04-aashto lrfd design provisions for prestressed concrete bridge

Upload: zain-oo

Post on 08-Aug-2018

235 views

Category:

Documents


6 download

TRANSCRIPT

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    1/12

    Dr.SamiW.Tabsh,P.E.

    CivilEngineeringDepartment

    AmericanUniversityofSharjah

    AASHTOLRFDDesignConsiderations

    forPrestresed ConcreteBridges

    Prestressed ConcreteBridges

    Prestressed concreteoffersmanyadvantagesoverothermaterials:

    Costsavings Reducedinitialconstructioncosts

    andlower

    maintenance

    costs.

    Durability ConcreteBridgescaneasilywithstanextremetemperaturechangesandcorrosive

    chemicalsinavarietyofconditions.

    Competitiveness thevalueofconcreteisrepeatedlyrecognizedincompetitivebidding

    situations.

    Prestressed ConcreteBridges

    BridgetrendintheUnitedStates

    TypesofBridges

    Thestructuralsystemofprestressed concretebridgesmayconsistof:

    Slab

    Beam/girder

    Rigidframe

    Cantilever

    Cablestayed

    TypesofBridges

    CompositeIGirder

    TypesofBridges

    Pretensioned concrete Posttensionedconcrete

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    2/12

    AASHTOBackground

    AASHTObeganpublishingtheStandardSpecificationsforHighway

    Bridgesinthe1930s.

    Upuntil

    1970,

    the

    allowable

    stress

    design(ASD)wasthemainmethod

    ofstructuraldesign.

    Inthe1970s,AASHTObeganvaryingthefactorofsafetyforeachloadinrelationtothe

    uncertaintyintheload,referredtoastheload

    factordesign(LFD).

    AASHTOBackground

    AASHTOmadethechangefromASDtoLFDinthformofinterimrevisionstotheStandard

    Specifications. AASHTOhadnevertotally

    rewrittenits

    Standard

    Specifications.

    ThisintroducedgapsandinconsistenciesintheLFDspecificationsthatmadeitdifficultto

    maintainandmodernize.

    Today,thebridgedesignprofessionhasmovedtLoadandResistanceFactorDesign(LRFD).

    DesignPhilosophy

    TheLoadandResistanceFactorDesign(LRFD)philosophyinAASHTOisbasedon:

    where =factorrelatedtotheductility,redundancyandoperationalimportance,

    Qi =loadeffect,

    i =loadfactor(statisticallybased),

    Rn =nominal

    resistance,

    =strengthreductionfactor(statisticallybased).

    ContentsofAASHTOsLRFD

    MajorChangesofAASHTOsLRFD

    ThemajorchangesintheLRFDspecificationfromthestandardLFDspecificationsare:

    Newlive

    load

    model

    and

    load

    distribution

    factors.

    Calibratedloadandresistancefactors.

    Adoptionofthemodifiedcompressionfieldtheory,andstrutandtiemodelingforconcretestructures.

    Limitstatebasedprovisionsforfoundationdesign.

    Considerationofshipcollision.

    Guidanceonthedesignofcurvedsteelgirderandsegmentalconcretebridges.

    SpanCapability

    Foroptimizeddesign,considerthefollowingissues

    Continuousspansaremoreeconomicalthanaseriesof

    simplespans.

    Incontinuousspans,proportionthespanlengthssuch

    thattheendspansare75%82%oftheinteriorspans.

    ThisresultsinM+ nearlyequalinallspans.

    Formaximumeconomy,thelengthofdeckslaboverhan

    is0.280.35oftheinteriorgirderspacing.

    Usethesamesizeforbothinteriorandexteriorgirders.

    Usingfewergirdersatwidespacing(upto5m)ismore

    economicalthanusingmanygirdersatsmallspacing.

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    3/12

    CAST-IN-PLACE, POSTTENSIONED CONCRETE BOX GIRDER

    SPAN RANGE (m) DEPTH/SPAN COST/SQ-FT

    SIMPLE CONT25-75 0.045 0.040 $75-$145

    Advantages Disadvantages

    Commonly used in the UAELow costLow depth/span ratioHigh seismic resistance due tolarge torsional stiffness

    Longer construction time thanprecast concreteLabor intensiveRequires shoring for falsework

    Note: Costsareforyear2000dollarsinCalifornia

    PC/PS I-GIRDER

    SPAN RANGE (m) DEPTH/SPAN COST/SQ-FT

    SIMPLE CONT

    15-40 0.055 0.050 $90-$170

    Advantages Disadvantages

    Simple construction methodLow costNo false-work requiredRequire little or no maintenance

    Has to be prismaticPoor seismic resistanceLow negative moment capacity

    Note: Costsareforyear2000dollarsinCalifornia

    TypesofLoads

    Ingeneral,loadsimposedonbridgescanbeclassifiedinto:(1)Permanent,and(2)Transient.

    Permanentloadsareloadsthatarealwayspresentonthebridgeanddonotchangeinmagnitudeduringitslife. Theyinclude: DC:weightofStructuralComponentsandAttachments DW:WeightofWearingSurfacesandUtilities EH:HorizontalEarthPressure ES:EarthSurchargeLoad EV:VerticalPressureofEarthFill

    TypesofLoads

    Transientloadsareloadsthatarenotalways

    presentonthebridge,orchangeinmagnitude

    duringitslife. Theyinclude:

    BR:VehicleBrakingForce CE:Vehicle Centrifugal Force CT:Vehicle CollisionForce CV:Vessel CollisionForce

    EQ:Earthquake LL:VehicleLiveLoad IM:DynamicLoadAllowance

    IC:IceLoad PL:PedestrianLiveLoa SE:Settlement TG:TemperatureGrad

    TU:UniformTemperat WL:WindonLiveLoad WS:WindonStructure

    TypesofLoads

    17

    Earthquake PedestrianLoad

    Wind VehicleLiveLoad

    TypesofLoads

    1

    Vessel Collision Vehicle Collision

    IceLoadSettlement

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    4/12

    LoadCombinations

    Therearefiveloadcombinationsforthestrength limitstate:

    LoadCombinations

    Therearetwoloadcombinationsfortheextremeventlimitstateandonefatiguelimitstate:

    *determinedonaprojectspecificbasis.

    *

    LoadCombinations

    Therearefourloadcombinationsfortheserviceabilitylimitstate:

    ApplicationofDeadLoad

    Inadditiontoselfweight,provisionsareoftenmadeinthedesignfor:

    1.0to1.5kPa forfuturewearingsurfacetothedeck.

    0.75kPa foruseofstayinplacemetaldeckformsin

    projectsinvolvingstructural

    steelorprecastconcrete.

    Theweight

    of

    the

    integral

    sacrificialwearingsurface

    (thickness=10 to30mm).

    ApplicationofLiveLoad

    TheDesignLiveLoadisHL93consistsofadesigntruck

    or

    design

    tandem

    applied

    simultaneously

    withadesignlaneload,whichevergivesthe

    largereffectonthebridge.

    Fornegativemomentbetweeninflectionpoints,90%oftheeffectoftwodesigntrucksspacedat

    aminimumof15000mmcombinedwith90%of

    thedesignlaneload.

    ApplicationofLiveLoad

    0.90x 15000mmMIN

    35

    kN

    145

    kN

    145

    kN

    35

    kN

    145

    kN

    145

    kN

    ForNegativeMomentBetweenInflectionPoints

    9.3N/mm

    35kN 145kN 145kN 110kN 1 10kN

    9.3N/mm 9.3N/

    4300mm 4300to

    9000mm

    1200mm

    ORdesigntruck+designlane designtandem+designla

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    5/12

    ApplicationofLiveLoad

    DesignTruck,DesignTandem andDesignLane loadsareappliedovera 3.0mwidth,withinthe3.6mlanewidth.

    145kN

    145kN

    35kN1.8m

    3.0m

    3.0mlane

    3.1kPa

    DesignTruckLoad

    DesignLaneLoad

    1.8m

    3.0m

    Adpated from:Cole(PCAseminar)

    ApplicationofLiveLoad

    Theextremeliveloadeffect

    shallconsideranumberof

    transverselyloadedlanes

    multipliedbyamultiple

    presencefactortoaccount

    fortheprobabilityof

    simultaneouslane

    occupationbythefullHL93

    designliveload.

    ApplicationofLiveLoad

    Thedynamicloadallowance,IM,accounts

    forthedynamicportion

    ofthetruckloadonthe

    bridge. Itisequalto:

    DeckJoints:75%

    Fatigue:15%

    All

    other

    cases:

    33%appliedtothetruck

    portionofliveload.

    AnalysisofDeckSlab

    AASHTOapprovestheanalysisoftheconcrete

    slabbysubdividingit

    intostripsoriented

    perpendiculartothe

    supportingcomponents

    (girder)andtreatingthe

    strip

    as

    a

    beam

    on

    rigid

    supports.AASHTOsstripmethodforsla

    AnalysisofDeckSlab

    =1140+0.833X

    =660+0.55S

    =1220+0.25S

    Definitionofthestripwidth,SW(mm)

    S

    AnalysisofDeckSlab

    AppendixA4.1includesliveloadmomentsfortypicalconcretedecks,inlieuofmoreprecise

    calculations,if

    they

    meet

    specified

    condition.

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    6/12

    GirderDistributionFactors

    TheAASHTOSpecificationsusethedistributionfactorconcepttoapproximatethesharingofloadby

    thegirdersinabridge.

    The

    distribution

    factor

    (DF)

    allows

    a

    3

    dimensional

    loadtransfermechanismtobereplacedwithamuch

    simpleronedimensionalsystem.

    P

    GirderDistributionFactors

    Thegirderdistributionfactordependson: Consideredlimitstate(flexureversusshear)

    Locationofgirder(exteriorversusinterior)

    Type

    of

    bridge

    superstructure Geometryofbridge(i.e.skewness,overhangwidth)

    Spacingandstiffnessofgirders

    Thicknessofthedeckslabandlengthofbridge

    Theyareappliedasfollows:

    Mdesign/girder =DF (Mper lane)LLVdesign/girder =DF (Vper lane)LL

    GirderDistributionFactorsforMoment GirderDistributionFactorsforShear

    TableDistributionofLiveLoadperLaneforShearinInteriorBeams.

    GirderDistributionFactorsforMoment&Shear

    (d)

    TableDistributionofLiveLoadperLaneforMomentinInteriorBeams.

    TableDistributionofLiveLoadperLaneforShearinInteriorBeams.

    Prestressed Concrete

    Prestressing consistsofpreloadingthestructurebeforeapplicationofdesignloadsinsuchaway

    soas

    to

    improve

    its

    general

    performance

    by:

    Reducingoreliminatingtensilestressesintheconcrete

    Controllingdeflection

    Allowingtheuseofhighstrengthsteelandconcrete

    Permittingtheuseofshallowerstructures

    Eliminatingfatigueproblems

    Increasingdurability

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    7/12

    TypesofPrestressing

    Prestressing ofconcretecanbeachievedby:

    Prestensioning: requirestensioning

    betweenrigidabutments,ina

    fabrication

    plant

    and

    transporting

    theelementtothesite. Thus,itis

    suitedformassproduction.

    Posttensioning: requirestensioning

    againsthardenedconcreteonsite.It

    allowsforvaryingtheprestressing

    eccentricity alongthememberto

    suittheparticularloadeffectwithin

    thestructure.

    Pretensioned Concrete

    Pretensioning Sequence:1. Thesteelstrandsare

    stretchedthroughtheformbetweentwoendanchors.

    2. Apredetermined

    amount

    of

    stressisappliedtothesteelstrands.

    3. Theconcreteisthenpoured,encasingthesteel.

    4. Strandsarecutwhentheconcretereachesaspecifiedearlystrength.

    Pretensioned Concrete Pretensioned Concrete

    PosttensionedConcrete

    Posttensioningsequence:1. Placesteelcageandpost

    tensioningducts

    in

    formwork.

    2. Castconcreteintheformwork

    andcuretheconcrete.

    3. Afterconcreteishardened,

    thetendonsaretensionedand

    anchoredagainstthemember.

    4. Theductisthengroutedto

    completetheposttensioning

    operation.

    PosttensionedConcrete

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    8/12

    Prestress Losses

    Levelofprestress varieswithtime.Lossesduetoanchorageset,frictionandelasticshorteningareinstantaneous.Lossesduetocreep,shrinkageandrelaxationaretimedependent.

    Concrete

    Prestressed concretecanbenefitfromhigh

    strengthconcrete(5070MPa)becauseweget:

    TypicalStressStrainCurves

    ConcreteinCompression

    Higherallowablestresses(to

    prestress atan

    early

    stage)

    Increasedelasticmodulus

    (lesslossofprestress dueto

    elasticshortening)

    Reducedcreepandshrinkage

    (lesslossofprestress dueto

    volumechanges)

    Prestressing Steel

    Widerangeofwires,strandsandbarsavailable

    Highstrength(1860MPa forstrands&1000MPa forbars)

    Diameters:

    Wires

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    9/12

    FlexuralDesignConsiderations

    BehaviorofPrestressed ConcreteMembers

    FlexuralDesignConsiderations

    GeneralAssumptionsforFlexuralDesignofPrestressed ConcreteMembers ServiceLoadDesign:

    Concreteisuncracked

    Stressin

    prestressing steel

    is

    linearly

    related

    to

    strain

    Iteratetodeterminestrandpatternandsatisfystresslimits

    CheckStrengthatCriticalSections: Concrete

    inelasticincompressiveregions

    tensilestrengthisneglected

    Prestressing steel inelastic

    StrengthReductionFactors

    Theresistancefactorsforthestrengthlimitstateforprestressed concreteare:

    Flexure:

    Tensioncontrolledregion: 1.00

    Compressioncontrolledregion: 0.75

    Shearandtorsion: 0.90

    Compressionin

    anchorage

    zone: 0.80

    Tensioninanchoragezone: 1.00

    ServiceLimitState

    1.ComputeStressesatRelease

    NonCompositeSection(BareGirder)

    Loads:

    Girderselfweight

    Initialprestress

    Topofgirder:

    Bottomofgirder:

    t

    gdl

    t

    iiRt

    S

    M

    S

    eP

    A

    Pf

    b

    gdl

    b

    iiRb

    S

    M

    S

    eP

    A

    Pf

    ServiceLimitState

    ComputeStressesatRelease

    ServiceLimitState

    2.ComputeStressesatService LimitStateAfteLosseswithPermanent&TransientLoads:

    LoadsonNonCompositeSection Girder,deckdeadloads

    Otherdeadloadsappliedbeforeplacingdeck(e.g.diaphragms)

    Finalprestress (afterlosses)

    LoadsonCompositeSection Barrierandfuturewearingsurface

    Otherdeadloads(utilities,etc.)

    Vehicularliveloadandimpact

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    10/12

    ServiceLimitState

    ComputeStressesatServiceLimitStateAfterLosseswithPermanentandTransientLoads

    Topofdeck:

    Topofgirder:

    Bottomofgirder:bcg

    ILLcdl

    b

    ncdlgdl

    b

    eeLPbg

    S

    MM

    S

    MM

    S

    eP

    A

    Pf

    tcg

    ILLcdl

    t

    ncdlgdl

    t

    eeLPtg

    S

    MM

    S

    MM

    S

    eP

    A

    Pf

    tcd

    ILLcdlLPtd

    S

    MMf

    ServiceLimitState

    StressesatServiceLimitStateAfterLosseswith

    PermanentandTransientLoads

    ServiceLimitState

    StressLimitsforPrestressing Tendons(5.9.31)forPretensioned Construction:

    ServiceLimitState

    StressLimitsforPrestressing Tendons(5.9.31)fPosttensioned Construction:

    ServiceLimitState

    Compression StressLimitsforConcrete (5.9.4.1.1&5.9.4.1.2):

    ForTemporary StressesBeforeLosses(FullyPrestressed,Pretensioned orPosttensionedComponents):0.60fci

    ServiceLimitState

    Tensile StressLimitsforConcrete forTemporaryStressesBeforeLosses(Pretensioned orPost

    tensioned):

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    11/12

    ServiceLimitState

    Compression StressLimitsforConcrete atServiceLimitState(SERVICEI)AfterLosses(Fully

    Prestressed,Pretensioned orPosttensioned):

    wherew =1.0formemberswithspan/thicknessratio

  • 8/22/2019 04-AASHTO LRFD Design Provisions for Prestressed Concrete Bridge

    12/12

    StrengthLimitState

    Theminimumflexuralreinforcementisbasedon(LRFD5.7.3.3.2):

    Mr

    =Mn1.2M

    cr

    NotethatthecrackingmomentMcr isobtainedfrom:

    where f r =0.97 fc

    rc

    nc

    c fSS

    S

    1M-)f(fSM dnccperccr

    Conclusions

    Therearemanybenefitsforusingprestressedconcreteinbridgestructures.

    NewAASHTOLRFDcoderequirementsaremuch

    differentfrom

    the

    old

    Standard

    requirements.

    Prestressed concretetakesfulladvantageofhigperformanceconcreteandhighstrengthsteel.

    Structuraldesignofprestressed concretemembersrequirescheckingserviceabilityand

    ultimatestrengthatvariousstagesofloading.