 in B2Bit error monitoring; BIP-24 in B2

> Example: B2 (BIP-24):

A1 A1 A1 A2 A2 A2 J0

B1 E1 F1

D1 D2 D3

Administrative Unit Pointer(s) Payload

B2 B2 B2 K1 K2

D4 D5 D6

D7 D8 D9

D10 D11 D12

S1 M1 E2

A1 A1 A1 A2 A2 A2 J0

B1 E1 F1

D1 D2 D3

Administrative Unit Pointer(s) Payload

B2 B2 B2 K1 K2

D4 D5 D6

etc.

etc.

etc.

. . .

etc.

Page 53: 02 - SDH Introduction

53

SDH intro, 060320.ppt

Remote indicationsRemote indications> Remote Defect Indication (RDI):

> a bit (or code in more bits) is set in the frame(s) in the transmit (source) direction, when a defect is detected in the receive (sink) direction;

> the insertion continues while the defect is detected

> Remote Error Indication (REI):

> each frame the result of the bit error monitoring in the receive (sink) direction is inserted in the transmit (source) direction

> the result inserted as REI is the number of BIP-n errors detected

Page 54: 02 - SDH Introduction

54

SDH intro, 060320.ppt

Remote indication: MS REIRemote indication: MS REI

> Example: B2 (BIP-24):

etc.

. . .

etc.

A received frame:

BIP-1 calculation... result inserted in M1

Next transmitted frame:

M1

Next received frame:

B2

comparison

added to the result of the other BIP-1 calculations, and...

Page 55: 02 - SDH Introduction

55

SDH intro, 060320.ppt

Exercise II – MS REI rangeExercise II – MS REI range

Exercise:

For STM-1 there are three B2 bytes, i.e. up to 3 * 8 = 24 BIP errors can be detected per frame and inserted in the M1 byte in the return direction.

1) How many B2 BIP errors can be detected for an STM-16 signal ?

2) How many B2 BIP errors can be detected for an STM-64 signal ? 2.1) is this a problem ?

Page 56: 02 - SDH Introduction

56

SDH intro, 060320.ppt

Exercise II – MS REI range; solutionExercise II – MS REI range; solution

B2 BIP error detection ranges:

STM-1: 3 * 8 = 24

STM-4: 4 * 3 * 8 = 96

STM-16: 16 * 3 * 8 = 384

STM-64: 64 * 3 * 8 = 1536

> 255 !

>> 255 !!

For STM-64 and above: M0 M1

} (M1 is only one (8 bit) byte!)

}

16-bit range (64k) for REI

Page 57: 02 - SDH Introduction

57

SDH intro, 060320.ppt

Payload structure indicationPayload structure indication

> Signal Label for VC-3 and VC-4 (C2 byte):VC-4, VC-4-Xc/v, VC-3 and VC-3-Xv Signal label codes and interpretation

Appearing

Value (hex) Interpretation Notes

1988

1993

1996

2000

2001

2002

2003

00 Unequipped or supervisory-unequipped x x x x x x x

01 Equipped – non-specific a x x x x x x x

02 TUG structure d x x x x x x

03 Locked TU-n d x

04 Asynchronous mapping of 34 368 kbit/s or 44 736 kbit/s

e x x x x x x

05 Mapping under development a x x x x

06 .. 11 Unused c

12 Asynchronous mapping of 139 264 kbit/s d x x x x x x

13 ATM mapping x x x x x x

14 MAN DQDB mapping x x x x x x

15 FDDI mapping x x x x x x

16 Mapping of HDLC/PPP framed signal x x x x

17 Proprietary mapping f (x) (x) (x) x

18 Mapping of HDLC/LAPS framed signals x x x x

19 Proprietary mapping f (x) (x) (x) x

1A Mapping of 10 Gbit/s Ethernet frames x x x x

1B GFP mapping x x x x

1C Mapping of 10 Gbit/s Fibre Channel frames b x x x 1

Page 58: 02 - SDH Introduction

58

SDH intro, 060320.ppt

Payload structure indication (II)Payload structure indication (II)

> Signal Label for VC-12 (bit 5-7 of the V5 byte):

VC-12 Signal label codes and interpretation

Appearing

Value (hex) Interpretation 1988

1993

1996

2000

2001

2003

00 Unequipped or supervisory-unequipped x x x x x x

01 Equipped – non-specific (Note a) x x x x x x

02 Asynchronous x x x x x

03 Bit synchronous x

04 Byte synchronous x x x x x

05 Extended signal label (Note a, d) x x x x

06 Test signal, O.181 specific mapping (Note b) x x x x

"Norm

al" Signal label values 07 VC-AIS x x x x 1

08 Mapping under development (Note a) x x x

09 ATM mapping x x x

0A Mapping of HDLC/PPP framed signal x x x

0B Mapping of HDLC/LAPS framed signals x x x

"Extended" SL

0C Virtual concatenated test signal, O.181 specific mapping x x x 1

In K4[1]:

Page 59: 02 - SDH Introduction

59

SDH intro, 060320.ppt

Synchronisation Status Message (SSM)Synchronisation Status Message (SSM)

> SSM byte: S1[5:8]

Table 9-2/G.707/Y.1322 – Assignment of SSM bit patterns

S1 bits b5-b8

SDH synchronization quality level description

0000 Quality unknown (Existing Synchronization Network)

0001 Reserved

0010 PRC (ITU-T Rec. G.811)

0011 Reserved

0100 SSU-A (ITU-T Rec. G.812)

0101 Reserved

0110 Reserved

0111 Reserved

1000 SSU-B (ITU-T Rec. G.812)

1001 Reserved

1010 Reserved

1011 SEC (ITU-T Rec. G.813 Option I)

1100 Reserved

1101 Reserved

1110 Reserved

1111 Do not use for synchronization (Note)

Page 60: 02 - SDH Introduction

60

SDH intro, 060320.ppt

Synchronisation networksSynchronisation networks

> (see separate slides, now or later)

Page 61: 02 - SDH Introduction

61

SDH intro, 060320.ppt

Other overhead elementsOther overhead elements

> To be discussed as part of the MSP 1+1 and VCAT presentations

Page 62: 02 - SDH Introduction

62

SDH intro, 060320.ppt

STM-N frame

STM-N payloadAU pointer

Sectionoverhead

RegeneratorSOH

MultiplexerSOH

Container C-4

Path overhead (P

OH

)

VC-4 Virtual Container

SDH:STS-N frame

STS-N Envelope CapacitySTSpayloadpointer

Transportoverhead

Sectionoverhead

Lineoverhead

STS-3c Synchronous PayloadEnvelope (SPE)

Path overhead (P

OH

)

SONET:

STS-3c Payload Capacity

(example) (example)

FG742.dsf981026

Comparison of terms: SDH vs. SONETComparison of terms: SDH vs. SONET

Page 63: 02 - SDH Introduction

63

SDH intro, 060320.ppt

SDH: SONET:

Synchronous Transport Module Synchronous Transport Signal

STM-N frame STS-N frame

Section overhead (Reg./Mux.) Transport overhead (Sect./Line)

Administrative Unit (AU) -

AU pointer STS payload pointer

(HO) Virtual Container (VC) Synchronous Payload Envelope (SPE)

(HO) VC Path overhead (POH) STS Path overhead (POH)

Container Payload capacity

Tributary Unit (TU) -

(LO) Virtual Container (VC) Virtual Tributary (VT)

TU Pointer VT Payload Pointer

Comparison of terms: SDH vs. SONET (II)Comparison of terms: SDH vs. SONET (II)

Suggested further reading:• ANSI T1.105 SONET standard ( - which includes cross-ref’s to SDH terms(!))

• Bellcore specification GR-253-CORE (Section 3)

Page 64: 02 - SDH Introduction

64

SDH intro, 060320.ppt

STM-N "AUG"

Pointer processing

Groups

xN

x1

x4

x3

x7

x3

C-3

C-2

C-12

C-11

VC-2

VC-12

VC-11

TU-2

TU-12

TU-11

AU-3 VC-3

TUG-2

44 736 kbit/s33 368 kbit/s

6 312 kbit/s

2 048 kbit/s

1 544 kbit/s

Multiplexing

Aligning

Mapping

"AU-3-3c" "VC-3-3c"x1

C-4 139 264 kbit/s

SDH Multiplexing structure, ANSI-T1SDH Multiplexing structure, ANSI-T1

This is SONET – in SDH terms!

Page 65: 02 - SDH Introduction

65

SDH intro, 060320.ppt

C-11VC-11TU-11

Aligning

Mapping

× 1× 1

× 3

× 3× 1

× 1

× 3

× 4

× 7× 7

STM-1 AUG-1 AU-4 VC-4

AU-3 VC-3

C-4

C-3

C-2

C-12

VC-3

VC-2

VC-12

TU-3

TU-2

TU-12

TUG-2

TUG-3

AU-4 Pointer processing

Multiplexing

× 4

× 1× 1STM-16 AUG-16 VC-4-16c

VC-4-4c

×1

× 4

STM-64 AUG-64

× 1× 1

× 4

STM-4C-4-4c

C-4-16c

× 1STM-0

× 1× 1STM-256 VC-4-256c C-4-256c

× 1VC-4-64c C-4-64c

AU-4-256c

AU-4-64c

AU-4-16c

AU-4-4c

AUG-256

AUG-4

× 4

Multiplexing structure extensions (I)Multiplexing structure extensions (I)

Notice that this is the diagram including the SONET mux routes!

> Contiguous concatenation (”spelled out”):

Page 66: 02 - SDH Introduction

66

SDH intro, 060320.ppt

POH

Large client signal

contiguous concatenated VCs

Payload

CI pointers

Payload Payload Payload

Pointer

VC-n=> -Xc

Concatenation, contiguousConcatenation, contiguous

Page 67: 02 - SDH Introduction

67

SDH intro, 060320.ppt

Sub-STM-0 interfaces => G.708:

T1530320-99

C-11VC-11

× 1

× 3

× 1

× 3

× 4

× 7 × 7

VC-4

VC-3

C-4

C-3

C-2

C-12

VC-3

VC-2

VC-12

TU-2TUG-2

TUG-3

VC-4-16c

C-4-4c

C-4-16c

× k (*)

TUG-2n (**)× n (**)

TUG- 1k (*)TU-12

TU-11

TU-3

AU-4-16c

AU-4

AU-3

× 1

× 3× 1

STM-1 AUG1

× 4

× 1× 1STM-16 AUG16

VC-4-4c

×1

× 4

STM-64 AUG64

× 1× 1

× 4

STM-4 AUG4

× 1STM-0

× 1sSTM-2n (**)

× 1sSTM-1k (*)

AU-4-4c

Aligning

Mapping

Pointer processing

Multiplexing(*) k = 1, 2, 4, 8 and 16(**) n = 1, 2 and 4

SSTM-1k, 2n multiplexing routes

C-n Container-n

Multiplexing structure extensions (II)Multiplexing structure extensions (II)

Page 68: 02 - SDH Introduction

68

SDH intro, 060320.ppt

SDH Multiplexing structure, 1988(!)SDH Multiplexing structure, 1988(!)

STM-N STM-1 AU-4 VC-4

TU-32 TUG-21

VC-32

TU-21

TU-11

VC-21

VC-11

C-21

C-11

xN

AU-32 C-32

VC-31AU-31 C-31

TU-31 TUG-22

TU-12

TU-22

VC-12

VC-22

C-12

C-22

C-4

H21,34368kbit/s

H12,2048kbit/s

H11,1544kbit/s

H22,44736kbit/s

6312kbit/s

139264kbit/s

8448kbit/s

x3x3 x3

x4

x4

x4

x4

x4

x21

x16x5

x7

x5

Page 69: 02 - SDH Introduction

69

SDH intro, 060320.ppt

• Optical interfaces

• WDM

• Tandem Connection Monitoring

• Virtual Concatenation

• Protection

• Synchronisation

• Timing, jitter & wander

Alas, you didn’t hear much about...Alas, you didn’t hear much about...

=> and then again …. see later slides!

=> see later separate slides!

Page 70: 02 - SDH Introduction

70

SDH intro, 060320.ppt

“THE End” – THE FUTURE

The End (of part one, or of …)The End (of part one, or of …)

Page 71: 02 - SDH Introduction

71

SDH intro, 060320.ppt

• LARGE INSTALLED SDH BASE !!

• Easier to extend existing network than to deploy all-new network !

• A number of issues, notably in terms of supervision, not yet solved for emerging technologies !

SDH will be around for a while, because of:

… but an optical network (OTN) has been defined…… and packet transport, e.g. Ethernet, is being defined!

“The Future” (II)“The Future” (II)

Page 72: 02 - SDH Introduction

72

SDH intro, 060320.ppt

• Transport of “data” signals via Virtual concatenation !!

• Mapping into OTN

• Tandem Connection Monitoring(?)

• ‘Signalled’ path set-up (external request for capacity)

New/recent SDH extensions / upgrades:

“The Future” (III)“The Future” (III)

Page 73: 02 - SDH Introduction

SDH intro, 060320.ppt

Functionaltransportmodelling

Functionaltransportmodelling

Page 74: 02 - SDH Introduction

74

SDH intro, 060320.ppt

The purpose of doing layer functional modelling is to:

• get a concise overview of which information (signal) is present where

• get a uniform description of like functions

• support layered transmission network management

• complement the layered management model

Functional modelling - Overview IFunctional modelling - Overview I

Page 75: 02 - SDH Introduction

75

SDH intro, 060320.ppt

M SnP 2fsh

S4

to /from S 4_T T or MS n/S 4_A

W P WP

M S n/S 4

MSnP2fsh

MSnP2fsh

WP

n/2

M S nP _CI

M S n_A I

W P P W

PW

W o rk ing

P rotec tion

S S FS S DA P S

TSFTSD

E ast

M Sn/M SnP 2fsh

MS n

M S nP_AI

MS nP_CI AP S

P0s_CI

M Sn/P0s

SD_CI

M Sn/S D

M Sn/M SnP 2fsh

P0s_CI

M Sn/P0s

S D_CI

M Sn/S D

MSn

S SFS SDA PS

TSFTSD

W est

MS n/M SnP2fsh

MS n

M S nP _A I

M S nP_CI AP S

P0s_CI

M Sn/P0s

SD_CI

M Sn/S D

MS n/M SnP2fsh

P 0s_CI

MS n/P0s

S D _CI

M Sn/S D

MS n

n/2n/2 n/2n/2 n/2n/2 n/2

F G 623.D R W970509

M Sn/S 4 M S n/S 4 M Sn/S 4 M S n/S 4 M S n/S 4 M S n/S 4 M S n /S 4

M S nP2fsh

M S nP2fsh

M S nP2fsh

M S nP2fsh

M S nP2fsh

MS nP2fsh

M S nP _CI

M S n_A I

MS nP _C I

MS n_AI

M SnP _CI

M Sn_A I

M S -S P R ingsub-layer

Functional modelling - Overview IIFunctional modelling - Overview II

Page 76: 02 - SDH Introduction

76

SDH intro, 060320.ppt

Figure 2-1/[Common ETS 04]: TTF-n (Optical) Compound Function (n = 1, 4, 16, 64)

Functional modelling - Overview IIIFunctional modelling - Overview III

OSn/RSn

RSn

RSn/MSn

MSn/S4

dLOS

aTSF <= dLOS

dLOF

aSSF <= dLOF or AI_TSFaAIS <= dLOF or AI_TSF

dTIMdDEG#EDCV(N)AcTI

aTSF <= (dTIM and (sTIM_consequent_actions = enable)) or CI_SSFaAIS <= (dTIM and (sTIM_consequent_actions = enable)) or CI_SSF

aSSF <= AI_TSF

dAISdEXCdDEGdRDI#EDCV(N)#EDCV(F)

aTSF <= dAIS or (dEXC and (sEXC_consequent_actions = enable))aAIS <= dAIS or (dEXC and (sEXC_consequent_actions = enable))

dAISdLOP

aSSF <= dAIS or dLOPaAIS <= dAIS or dLOP

aLaserActive

CI_SSF => aAIS

cLOS <= dLOS and MON

cLOF <= dLOF and (not AI_TSF)

cTIM <= dTIM and MON and (not CI_SSF)cDEG <= dDEG and MON and (not CI_SSF) and (not dTIM)

pN_DS <= CI_SSF or dTIM or dEQpN_EBC <= nN_B (#EDCV(N))

cAIS <= dAIS and MON and (not CI_SSF)cEXC <= dEXC and MON and (not CI_SSF)cDEG <= dDEG and MON and (not CI_SSF)cRDI <= dRDI and (sRDI_Reported = enable) and MON and (not CI_SSF)

pN_DS <= aTSF or dEQpN_EBC <= nN_B (#EDCV(N))pF_DS <= dRDIpF_EBC <= nF_B (#EDCV(F))

cAIS <= dAIS and (sAIS_Reported = enable) and (not AI_TSF)cLOP <= dLOP and (not AI_TSF)

Anomalies (#XXX), Defects (dXXX)& Consequent Actions (aXXX):

Fault Causes (cXXX) &Performance Primitives (pXXX):

Sourcedirection:

Sinkdirection:

Sourcedirection:

Sinkdirection:

aTSF => aRDI

#EDCV(N) => aREI

sLOS_aTSF_extension [enable, disable]gSTM_level [n]sPort_mode [MON, NMON, AUTO]

gSTM_level [n]

gSTM_level [n]sExpected_TTI [16-bytes, NULL]gAccepted_TTI [16-bytes, NULL] (~ AcTI)sTransmitted_TTI [16-bytes, NULL] (~ TxTI)sSignal_degrade_threshold [1E-5, -6, -7, -8, -9, -10]sTermination_point_mode [MON, NMON]sTIM_consequent_actions [enable, disable]

Management SET (sXXX), GET (gXXX)& ACTION (aXXX) operations:

gSTM_level [n]

gSTM_level [n]sEXC_consequent_actions [enable, disable]sSignal_degrade_threshold [1E-5, -6, -7, -8, -9, -10]sTermination_point_mode [MON, NMON]sRDI_Reported [enable, disable]

the 'aLaserActive' consequent action is described inthe section 'Laser Control Process'

sLOS_aTSF_extension determines whether the 'aTSF' consequent action shall be extended (enable) or not (disable) for 3s after 'dLOS' has cleared.

A NULL value for sExpected_TTI implies thatthe 'dTIM' defect detection shall be suppressed

1)

Notes:

3)

4)

5)

5)

4)

3)

TxTI

0)

If the MSn/S4_A source function is not connected to anotheratomic function, then an S4 UNEQ signal must be input to theMSn/S4_A source function instead

0)

CI_SSF = true: - if the MSn/S4_A source function is connected to an adaptation sink function with aSSF = true as output, or - if the MSn/S4_A source function is connected to a port on the S4_C function, which is having AIS forced;otherwise, CI_SSF = false.

1)

sAIS_Reported [enable, disable]sConc_auto_mode [enable, disable]gConc_status [normal, concatenated]

diRMSFail => MS-AIS

2)

'diRMSFail' is an equipment defect which can be detected at amodule interface, refer to [ETS 05] and [ETS 03]

2)

CI_SSF

OSn

MSn

Page 77: 02 - SDH Introduction

77

SDH intro, 060320.ppt

Figure 5-5/G.806: Example of SDH equipment functional specification

Functional modelling - Overview IVFunctional modelling - Overview IV

Page 78: 02 - SDH Introduction

78

SDH intro, 060320.ppt

Wanted:

transfer of information (a “signal”)....

from here.... .... to here

Functional modelling - Building the model I Functional modelling - Building the model I

Page 79: 02 - SDH Introduction

79

SDH intro, 060320.ppt

Functional modelling - Building the model II Functional modelling - Building the model II

add overhead for supervision....

.... and check that the signalwas transferred correctly

‘Trail’

in a ‘trail termination’source function

transfer the signal via a topologicalcomponent called a ‘connection’

in a ‘trail termination’

sink function

Page 80: 02 - SDH Introduction

80

SDH intro, 060320.ppt

Maybe some “packaging”, rate adaptation, multiplexing,etc. of the carried payload signal is required....

.... that is done in the ‘adaptation’ function

Functional modelling - Building the model III Functional modelling - Building the model III

‘Trail’

Page 81: 02 - SDH Introduction

81

SDH intro, 060320.ppt

Layers may now be put “on top of” each other....

... are multiplexed

two individual signals...

Functional modelling - Building the model IV Functional modelling - Building the model IV

Page 82: 02 - SDH Introduction

82

SDH intro, 060320.ppt

... but maybe they do not have the same final destination:

Functional modelling - Building the model V Functional modelling - Building the model V

‘Trail’ ‘Trail’

‘Trail’‘Trail’

Page 83: 02 - SDH Introduction

83

SDH intro, 060320.ppt

Used for integrity supervision of the transferred signal

In the source end there may be added: In the sink end there may be detected for:

• error detection code

• trail trace identifier

• remote (bit) error indication signal

• remote defect indication signal

• loss of signal

• server signal fail / AIS

• misconnection

• bit errors

• far-end performance

Functional modelling - the Trail Termination functionFunctional modelling - the Trail Termination function

all in the overhead (OH)!

Page 84: 02 - SDH Introduction

84

SDH intro, 060320.ppt

Represents conversion processes between the clientlayer and the server layer

Processes that may be present in the adaptation function:

• scrambling/descrambling

• encoding/decoding

• alignment (FAS/PTR generation, framing, pointer interpretation)

• bit rate adaptation

• frequency justification

• multiplexing/demultiplexing, including inverse multiplexing

• timing recovery

• smoothing

• payload identification

Functional modelling - the Adaptation functionFunctional modelling - the Adaptation function

only some of these uses OH!

Page 85: 02 - SDH Introduction

85

SDH intro, 060320.ppt

Used for routeing and protection processes

Connection types may be:

• unidirectional connections

• bidirectional connections

• broadcast connections

• bridge connections (protection source end)

• conditionally switched (protection sink end)

When used for protection the Connection function may also include an APS processor

Functional modelling - the Connection functionFunctional modelling - the Connection function

this uses OH but inserted via the server adaptation function

Page 86: 02 - SDH Introduction

86

SDH intro, 060320.ppt

All ONEs (AIS) insertion and propagation in the sink direction in case of STM1dLOF

Mention:Alarm disabling(eventually in separate slide):RS-TIM, MS-AIS,AU-AIS, S4-UNEQ,etc.

Functional modelling - Practical example IFunctional modelling - Practical example I

SSF

Page 87: 02 - SDH Introduction

87

SDH intro, 060320.ppt

MS1/S4

MS1

RS1/MS1

RS1 RS1

MS1

RS1/MS1

MS1/S4

RSOH

MSOH

'1'

MSOH

'1'

'1'

RSOH

MSOH

'1'

MSOH

'1'

'1'

AU4dAIS

H1 H2

'1'

aSSFaSSF

'1'

other adaptationfunctions

other adaptationfunctions

All ONEs (AIS) generation in the source and detection in the sink direction

Functional modelling - Practical example IIFunctional modelling - Practical example II

plus ‘AIS pointer’

Page 88: 02 - SDH Introduction

88

SDH intro, 060320.ppt

Figure 2-1/[Common ETS 04]: TTF-n (Optical) Compound Function (n = 1, 4, 16, 64)

Functional modelling - Practical example IIIFunctional modelling - Practical example III

OSn/RSn

RSn

RSn/MSn

MSn/S4

dLOS

aTSF <= dLOS

dLOF

aSSF <= dLOF or AI_TSFaAIS <= dLOF or AI_TSF

dTIMdDEG#EDCV(N)AcTI

aTSF <= (dTIM and (sTIM_consequent_actions = enable)) or CI_SSFaAIS <= (dTIM and (sTIM_consequent_actions = enable)) or CI_SSF

aSSF <= AI_TSF

dAISdEXCdDEGdRDI#EDCV(N)#EDCV(F)

aTSF <= dAIS or (dEXC and (sEXC_consequent_actions = enable))aAIS <= dAIS or (dEXC and (sEXC_consequent_actions = enable))

dAISdLOP

aSSF <= dAIS or dLOPaAIS <= dAIS or dLOP

aLaserActive

CI_SSF => aAIS

cLOS <= dLOS and MON

cLOF <= dLOF and (not AI_TSF)

cTIM <= dTIM and MON and (not CI_SSF)cDEG <= dDEG and MON and (not CI_SSF) and (not dTIM)

pN_DS <= aTSF or dEQpN_EBC <= nN_B (#EDCV(N))

cAIS <= dAIS and MON and (not CI_SSF)cEXC <= dEXC and MON and (not CI_SSF)cDEG <= dDEG and MON and (not CI_SSF)cRDI <= dRDI and MON and (not CI_SSF) and (sRDI_Reported = enable)

pN_DS <= aTSF or dEQpN_EBC <= nN_B (#EDCV(N))pF_DS <= dRDIpF_EBC <= nF_B (#EDCV(F))

cAIS <= dAIS and (not AI_TSF) and (sAIS_Reported = enable)cLOP <= dLOP and (not AI_TSF)

Anomalies (#XXX), Defects (dXXX)& Consequent Actions (aXXX):

Fault Causes (cXXX) &Performance Primitives (pXXX):

Sourcedirection:

Sinkdirection:

Sourcedirection:

Sinkdirection:

OSn

MSn

aTSF => aRDI

#EDCV(N) => aREI

sLOS_aTSF_extension [enable, disable]gSTM_level [n]sPort_mode [MON, NMON, AUTO]

gSTM_level [n]

gSTM_level [n]sExpected_TTI [16-bytes, NULL]gAccepted_TTI [16-bytes, NULL] (~ AcTI)sTransmitted_TTI [16-bytes, NULL] (~ TxTI)sSignal_degrade_threshold [1E-5, -6, -7, -8, -9, -10]sTermination_point_mode [MON, NMON]sTIM_consequent_actions [enable, disable]

Management SET (sXXX), GET (gXXX)& ACTION (aXXX) operations:

gSTM_level [n]

gSTM_level [n]sEXC_consequent_actions [enable, disable]sSignal_degrade_threshold [1E-5, -6, -7, -8, -9, -10]sTermination_point_mode [MON, NMON]sRDI_Reported [enable, disable]

the 'aLaserActive' consequent action is described inthe section 'Laser Control Process'

sLOS_aTSF_extension determines whether the 'aTSF' cons. actionshall be extended (enable) or not (disable) for 3s after 'dLOS' hascleared.

A NULL value for sExpected_TTI implies thatthe 'dTIM' defect detection shall be suppressed

1)

Notes:

3)

4)

5)

5)

4)

3)

TxTI

0)

If the MSn/S4_A source function is not connected to anotheratomic function, then an S4 UNEQ signal must be input to theMSn/S4_A source function instead

0)

CI_SSF = true: - if the MSn/S4_A source function is connected to an adaptation sink function with aSSF = true as output, or - if the MSn/S4_A source function is connected to a port on the S4_C function, which is having AIS forced;otherwise, CI_SSF = false.

1)

sAIS_Reported [enable, disable]sConc_auto_mode [enable, disable]gConc_status [normal, concatenated]

diRMSFail => MS-AIS

2)

'diRMSFail' is an equipment defect which can be detected at amodule interface, refer to [ETS 05] and [ETS 03]

2)

CI_SSF

Page 89: 02 - SDH Introduction

89

SDH intro, 060320.ppt

Relevant Standards

Page 90: 02 - SDH Introduction

90

SDH intro, 060320.ppt

ITU-T ETSI

• G.707

• G.783, G.806

• G.805, G.803

• G.703

• G.957, G.691, G.692

• G.810 - 813

• G.825

• G.841, G.842

• (ETS 300 147)

• ETS 300 417-series

• (ETS 300 417-1-1)

• (ETS 300 166)

•(ETS 300 232)

• ETS 300 462-series

• (no equivalent)

• TS 101 009 / ...010 EN 300 746

Transport:

Key standards - IKey standards - I

Page 91: 02 - SDH Introduction

91

SDH intro, 060320.ppt

ITU-T ETSI

• G.784

• G.774

• M.2100-series

• M.3000-series

• X.700-series

•ETS 300 417-7-1

• (ETS 300 304)

But there are many, many more!

Management:

Key standards - IIKey standards - II

Page 92: 02 - SDH Introduction

92

SDH intro, 060320.ppt

Relevant standards organisations:

• ITU-T

• ETSI

• ANSI-T1 ATIS

• ISO/IEC

• IETF

• IEEE

• Fora (TMF, OIF, MEF, etc.)

But also Operators’ specifications and regional/national standards are important!

Key standards - IIIKey standards - III

Page 93: 02 - SDH Introduction

93

SDH intro, 060320.ppt

• web based => http://dkbawww01.dk.tellabs.com/webdata/se/PPSE_web/Standardisation/pages/Overview.html

• the Standards file area on DKNTFS03 ( \\DKNTFS03\groups\LIB\STANDARD\ )

• ( a collection of (still) paper-based material ( B.3.2.22 ) )

• ( the ‘Product Planning & Systems Engineering’ Bulletin Board ( in an Outlook Exchange ‘Public Folder’ ) )

Main (internal) source of material:

The Standards Library

Which is:

Finding the standardsFinding the standards

Page 94: 02 - SDH Introduction

94

SDH intro, 060320.ppt

• ”Broadband networking: ATM, SDH and SONET” Mike Sexton & Andy Reid (Artech, 1997)

• SDH Telecommunications Standard Primer (Tektronix) ( - HTML and PDF versions) [ http://www.tek.com/Measurement/cgi-bin/framed.pl?Document= /Measurement/App_Notes/sdhprimer/&FrameSet=communications ]

• Acterna (prev.: W&G): SDH Pocket Guide [ http://www.acterna.com/global/products/descriptions/ANT/ ant_documentation_pocketguides.html ]

• An Introduction to SONET (Nortel, PDF-file) [ http://www.nortelnetworks.com/products/01/sonet/collateral/sonet_101.pdf ] • G.707:2000• G.806:2000• G.783:2000

“Beware of:” GN-Elmi SDH brochure -> outdated(!)

+ notes(!)

+ notes(!)

see => the SDH-intro page on PPSEweb

Suggested further readingSuggested further reading

Page 95: 02 - SDH Introduction

95

SDH intro, 060320.ppt

• ”Next Generation SDH/SONET : Evolution or Revolution” Huub van Helvoort (John Wiley & Sons, 8 April 2005)

• ”SDH/SONET Explained in Functional Models”

Huub van Helvoort (John Wiley & Sons, 14 October 2005)

Suggested further reading (II)Suggested further reading (II)

Page 96: 02 - SDH Introduction

96

SDH intro, 060320.ppt

> All PP&SE documents are available via (links in) the PP&SE intranet web page(s) at:

http://dkbawww01.dk.tellabs.com/webdata/se/PPSE_web/index.html

> A database of acronyms and abbreviations used in Tellabs-DK internal

specifications is found via the PP&SE pages or directly at: http://esw-web1/esw/Abbreviations/Default.php

> “What is” function descriptions (like Concatenation) are found at:http://dkbawww01.dk.tellabs.com/webdata/se/PPSE_web/Documents/pages/ What-is_index.htm (i.e. via ‘Documents’, ‘Product Feature Tutorials’ in the index for the PP&SE web pages)

> Tellabs 6325 Edge Node FP 1.1 documents are found via :

http://dkbawww01.dk.tellabs.com/webdata/se/Documents/pages/6325_FP11_

Documents.html

Additional linksAdditional links