0378-7788-2892-2990049-m

Upload: arpit-thakur

Post on 03-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 0378-7788-2892-2990049-m

    1/9

    Energy and Buildings, 18

    (1992) 35-43 35

    A n a l y s is o f t h e a c c u r a c y a n d s e n s i t i v i ty o f e ig h t m o d e l s t o p r e d i c t t h e

    p e r f o r m a n c e o f e a r th - to - a ir h e a t e x c h a n g e r s

    A. Tzaferis and D. Liparakis

    T.E.I. Pireus , Thiv on 250 P. Ralli, GR-122 24 Aega leo (Greece)

    M. Santamouris

    Labora tqry of Meteorology, Univer sity of Athens, Ippokr atous 33, GR-105 80 Athens (Greece)

    A. Argiriou*

    Protechna Ltd, Themistokleous 87, GR-105 83 Athens (Greece)

    (Received October 24, 1991)

    A b s t r a c t

    Eight different algorithms predicting the performance of earth-to-air heat exchangers are evaluated. The

    sensitivity of the methods to the inlet air temperature, air velocity, pipe length, pipe radius and the pipe

    depth is examined. Two different types of experiments have been designed and performed, and exper imental

    results have been compared with the set of the predicted values. The relative accuracy of each algorithm

    is estimated and reported for both cases.

    1 . I n t r o d u c t i o n

    Passive and hybrid cooling systems and techniq ues

    can contr ibute decisively to the cooling of buildings

    reducing theref ore the peak electricity load of util-

    ities and prese rving th e e nvi ronm ent [1 [.

    The use of the gr ound as a sink for dissipation

    of the excess heat o f buildings is a well-researched

    area [2-4]. Hybrid ground cooling systems and

    especially earth-to-air heat exchang ers have gained

    an increasing acceptance during the last years

    [5-15]. Here air is circulated through buried pipes

    using fans. Due to the te mpera ture difference be-

    tween the ground and the air, the air temperature

    decreases. The main advantages of the system are

    its simplicity, high cooling potential, low capital,

    operational and maintenance cost and environmental

    protection.

    The use o f such a system requ ires a quite difficult

    dimensioning process, involving optimization of its

    length, diameter, dep th and airflow. For this purpo se

    various algorithms have been proposed. Each al-

    gorithm is deduced from and is validated for a

    specific set of parameters, i.e., a certain depth, a

    flow rate, a length, a diameter, etc.

    *Author to whom correspondence should be addressed.

    However there is an important dependence and

    variability of the system's per forma nce as a functi on

    of its thermal and geometr ical characteristics. Con-

    sequently such algorithms are not automatically

    accurate for every set of parameters and therefore

    a more detailed validation is required.

    The aim of the pr esent pa per is to contribute to

    the validation of the algorithms by examining their

    accurac y for various data sets, and also to investigate

    their sensitivity upon the more important param-

    eters. For this purpose experiments have been un-

    dertaken and two sets of experimenta l data have

    been obtained and used for validation. The overall

    work offers a compl ete analysis of the subject and

    contributes towards a more accurate design of earth-

    to-air heat exchangers.

    2 . T h e a l g o r i t h m s

    The eight examined algorithms can be classified

    in two groups:

    Thos e algorithms which first calculate the con-

    vective heat transfer from the circulating air to the

    pipe and then the conductive heat transfer from

    the pipe to the ground and inside the ground mass

    [16]. The necessary input data are:

    0378-7788/92/$5.00 1992- Elsevier Sequoia. All rights reserved

  • 8/11/2019 0378-7788-2892-2990049-m

    2/9

    36

    -- the geometrical characteristics of the system;

    -- the therma l characteristi cs of the ground;

    --

    the thermal characteristics of the pipe;

    -- the undisturbed ground temperature during the

    operation of the system.

    Those algorithms which calculate only the con-

    vective heat transfer from the circulating air to the

    pipe [17-21]. In this case the necessary input data

    are:

    -- the geometr ical characterist ics of the system;

    -- the therm al characte ristics of the pipe;

    -- the te mperature of the pipe surface.

    A . T h e S c h i l l e r a l g o r i t h m [ 16 ]

    In this algorithm, the two hea t transfer processes

    determining the behaviour of the buried pipe as a

    heat exchanger are treated separately. The first

    process is the convective heat transfer between the

    air circulating in the pipe and the internal surface

    of the pipe. The second process is the heat transfer

    by conduction from the internal surface of the pipe

    to the ground. The ground is thus divided theo-

    retically into coaxial cylindrical elements.

    In order to better simulate the heat transfer pro-

    cess in the ground, the thermal resistance of the

    ground was considered to be time-dependent, in

    order to take into account the variation of its thermal

    properties with temperature.

    The air temperature at the outlet of an element

    of the pipe can be obtaine d by the following relation:

    x

    T~, x+1 =Tt, x - - - (1)

    ~hcr

    with x, x+ 1 the axial positions of the inlet and

    the outlet of the element. The air temperature at

    the outlet of the pipe is obtained by applying this

    relation for all the elements of the pipe in order

    to cover its entire length.

    B . S a n t a m o u r i s a l g o r i t h m [ 17 ]

    According to this algorithm, the air temperature

    at the outlet of a buried pipe is given by the following

    expression:

    Tf, o = (Tf, ~ - Tp,~o) exp( -Sa )[1 + ( B i S a ) 5

    Fo

    [ o

    _j exp( - B i F o ) I i ( 2 [ B i S a Fo] '5)

    0

    F o S d F o ] + Tpwo (2)

    The dimensionless parameters B i , S a a n d F o

    depend on the the rmophysical properties of the pipe

    and of the air and on the characteristics of the

    airflow.

    C . T h e R o d ~ i g u e z e t at . a l g o r i t h m [ 18 ]

    This model allows the prediction of the air tem-

    perature circulating in the pipe at any position x

    from the inlet. The relation is:

    T~, x = Tpwo+ (T~,, - Tpwo) exp pfc---~--2R~ (3)

    This relation is based on the assumption that the

    temperature of the external wall of the pipe is

    maintained constant during the process. The air

    temperature at the outlet of the pipe is calculated

    by eqn. (3) with x - - L , L being the length of the

    pipe.

    D . T h e L e v i t e t a l. a l g o r i t h m [ lP ]

    The air temperature in the pipe at a distance

    x 1 from the inlet is calculated by solving the

    steady-state heat balance equation between the air

    and the ground at a distance D from the pipe,

    through a finite differences scheme. The resulting

    relation is:

    T ~ + 1 _ T ~ r h c ~ - U A d x U A d x

    - + - - T s x , D )

    4 )

    rhcf ~hc~

    with A = 2 ~ r D , U=the overall heat transfer coeffi-

    cient,

    Tg ( x ,

    D) = the ground temperature at length

    x at a distance D from the pipe and dx the length

    of the elem entary part of the pipe.

    The air temperature at the outlet of the pipe is

    calculat ed by applying eqn. (4) consecutivel y for

    all the elements of the pipe.

    E . T h e S e r o a e t a l. a l g o r i t h m [ 20 ]

    The buried pipe is divided in elementary parts.

    The air temperature at the outlet of each element

    is given by the relation:

    [(1 - U/2 )Tf , l + UTpwo]

    Tf, o = (5)

    (1 U / 2 )

    where

    U = (2 rrR dXUw)/~Cf

    Uw is the overall heat t ransf er coefficient betwee n

    the air and the external wall of the pipe. The air

    temperature at the outlet of the pipe is calculated

    by applying eqn. (5) consecutively for all the ele-

    ments of the pipe.

    F . T h e E l m e r a n d S c h i l l e r a l g o r i t h m [ 21 ]

    Again the pipe is divided in elementary cylinders

    of length dx. The air temperature at the outlet of

    each element is given by the relation:

    T f , x + 1 = V f ,

    x - - Qx /T~c f

    6 )

  • 8/11/2019 0378-7788-2892-2990049-m

    3/9

    w h e r e t h e h e a t f l o w r a t e p e r u n i t l e n g t h o f t h e

    e l e m e n t a t a d i s t a n c e x f r o m t h e i n le t o f t h e p i p e

    e q u a l s :

    Q= = U w T f , x -

    Tpwo)2~rR~dx 7)

    T h e a i r t e m p e r a t u r e a t th e o u t l e t o f t h e p i p e i s

    c a l c u l a t e d b y a p p l y i n g e q n . 6 ) c o n s e c u t i v e l y f o r

    a ll e l e m e n t s o f t h e p i p e .

    G . T h e S o d h a e t al . a l g o r i t h m [ 22 ]

    I n t h i s c a s e t h e a i r t e m p e r a t u r e a t t h e o u t l e t o f

    t h e p i p e i s g iv e n b y t h e r e l a ti o n :

    T , , o = TpwoCa n ) 8 )

    w h e r e

    a n ) = C a - 1 ) e x p -

    f i n ) + 1 + F ( n , f l )

    9 )

    ~j = Tz. , /Tpwo 10 )

    2 ~rRiL U

    [~= ( 11)

    ~ c f

    n = ( x / L )

    1 2 )

    W h e n t h e a i r t e m p e r a t u r e a t th e o u t l e t o f t h e

    p i p e h a s t o b e c a l c u l a t e d ,

    x = L

    c o n s e q u e n t l y n - - 1.

    K n o w i n g / 3 , t h e p a r a m e t e r

    F ( n , f l ) ,

    e q n . 8 ) t h e a i r

    t e m p e r a t u r e a t th e o u t l e t o f t h e p i p e i s o b t a i n e d .

    H . T h e C h e n e t a l . a l g o r i t h m [ 2 3]

    T h i s a l g o r it h m s o l v e s t h e t h r e e - d i m e n s i o n a l t ra n -

    s i en t h e a t b a l a n c e e q u a t i o n b e t w e e n t h e a i r a n d t h e

    e x t e r na l w a l l o f t h e p i p e. T h e N e u m a n n - t y p e b o u n d -

    a r y c o n d i t i o n a t th e e x t e r n a l s u r f a c e o f th e p i p e i s

    a l s o t a k e n i n t o a c c o u n t . B y a p p l y i n g a f in i t e d i f-

    f e r e n c e s s c h e m e , t h e f o l l o w i n g e q u a t i o n g i v i n g t h e

    a ir t e m p e r a t u r e a t t h e o u t l e t o f an e l e m e n t o f t h e

    p i p e i s o b t a i n e d :

    T ~ + I _ 2 U ~

    2 U w )

    pfCfRo---~

    Tp w o d ~+ T ~f 1 P fCf Ro

    V d x

    (13)

    T h e a i r t e m p e r a t u r e a t t h e o u t l e t o f t h e p i p e i s

    c a l c u la t e d b y a p p l y i n g eq n . 1 3 ) c o n s e c u t i v e l y f o r

    a l l t h e e l e m e n t s o f t h e

    p i p e .

    3 . S e n s i t i v i t y a n a l y s i s

    T h e a l g o r it h m s p r e s e n t e d a b o v e h a v e b e e n in -

    t r o d u c e d i n to c o m p u t e r p r o g r a m s i n o r d e r t o si m -

    u l a t e t h e b e h a v i o u r o f t h e e a r t h - t o - a i r h e a t e x -

    c h a n g e r s a n d t o i n v e s t ig a t e t h e i m p a c t o f e a c h i n p u t

    p a r a m e t e r , b y m e a n s o f a s e n s i ti v i t y a n a l y s i s. T h e

    s e n s i t i v i t y o f a l l t h e m o d e l s , r e g a r d i n g t h e i n l e t a i r

    37

    t e m p e r a t u r e , t h e g r o u n d t e m p e r a t u r e , t h e a ir v e -

    l o c it y , th e l e n g t h o f t h e p i p e , a n d t h e i n te r n a l p i p e

    r a d i u s a n d th e d e p t h , h a s b e e n i n v e s ti g a t e d . S o m e

    o f t h e a l g o r i th m s r e q u i r e t h e p i p e w a l l t e m p e r a t u r e

    a s a n i n p u t. I n t h a t c a s e , t h e p i p e w a l l t e m p e r a t u r e

    h a s b e e n c a l c u l a t e d f i r st b y t h e S c h i l le r a l g o r i t h m

    a n d t h e n u s e d a s a n i n p u t f o r t h e s t u d i e d a l g o r it h m .

    T h e m a i n p a r a m e t e r d e t e r m i n i n g t h e o u t l e t a i r

    t e m p e r a t u r e i s t h e i n le t a i r t e m p e r a t u r e . T h e o u t l e t

    a i r t e m p e r a t u r e h a s b e e n c a l c u l a t e d u s i n g a ll t h e

    a l g o r it h m s , w i t h t h e i n l e t a i r t e m p e r a t u r e r a n g i n g

    f r o m 2 5 C t o 7 5 C . F o r t h e o t h e r i n p u t d a t a ,

    t y p i c a l v a l u e s u s e d d u r i n g t h e o p e r a t i o n o f t h e

    e a r t h - t o - a i r h e a t e x c h a n g e r s h a v e b e e n s e l e c t e d .

    T h e s e v a l u e s a r e T g = 2 5 C , V = 5 m s - I , R i =

    1 2 5 x 1 0 - 3 m , L = 3 0 m , z = l . 5 m . T h e r e s u l t s

    o b t a i n e d a r e i l l u s t r a t e d i n F i g . 1 . F r o m t h e r e s u l t s

    i t

    c a n b e s e e n t h a t a l l m o d e l s p r e s e n t a s i m i l a r

    l in e a r b e h a v i o u r r e g a r d i n g t h e i n l e t t e m p e r a t u r e

    v a r i a ti o n s . Al l m o d e l s e x c e p t t h e S c h i l le r a n d S o d h a

    e t a l .

    a l g o ri th m s p r e d i c t a l m o s t t h e s a m e v a l u e o f

    t h e o u t l e t a i r t e m p e r a t u r e . T h e S c h i ll e r a n d S o d h a

    p r e d i c t i o n s a r e a l s o l i n e a r f u n c t i o n s o f t h e i n l e t a ir

    t e m p e r a t u r e b u t t h e S c h i ll e r a l g o r i th m A ) g i v e s

    s i gn i fi c a n tl y h i g h e r t e m p e r a t u r e s w h i l e t h e S o d h a

    e t a l . a l g o r i th m G ) g iv e s l o w e r v a l u e s .

    F i g u r e 2 i l l u st r a te s t h e o u t l e t a i r t e m p e r a t u r e v s .

    g r o u n d t e m p e r a t u r e a t t h e d e p t h o f th e e x c h a n g e r ,

    u s i n g t h e s a m e i n p u t d a t a a s b e f o r e , b u t a s s u m i n g

    a c o n s t a n t i n l e t a i r t e m p e r a t u r e o f 3 5 C. A s it c a n

    b e s e e n , t h e o u t l e t t e m p e r a t u r e i s p r e d i c t e d a s a

    l i ne a r f u n c t i o n o f t h e g r o u n d t e m p e r a t u r e . A l l m o d e l s

    p r e d i c t a lm o s t th e s a m e o u t l et t e m p e r a t u r e e x c e p t

    t h e S c h i l l e r m o d e l t h a t p r e d i c t s v a l u e s h i g h e r o f

    a b o u t 1 .5 C f o r l o w g r o u n d t e m p e r a t u r e s a n d t h e

    S o d h a e t a l . m o d e l w h i c h p r e d i c t s l o w e r v a lu e s o f

    a b o u t 0 . 5 C . T h e d i f f e r e n c e s b e t w e e n t h e m e a n

    p r e d i c t i o n s d e c r e a s e f o r t h e S c h i ll e r m o d e l a n d

    i n c r e a s e f o r th e S o d h a

    e t a l .

    m o d e l a s t e m p e r a t u r e

    i n c r e a s e s .

    T p o [ C )

    6 0

    5 0

    4 0

    3 0

    J

    i i i I

    2 5 3 0 3 5 4 0

    2 0 ~ ~ ~ ~ ~ ~ ~

    2 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0

    Tpi O)

    ~ A - - + - 8 - -X '~ -- - 8 - O - -X - -E - e - - F ~ G ~ H

    Fig. 1. Ou tlet air tempera ture va riation vs. inlet air

    temperature.

  • 8/11/2019 0378-7788-2892-2990049-m

    4/9

  • 8/11/2019 0378-7788-2892-2990049-m

    5/9

    3 9

    Tpo (O)

    32

    30

    28

    2 6 ~ t ~ ~ t ~ ~ ' ~ t ~ t ~ ~

    ~2 14 16 18 2 22 24 26 2.8 3 3.2 3.4 3.6 3.8 4

    z r n )

    ~A -4--.B +C -8- D --x-E ~F - -G --~--H

    ~ 8 . 6 . O u ~ e~ ~ t e ~ e ~ a ~ e ~ ~ i o ~ ~ s. d e ~ t h .

    depths; the outlet temperature drop is about 5 C

    for the first 3 m, but bet ween 3 and 4 m the decrease

    is only about 0.5 C. It must be noted here that

    the difference between the Schiller model mean

    predictions i ncreases with depth, while the difference

    between the Sodha model and the mean predictions

    remains practically constant for all depths.

    4 . C o m p a r i s o n w i t h e x p e r i m e n t a l d a t a

    In order to evaluate and validate the predicted

    performance of the algorithms discussed above, the

    performance of a PVC horizontal pipe, buried at a

    depth of 1.1 m, was measured. The pipe was 14.8

    m long, with a diameter of 0.15 m. The thickness

    of the pipe wall was 0.01 m. Ambient air, heated

    by a 2 kW electric heater, circulated in the pipe

    by means of a fan. Two experiments have been

    performed.

    During the first experiment the air circulated

    cont inuo usly for 9 days, in June 1982, with a velocity

    of 4.5 m s- 1. The inlet and ou tlet air temperature s,

    ground surface temperature and ground temperature

    at various depths were measured [24].

    The aim of the second experiment was to test

    the behaviour of the system by applying an inter-

    mittent air circulation. The air circulated from 08 :00

    until 20: 00, with a velocit y of 10.5 m s -I. Mea-

    surement s were perfo rmed for 15 days, during June

    and July, 1983. The temperature was measured at

    the same experimental points as for the first ex-

    perime nt [25]. T he thermal diffusivity of the ground

    was determin ed experimenta lly and used as input

    data for the models [26].

    Figure 7 illustrates the measured inlet air tem-

    perature and the ground temperature at the depth

    of the pipe, 1.1 m, for the first experiment. Figure

    8 illustrates the outlet air temperature obtained by

    this expe rimen t (solid line) and the simulation results

    obtained by the various algorithms as a function

    of time. The curve representing the experimental

    data presents oscillations on a daily period. This

    is due to the fact that the inlet air temperature is

    not thermostatically controlled, but ambient air was

    heated by applying a constant heating power. In

    this graph it can be observed also that the mean

    daily outlet temperature increases with time. This

    is due to progressive heating of the ground layers

    close to the pipe (see Fig. 7), which reduces the

    heat transfer rate between the air circulating in the

    pipe and the ground.

    As can be seen from Fig. 8, while the models

    can follow the long-term dynamic behaviour of the

    outlet air temperatu re, their predict ions of the max-

    imum and minimum values on a daily basis is much

    less accurate. In order to quantify the accuracy of

    the various models regarding the experimental re-

    stilts, the root-mean-square error between experi-

    mental data and calculated values was calculated

    (Fig. 9) f or all days of the ex perim ent. It is observed

    that except for the Schiller and the Sodha algorithms

    which present the highest r.m.s, error, all the other

    algorithms present an r.m.s, erro r of the same order,

    i.e., of about 3.4%.

    The comparison between measured data of a

    typical day during the second experiment and the

    corresponding simulation results is illustrated in

    Fig. 10 and the corresp onding inlet air and ground

    temperature are given in Fig. 11. From this Figure

    it is observed that the results from all models are

    very close to the curve, except the Schiller and the

    Sodha models. The Schiller algorithm gives outlet

    air temperature values which are about 3-4 C

    higher than the error band, while the Sodha algorithm

    gives values which are located in the middle of the

    error band. Comparisons between measurements

    and calculated values were made for all the days

    of the exper iment and results obtained were similar

    to the ones already discussed.

    The r.m.s, error between measurements and cal-

    culated values is illustrated in Fig. 12. The error

    was calculated for all the measurements obtained

    during the 15 days of the exp eriment, for both the

    upper and lower limits of the error bands. These

    results are illustrated in Fig. 12. The Schiller al-

    gorithm presents the highest r.m.s, error. The error

    of all other model s regarding u pper and lower limit

    of measurement s is respectively of about 2.98% and

    4.7%, except the Sodha algorithm which gives an

    error of the same order in both cases, i.e., 3.53%

    and 3.25% respectively.

  • 8/11/2019 0378-7788-2892-2990049-m

    6/9

    4

    T C)

    6 5 -

    6 ~

    5 5

    5 8 -

    4 5

    4 0

    3 5

    2 5

    ~ - e I I I I I I I I ] I ] I I I I I I I I I I I I I I

    ~ ~ ~ ~ ~ ~ ~ ~ ~_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    T i ~ e ( 6 )

    ~ . 7. Ir~t ni~ and ~ o un d t~mp~r~t~r~s ~t 1.1 m d~pth~ d~r i~ th~ cor~tant ~ circulation xp ~d m~ nL

    i -- In t e r Ai~ I

    e m p e r a t u r e

    --

    C ~ o ~ d

    T em p era t u re

    4 6 -

    4

    I

    ',/,'i

    I

    . i ~ - ~ ~ t 1

    i i ~ ~ i ~ ; ' ~ ~

    ~ r , ~ ~ ~ : ~ ~ , ~ ; ~ E

    / ~ . ~ - : ~ , ~ ~ : ~

    ~

    :

    ',

    ~.~,,.~ ~ ~, , . ~ :~; ~ ~

    ~ ; ,~ ~ . :~~ .~ ~ ~ ~ : ~ , ~ ~ : , ~ : ~ ~

    ] ~ , ~ ~ , : : : . , : ~ ~

    ~ _ ~ ~ ~ - - ~. , ~. ~ . ~ ~ : i ~

    ; ~ : : [ , ~ ~ ,, ~ , ~ . f ~ , . ~ , ~

    ~ ~x ~ ,' ' ~ / ~ : ~ Z : , , :

    ~ ~ , ~ h

    ' ,~ ~ , , ~ , '

    ~ ~ t ~ , " , ~ ~ .' , ~ ; " )

    . ( r , ~ ] ; ;

    ~ ; , ' . ' ~ , " . ; '

    ~ / ~ ~ , , , . ~ : , . ~ , ,

    : . : , M . ; , , . ~ , , .,

    i~,..,..,,,., ~ ~: '~

    3 4 [ ' ..~,,~,;

    ~ 2 I I I I I i I I I

    9 1 2 2 e 3 3 3 6

    4 2 5 5

    6 6

    7 9

    8 2 9 e ~ e le 1 1 1 2

    3 6 ~ ?

    T i ~ e

    ( ~ )

    ~ g . 8 . M e ~ e d ~ d p r e ~ c te d o u de t t e m p e r a t e d ~ ~ e c o ~ t ~ c ~ c ul a t io n e x p e ~ e n t .

    ~ ; t . .

    ' .~ ~ I ~ : , - ~ ' , : ~

    ' , . ~ ~ .

    , : ~

    ~ ? , . ~

    , ~ D~ ~ i ~ X

    ..... , L < ~

    ~ j ~ ~ , ~+ ~

    ,. ~7 ~ .7, .. .. ~, ,.

    .~, . ; .

    ~ ~

    13 13 15 15 16 17 17 IB 19 20 21

    8 I 4 2 5 8 6 9 2

    H e a s ~ e ~ e n t s

    - - S c ~ i | | e ~

    ..... Santa~ou~is

    R o d ~ i ~ u ez

    -- Levit

    S e ~ o a

    E l m e ~

    S o d Ha

    C He~

  • 8/11/2019 0378-7788-2892-2990049-m

    7/9

    (~)

    6

    0

    Schiller Santarnour. Rodr iguez Levit Soroa Ermer Sodha Chon

    lgorithm

    Fig. 9. The r.m.s, errors bet ween measured and predict ed values

    for the constant air circulation experiment.

    41

    air temperature. After that limit, the changes do

    not influence the performance of the system. The

    models have been used to simulate the performance

    of a heat exchanger, operating under two different

    experimental conditions. The r.m.s, error in each

    case has been calculated. The mean value of this

    error was found to be of about 3.5% for all cases

    except for the models, which gave higher r.m.s.

    errors.

    N o m e n c l a t u r e

    Cf

    5 . C o n c l u s i o n s h

    In this paper, eight algorith ms for the predic tion 11

    of the performance of cylindrical earth-to-air heat

    exchan gers have been examine d. A sensitivity anal- L

    ysis has shown that the main parameter s determining rh

    the air temperature at the outlet of the exchanger

    Qx

    are the inlet air temperature and the ground tem-

    perature which is a function of the depth at which Ro

    the exch ange r is placed. The sensitivity analysis t

    has shown also that only change s up to a certain T~

    limit of length and of the di amete r of the pipe and T~, x

    of the air velocity in the pipe can modify the outlet

    specific heat at constant pressure of the

    air (J kg -~ C -~)

    convective heat transfer coefficient in-

    side the pipe (W m -~ C -~)

    modified Bessel funct ion of the first kind

    of order 0

    length of the pipe (m)

    air ma ss flow rate (kg m -~)

    heat flux per unit length of the pipe at

    lengt h x (W m-1)

    outer radius of the pipe (m)

    operating time (s)

    ground temperature (C)

    air temperatur e in the pipe at a distance

    x from the inlet of the pipe (C)

    53-

    52-

    51

    58

    49-

    48-

    4 7-

    46

    T

    (C) 45

    44

    43

    42

    41

    4~

    ~ -

    3 ~ .~1.

    ~ 7

    i

    ~ 1

    ~ 1

    ~

    i

    I

    9 I ~ 1 1 I ~ 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2~

    T i m e < h

    Fig. 10. Measured and predicted outlet temperatures during the intermittent air circulation experiment.

    M e a s u r e M e n t s

    Upper

    M e a s u r e m e n t s

    Lower

    ~ Sc~i l le~

    o Santa~ou~ is

    x Rod~ i~uez

    - Levi t

    m

    ~ Se~oa

    ~ E l M e r

    ~ o d ~ a

    ~ e n

  • 8/11/2019 0378-7788-2892-2990049-m

    8/9

    4

    6 5 -

    T

    C )

    60

    55 j J J

    5fl

    4 5

    4 0

    3 5

    3 ~

    2 5

    8 9

    1 0

    ~ o _ ~ _ _ ~ _ _ ~ - -

    I i I I i I i I +

    I I 1 2 1 3 1 4 1 5 I 6 1 7 1 8 1 9 2 ~

    Ti ~ e (h )

    F i g. 1 1 . I n l e t a n d g r o u n d t e m p e r a t u r e s a t 1 .1 m d e p t h ) d u r i n g t h e i n t e r m i t t e n t a ir c i r c u l a t i o n e x p e r i m e n t .

    In l e t ~ i ~

    Te mpe ra t u re

    ~ G~o~nd

    Te mpe ~ a t H~ e

    ~)

    R e f e r e n c e s

    ~ ~ 3 ~ I

    1

    ~ m ~ m ~ o [ ] 2 ~ [ ]

    ~ om

    ~ 5 ~ 2 .~ N

    0 ~

    Schi llerSantamour Rodr iguez Lev i l Seroa Elmer S odha Chen

    A l g o r i t ~ q m

    m U p p e r C a s e m L o w e r C a s e

    F ig . 1 2 . T h e r .m . s , e r r o r s b e t w e e n m e a s u r e d a n d p r e d i c t e d

    v a l u e s f o r t h e i n t e r m i t t e n t a i r c i r c u l a t i o n e x p e r i m e n t .

    Tpwo

    Tp~,o

    V

    z

    t e m p e r a t u r e o f t h e e x t e r n a l w a l l o f t h e

    p i p e a t l e n g t h x C )

    m e a n t e m p e r a t u r e o f th e e x t e r n a l w a l l

    o f t h e p ip e C )

    a ir v e l o c i t y i n t h e p i p e m s - 1 )

    d e p t h o f t h e p i p e m )

    Greek symbol

    p~

    d e n s i t y o f t h e a i r k g

    m - ~ )

    1 M . S a n t a m o u r i s , N a t u r a l c o o l i n g ,

    Proc. EEC Conf. Passive

    Cooling, Ispra, Italy, 1990.

    2 K . L a b s , E a r t h c o u p l i n g , i n J . C o o k e d . ), Passive Cooling,

    M I T P r e s s , C a m b r i d g e , M A , 1 9 9 0 .

    3 B . G i v o n i a n d L . K a t s, E a r t h t e m p e r a t u r e a n d u n d e r g r o u n d

    b u i l d i n g s , Energy Build., 8 1 9 8 5 ) 1 5 - 2 5 .

    4 M . A n t i n u c c i et al., H o r i z o n t a l s t u d y o n p a s s i v e c o o l i n g f o r

    b u i l d i n g s , i n M . S a n t a m o u r i s e d . ) , B.2000 Resea rch Project,

    E E C , 1 9 9 0 .

    5 A . T o m b a z i s , A . A r g i r i o u a n d M . S a n t a m o u r i s , P e r f o r m a n c e

    e v a l u a t i o n o f p a s s i v e a n d h y b r i c c o o l i n g c o m p o n e t s f o r a

    h o t e l c o m p l e x , Int. J. Solar Ener gy, 9 1 9 9 0 ) 1 - 1 2 .

    6 T . L . W e i s h e c k e r a n d L . D . J a c o b s o n , A n a l y s i s o f c o o l i n g

    a i r i n a b u r i e d p i p e ,

    Proc. 1980 Win ter Meeting,

    A m e r i c a n

    S o c i e t y o f A g r i c u l t u r a l E n g i n e e r s , 1 9 8 0 .

    7 P . L. H e n d r i c k , P e r f o r m a n c e e v a l u a t i o n o f a t e r r e s t r i a l h e a t

    e x c h a n g e r , i n J . H a y e s a n d R . S n y d e r e d s . ) , Proc. 5th

    NPSC, A m h e r s t , M A , A S E S , U n i v e r s i t y o f D e l a w a r e , N e w a r k ,

    D E , 1 9 8 0 , p p . 7 3 2 - 7 3 6 .

    8 D . B . N o r d h a m , A d e s i g n p r o c e d u r e f o r u n d e r g r o u n d a i r

    c o o l i ng p i p e s b a s e d o n c o m p u t e r s m o d e l s , A S E S K a n s a s

    C i ty , M O , 4 1 9 7 9 ) 5 2 5 - 5 2 9 .

    9 D . N . A b r a m s , C . C . B e n t o n a n d J . M . A k r i d g e , S i m u l a t e d

    a n d m e a s u r e d p e r f o r m a n c e o f e a r t h c o ol i n g t u b e s , i n J .

    H a y e s a n d R. S n y d e r e d s . ) , Proc. 5th NPSC, A n h e r s t , M A ,

    A S / I S E S , U n i v e m i t y o f D e l a w a r e , N e w a r k , D E , 1 9 8 0 , p p .

    7 3 7 - 7 4 1 .

    1 0 R . D . P er l , E a r t h h e a t e x c h a n g e r c o o l i n g t u b e s , Proc. Conf.

    Solar' 90,

    1 9 9 0 .

  • 8/11/2019 0378-7788-2892-2990049-m

    9/9

    4 3

    1 1 C . E . F r a n c i s , E a r t h c o o l i n g t u b e s : c a s e s t u d i e s o f t h r e e

    M i d w e s t i n s t a l l a t i o n s , Proc. Pass ive Cooling '81, Int. Tech-

    nical Conf., Mia mi Beach, FL, A S / I S E S , N e w a r k , D E , 1 9 8 1 ,

    p p . 1 7 1 - 1 7 5 .

    1 2 N . R . S c o t t et al., Analysis of Earth-Air Heat Exchange,

    D e p a r t m e n t o f A g r i c u lt u r a l E n g i n e e r i ng , C o r n e l l U n i v e r s it y ,

    I t h a c a , N Y , 1 9 8 2 .

    1 3 N . R . S c o tt , R . A . P a r s o n s a n d T . A. K o e h l e r , A n a l y s i s a n d

    p e r f o r m a n c e o f a n e a r th - a i r h e a t e x c h a n g e r , Proc. 1965

    Wint er Meet., A m e r i c a n S o c i e t y o f A g r i c u l t u r a l E n g i n e e r s ,

    C h i c a g o , I L , 1 9 6 5 , p . 4 6 .

    1 4 W . Z o e l ic k , P r e d i c t e d a n d o b s e r v e d p e r f o r m a n c e o f a b u r i e d

    e a r t h - a i r h e a t e x c h a n g e r c o o l i n g s y st e m , i n J . H a y e s a n d

    W . K o l a r e d s . ) , Proc. 6th NPSC, Portland , OH, A S / I S E S ,

    N e w a r k , D E , 1 9 8 1, p p . 8 2 2 - 8 2 6 .

    1 5 M . S a n t a m o u r i s a n d A . A r g i r i o u , E a r t h - t o - a i r h e a t e x c h a n g e r s

    f o r p a s s i v e c o o l i n g o f b u i l d i n g v a l i d a t i o n o f t o o l s a n d r e s u l t s

    o f t w o a p p l i c a t i o n p r o j e c t s , Proc. Int. Confi Evaluation of

    External Ex perimen tal Components in Bioclimatic Ar-

    chitecture, Milan, Italy, 1990, p p . 1 5 7 - 1 5 9 .

    1 6 G . S c h i l le r , E a r t h t u b e s f o r p a s s i v e c o o l i n g , T h e d e v e l o p m e n t

    o f a t r a n s i e n t n u m e r i c a l m o d e l f o r p r e d i c ti n g t h e p e r f o r m a n c e

    o f e a r t h / a i r h e a t e x c h a n g e r s , P r o j e c t R e p o r t f o r M S d e g r e e,

    M I T , M e c h a n i c a l E n g i n e e r i n g , J u n e , 1 9 8 2 .

    1 7 M . S a n t a m o u r i s a n d C . C . L e fa s , T h e r m a l a n a l y s i s a n d

    c o m p u t e r c o n t r o l o f h y b r i c g r e e n h o u s e w i t h s u b s u r f a c e h e a t

    s t o r a g e , Energy Agric., 5 1 9 8 6 ) 1 6 1 - 1 7 3 .

    1 8 E . A . R o d r i g u e z , J . M . C j u d o a n d S . A l v a r e z , E a r t h - t u b e

    s y s t e m s p e r f o r m a n c e ,

    Proc. CIB Meeting, Air Quality and

    Air Conditioning, Paris, France, 1988.

    1 9 H . J . L e v i t , R . G a s p a r a n d R . D . P i a c e n t i n i , S i m u l a t i o n o f

    g r e e n h o u s e m i c r o c l i m a t e b y e a r t h - t u b e h e a t e x c h a n g e r s ,

    Agric. Forest Meteorol., 47 1 9 8 9 ) 3 1 - 4 7 .

    2 0 A . L. T . S e r o a d a M o t t a a n d A . N . Y o u n f , T h e p r e d i c t e d

    p e r f o r m a n c e o f b u r i e d p i p e c o o l i n g sy s t e m f o r h o t h u m i d

    c l i m a t e s , Proc. o f Sol ar Engi neer ing Conf., 1985, TN, 1985.

    2 1 D . E l m e r a n d G . S c h il l e r , A p r e l i m i n a r y e x a m i n a t i o n o f t h e

    d e h u m i d i f i c at i o n p o t e n t i a l o f e a r t h - a i r h e a t e x c h a n g e r s , Proc.

    1st Nat. Passive Cooling Conf., Miami, FL, Nov. 1981,

    p p . 1 6 1 - 1 6 5 .

    2 2 M . S . S o d h a , I . C . G o y a l , P . K . B a n s a l a n d A . K u m a r ,

    T e m p e r a t u r e D i s tx i b u ti o n i n a n E a r t h - A i r T u n n e l S y s t e m ,

    1 9 8 4 .

    2 3 B . C h e n , T . W a n g , J . M a l o n e y a n d M . N e w m a n , M e a s u r e d

    a n d p r e d i c t e d c o o l i n g p e r f o r m a n c e o f e a r t h c o n t a c t c o o l i n g

    t u b e s , Proc. 1983 Ann ual Meet., Minneapolis, MN, A S E S ,

    1 9 8 3 .

    2 4 T . G r i g o r i a d i s , S t u d y o f a h o r i z o n t a l c y l i n d r i c a l e a r t h - a i r

    h e a t e x c h a n g e r , Diploma Thesis, U n i v e r s i t y o f P a t r a s , 1 9 8 3 .

    2 5 J . S a k e l a ri d i s , S t u d y o f a h o r i z o n t a l c y l i n d r i c a l e a r t h - a i r h e a t

    e x c h a n g e r , Diploma Thesis, U n i v e r s i t y o f P a t r a s , 1 9 8 3 .

    2 6 M . S a n t a m o u r i s , P . Y i a n ou l i s , R . R i g o p o u l o s , A . A r g i r i o u

    a n d S . K e s a r i d i s , U s e o f t h e h e a t s u r p l u s f r o m a g r e e n h o u s e

    f o r s o i l h e a t i n g , Proc. ENE RGE X '82 Corer., Canada, 1982,

    V o l . I / II , p p . 3 9 1 - 3 9 7 .