04. material preparation: agglome- ration, drying

153
Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy 04. Material Preparation: Agglome- ration, Drying, Calcination, Roasting Pyrometallurgy (MG-3111) 5 th Semester 2021/2022 Zulfiadi Zulhan Taufiq Hidayat Imam Santoso Department of Metallurgical Engineering Faculty of Mining and Petroleum Engineering Institut Teknologi Bandung INDONESIA

Upload: others

Post on 28-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

04. Material Preparation: Agglome-

ration, Drying, Calcination, Roasting

Pyrometallurgy (MG-3111)

5th Semester – 2021/2022

Zulfiadi Zulhan

Taufiq Hidayat

Imam Santoso

Department of Metallurgical Engineering

Faculty of Mining and Petroleum Engineering

Institut Teknologi Bandung

INDONESIA

Page 2: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

NO TALKING

NO SLEEPING

NO MOBILE PHONE

http://www.longestlife.com

https://www.pinterest.com

https://www.pinterest.se

http://clipart-library.com

https://www.dreamstime.com

Page 3: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Course Content

1. Introduction

2. Refractory

3. Slag

4. Material Preparation: Aglomeration, Drying, Calcination, Roasting

5. Carbo- / Aluminothermic (Metalothermic)

6. Smelting, Refining

7. Pyrometallurgy of Copper Production I

8. Pyrometallurgy of Copper Production II

9. Mid Exam

10. Pyrometallurgy of Tin Production

11. Pyrometallurgy of Nickel Production(Nickel Matte, FeNi)

12. Pyrometallurgy of Zinc and Lead Productions

13. Production of Ferro Alloy I (FeMn)

14. Production of Ferro Alloy II (FeCr, FeSi)

15. Group Presentation (FeNb, FeMo, FeTi, FeV, FeTa, FeW, CaSi, CaC2 etc.)

16. Final Exam

Page 4: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Learning Activity Objectives

After completing this learning activity, the course participants should be

able:

1. to state the reason for agglomeration and to list and describe the types

of aglomeration equipment used in industrial processes

2. to state the purpose of and be able to list types of roasting operations

3. to state the reason for drying and calcining and able to list and

describe the types of drying and calcining equipment used in industrial

processes.

Page 5: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Process Flow Diagram:

Production of Ferronickel Pomalaa, PT Aneka Tambang

Page 6: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

EB Mine

Hi Recovery

Low Olivine parent

WB Mine

Low Recovery

High Olivine parent

Process Flow Diagram:

Production of Ni matte at Soroako PT Vale

Page 7: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Copper Smelter

Page 8: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Mitsubishi Continuous Process (Naoshima)

Page 9: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

AGLOMERATION

Page 10: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Agglomeration

The primary purpose of agglomeration is to improve burden permeability

and gas-solid contact.

A good agglomerate :

• should contain a minimum of undesirable constituents, a minimum of

material less than 6 mm, and a minimum of material larger than 25

mm.

• should be strong enough to withstand degradation during stockpiling,

handling, and transportation.

• must be able to withstand the high temperature.

• should be reasonably reducible.

Sludge and Dust from Dedusting System shall be aglomerated first

before they are charged into kilns or furnaces.

Page 11: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Agglomeration

S: The making, shaping and treating of steel, 11th Edition Ironmaking Volume, the AISE Steel Foundation, 1999

Sinter

Pellet

Page 12: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Definition

Sintering and pelletising are processes by which ore (fines / dust /

sludge) are agglomerated into larger pieces with or without

incorporation of lime and magnesia as fluxes.

Pellet Sinter

Page 13: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

AGLOMERATION:

Pelletizing

Page 14: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Pellet

1st patent of pelletizing in rotating drum:

• Anderson, Sweden, 1912

• Brakelsberg, Germany, 1913

For Pelletizing:

Binder : bentonite (Al2O3.4SiO2.H2O), clay or hydrated

lime

consumption: 6.3 – 10 kg / ton of feed

Water : Optimum moisture content is 9-12%

Pelletisation is a process of agglomeration of ore fines. Particles smaller

than 0.2 mm are converted into 12-15 mm green pellets. On drying and

firing, green pellets become hard and strong to be used as feed for

furnaces.

Page 15: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Typical Chemical Composition of Magnetite Pellet

Feed

%

Fe 65.5

SiO2 7.8

Al2O3 0.5

CaO 0.5

MgO 0.6

Mn 0.25

P 0.032

S 0.003

TiO2 0.1

Moisture 10

Grain size: < 0.2 mm

70-80% < 40 mm

S: H.-W.Gudenau, Eisenhüttenmännische Verfahrenstechnik,

Vom Erz zum Stahl, Materialsammlung zum Praktikum, IEHK-RWTH Aachen, 1989

Page 16: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Properties of Bentonite

Page 17: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Green Ball Formation

When two ore particles

which are coated with binder

slurry come in contact with

each other due to motion on

a pelletising machine, they

collide with another particle

to form liquid bridge acting

as capillary. Surface tension

of the fluid capillary keep the

particle together

Page 18: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Methods to produce green pellet

6 - 10°

Cone

Drum

Disk

S: H.-W.Gudenau, Eisenhüttenmännische Verfahrenstechnik,

Vom Erz zum Stahl, Materialsammlung zum Praktikum, IEHK-RWTH Aachen, 1989

Page 19: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotating Drum to produce green pellets

Dimension of rotating drum for green pellet production with

capacity of 90-130 t / hS: H.-W.Gudenau, Eisenhüttenmännische Verfahrenstechnik,

Vom Erz zum Stahl, Materialsammlung zum Praktikum, IEHK-RWTH Aachen, 1989

Page 20: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Drum

Page 21: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Angle =

45-48°

Rotating Disk to produce green pellets

Dimension of rotary disk for green pellet production with capacity

of 90-140 t / h

S: H.-W.Gudenau, Eisenhüttenmännische Verfahrenstechnik,

Vom Erz zum Stahl, Materialsammlung zum Praktikum, IEHK-RWTH Aachen, 1989

Page 22: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotating Disk to produce green pellets

S: H.-W.Gudenau, Eisenhüttenmännische Verfahrenstechnik,

Vom Erz zum Stahl, Materialsammlung zum Praktikum, IEHK-RWTH Aachen, 1989

Page 23: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotating Disk to produce green pellets

Page 24: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotating Disk

Page 25: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Page 26: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotating Disk to produce green pellets

Page 27: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotating Disk to produce green pellets

Page 28: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotating Disk to produce green pellets:

Pyrometallurgy Laboratory

Mini Rotating Disc Pelletizer

Page 29: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotating Cone to produce green pellets

Mixture ready for balling

Green PelletsS: H.-W.Gudenau, Eisenhüttenmännische Verfahrenstechnik,

Vom Erz zum Stahl, Materialsammlung zum Praktikum, IEHK-RWTH Aachen, 1989

Page 30: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Drum vs. Disc

The balling drum and the disc pelletizer are the most widely used

devices for forming green balls

Disk

(+) Lighter weight

(+) Greater possibility for adjustment e.g. instantaneous fluctuations in the

feed

(+) Classifying action promotes discharge of balls of more uniform size,

which simplifies screening of the product.

(-) Capacity of the discs is low

Page 31: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Pellets Hardening

• Green pellet is hardened by heating (firing at sufficiently high

temperature, ~ 1200°C)

• Methods for Pellet Hardening:

traveling grate

grate-kiln

shaft furnace

Page 32: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Typical Pelletizing Plant

S: The making, shaping and treating of steel, 11th Edition Ironmaking Volume, the AISE Steel Foundation, 1999

Page 33: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Pellet Hadening (Traveling Grate)

S: The making, shaping and treating of

steel, 11th Edition Ironmaking Volume,

the AISE Steel Foundation, 1999

Page 34: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Page 35: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotating Drum + Pellet Hardening (Grate Kiln)

Page 36: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Page 37: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

AGLOMERATION:

Sintering

Page 38: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Sintering

Definition: burning of fuel (coke breeze, anthracite) mix with iron bearing

material, e.g. Fine ore, concentrate, metal shop waste (dust, miling scale,

sludge, etc.) under controlled conditions.

Iron ore : 55.5%

Circulation Komponet : 4.8%

Fluxes : 12.7%

Return material : 27%

Raw mix : 100%

Composition of Sinter Mix

(example for iron ore):

Raw mix : 92.1%

Coke breeze : 2.3%

Moisture : 5.6%

Sinter mix : 100%

Page 39: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Sintering

Air

Sinter< 5 mm

iron ore

Coke fines

Limestone fines

Page 40: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Zonen während des Sintervorganges und

Temperaturverlauf (5.8 minutes after ignition)

200 400 600 800 1000 1200 140000

02

04

06

08

10

12

14

16

18

20

Temp. °C

Sin

tering b

ed d

ep

th (

cm

)

Cooling zone

Oxidation zone

Sinter zone

Ignition zone

Drying zone Separation of

crystalline water

Page 41: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Schematic Diagram of Iron Ore Sintering Process

Page 42: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Sintering

Page 43: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Typical Chemical Composition of Sinter

%

Fe total 56.33

Mn 3.99

P 0.04

SiO2 5.83

CaO 11.05

MgO 1.85

Al2O3 1.14

CaO/SiO2 1.9

S: H.-W.Gudenau, Eisenhüttenmännische Verfahrenstechnik,

Vom Erz zum Stahl, Materialsammlung zum Praktikum, IEHK-RWTH Aachen, 1989

Page 44: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

AGLOMERATION:

Briquetting

Page 45: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Briquetting

Metallurgical processes produce

frequently substances that due to

their of fineness are unsuited for

further use.

Briquetting or compaction

processes enables a product of

defined size for further utilized /

processed.

Via a feeder system, material is

introduced into a space above

two rotating rollers. When

passing through the roller gap,

material is compacted and

formed into product.

Page 46: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Briquetting

Page 47: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Briquetting

Roller technology has been applied for more than 150 years.

Roller press consists of the following main assemblies:

• Press frame

• Floating and fixed rollers

• Main drive

• Material feeder equipment

• Hydraulic and pressurizing system

Briquetting is used in the following metallurgical industry:

Page 48: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Briquetting

Rollers carrying the pressing tools. The roller’s surface is designed to meet

specific requirements and suited for the feed to be processed.

Page 49: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

• Thermoplastic binders (e.g. pitch, bitumen, plastics, waxes, resins)

• Mortar binders (e.g. lime mortar, gypsum, cement)

• Clay binder (bentonite)

Chemical Formula of Bentonite:

Physical Properties :

Al2O34SiO2H2O

Sp. Gravity : 2.4

Bulk density : 0.6

PH of 10% Aqueous solution: 8 to 8.8

Chemical Composition :

Silica : 54.26

Aluminium : 18.34

Ferric Oxide : 10.91

TiO2 : 01.25

Page 50: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Briquetting of Hot Sponge Iron

Briquetting machine (typical for HBI) consists of

following elements:

1. Roller press with screw feeder

2. Briquette string separator

3. Double deck hot screen

4. Vibrating deck hot screen

5. Hot fines recirculation

Page 51: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Briquetting of Hot Sponge Iron

Page 52: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Briquetting of Hot Sponge Iron

Page 53: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Extrusion

Page 54: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Extrusion

Page 55: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Extrusion

Page 56: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

DRYER

Page 57: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Drying

Drying: removal of water (bulk and / or adsorbed „surface held“

moisture) from other substances (ore or coke) by evaporation.

Drying at atmospheric pressure: heating the substance above normal

boiling point of water (100-200°C).

Evaporation of water is an endothermic process:

H2O(l) = H2O(g) DH298 = 43.9 kJ

Drying is accomplished by passing hot combustion gases through or

above the substance.

In most integrated metallurgical plant, hot gases which have temperature

of a few hundred degress celcius is used.

If hot gases is not available, extra fuel has to be burned.

Page 58: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Drying

Drying can be carried out in a number of different types of furnaces:

- Rotary dryer

- Fix bed furnace

- Fluidized bed furnace

Page 59: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Fluidized Bed: Dryer

Page 60: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

A rotary dryer consists of a cylinder, rotated upon suitable bearings and

slightly inclined to the horizontal.

Diameter : less than 0.3 to more than 3 m

Length : from 4 to more than 10 times its diameter

Page 61: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Rotary dryers can been classified as direct and indirect.

“direct”: if heat is added to or removed from the solids by direct exchange

between flowing gas and solids

“indirect”: if the heating medium is separated from physical contact with

the solids by a metal wall or tube.

Usually carbon steel is used as material for cylinder. No lining is needed,

temperature 650-700K

Page 62: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Page 63: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Page 64: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Page 65: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer: Flight / Lifter

Page 66: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer: Flight (Lifter) Arrangement

Direct-heat rotary dryer is usually

equipped with flights on the interior for

lifting and showering the solids

through the gas stream during

passage through the cylinder.

These flights are usually offset every

0.6 to 2 m to ensure more continuous

and uniform curtains of solids in the

gas.

Shape of flights depends upon the

handling characteristics of the solids.

For free-flowing materials, a radial

flight with a 90° lip is employed.

For sticky materials, a flat radial flight

without any lip is used.

Page 67: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer: Flight (Lifter) Arrangement

When materials change characteristics

during drying, the flight design is

changed along the dryer length.

Many standard dryer designs employ:

• flat flights with no lips in the first one-

third of the dryer measured from the

feed end,

• flights with 90° lips in the final one-

third of the cylinder.

• flights with 90° lips in the final one-

third of the cylinder.

Page 68: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Page 69: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Page 70: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer: Retention Time

Retention time:

θ = time of passage, min

S = slope, ft/ft;

N = speed, r/min;

L = dryer length, ft

D = dryer diameter, ft

Page 71: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Dryer

Page 72: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Drying: Co-Current

Page 73: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Drying Rate

Page 74: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Page 75: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Page 76: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Ore

Hot gas

Page 77: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer (Hot Gas Producer)

Pulverized Coal

Hot gasAir

Page 78: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Ore

Hot gas

Page 79: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Dryer

Page 80: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

CALCINATION

Page 81: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Calcination

Calcination: processes designed to decompose or partially decompose a

compound

removal of chemical bound water (hydrates) and gases (CO2 from carbonates,

SO2 from sulfates)

Calcination is more endothermic than drying.

Heat must be supplied at relatively high temperature

Temperature required for calcining is depending on the compound to be

treated.

Term „calcine“ was originally used to describe the product produced by

decomposition of magnesium and calcium carbonates, hydrates and

hydroxides.

However, this term is now used also for roasted copper sulfide concentrates,

roasted zinc sulfide concentrates, partial reduction of nickel oxide, etc.

Page 82: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Decomposition Pressure of Various Carbonates

and HydratesL

og

pC

O2,

(H2O

), a

tm

FeCO3 and Mg(OH)2,

T< 200°C

MgCO3, T ~ 400°C

CaCO3, T ~ 900°C

Page 83: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Calcination

Calcination can be carried out in:

- Shaft furnace (for coarse sizes)

- Rotary kiln (for mixed particle size, for lumps which disintegrade during

the process)

- Fluidized bed (for uniform small particle size)

Solids in

Product out

Fluid out

Fluid in Gas in

Gas out + dust

Solids in

Solids

out

Shaft furnace

Rotary Kiln

Fluidized bed

Page 84: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Lime making (Calcination) in Shaft Furnace

CaCO3 = CaO + CO2, DH298 = 177.8 kJ

Heat must be supplied at relatively high temperature. Calcination rate is

governed primarily by supply of necessary heat for decomposition.

Decomposition of limestone ~ 900°C.

Calcination in Shaft Furnace:

Furnace is charged with a mixture of limestone and coke.

Air is introduced at the bottom of the furnace, where burned is withdrawn.

Furnace can be divided into three zones:

1. Preheating zone : solid charge is preheated to 800°C

2. Reaction zone : burning of coke and decomposition of limestone

take place

3. Cooling zone : burned lime is cooled to 100°C.

Page 85: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Thermodynamic Data for Calcination of Limestone

CaCO3 (s)⇔CaO (s) +CO2 (g) DH298 = 177.8 kJ

DG° = 182837 + 13.402 T ln T − 251.059 T J mol−1

Page 86: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Decomposition of calcium carbonate as function of

temperature

Page 87: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Lime making (Calcination) in Shaft Furnace

Page 88: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Lime making (Calcination) in Shaft Furnace

Page 89: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Lime making (Calcination) in Shaft Furnace

0.56 or (183/328) mol of carbon is required per mole of CaCO3

0.56 mol C ~ 0.067 kg carbon per kilogram CaCO3.

In practice, amount of carbon required per kg CaCO3 ~ 0.1 kg to

cover heat losses through furnace wall.

Page 90: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Page 91: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

ROTARY KILN

Page 92: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln

Rotary kiln: a long, narrow cylinder inclined 2 to 5 degrees to the

horizontal and rotated at 0.25 to 5 rpm.

The length/diameter ratio ranges from 10 to 35, depending on the reaction

time needed.

Refractory lining is needed (due to high temperature processes~700-

1400°C).

Page 93: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln

Formulas for capacity and residence time in terms of operating conditions:

W = 148 n D3 tan ϑ in t/(m3⋅d)

in hours

where n = rpm

= fraction of cross section occupied

D = diameter, m

L = length, m

ϑ = degrees inclination to the horizontal

tan D n 60

L

=

Page 94: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln

Page 95: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln

Page 96: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln: Sealing

Rotate

Static

Page 97: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln

Page 98: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln: Burner

Page 99: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln: Burner

Page 100: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Functional Principle of Rotary Kiln

Page 101: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Heat Transfer in Rotary Kiln

Radiation

Heat transfer from

burner flame and

from refractory

Most heat transfer in

a Kiln is by Radiation

Convection

Heat transfer from

the process gases to

the material

Conduction

Heat transfer from

the hot brick in

contact with the

material

Page 102: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Lime Making in Rotary Kiln

From fuel requirement: rotary kiln is flexible

Fuel: natural gas, fuel oil, pulverized fuel (coal,

coke, sawdust)

88% of burned lime is produced by rotary kiln.

L/D ~ 30-40, L ~ 22.7 – 152.5m, D ~ 1.2-3.3m

Slope ~ 3-5°

Degree of fill ~ 10-12%

Thermal consumption:

Without heat recuperation: ~ 3336 – 4170

kcal/kg of lime

With heat recuperation: ~ 1668 – 2224 kcal/kg

of lime

Page 103: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Lime Stone Dissociation Process Steps

1. Heat is transferred from the furnace gases to the surface of the decomposing

particle.

2. This is followed by heat conduction from the surface to the reaction front

through the micro-porous lattice structure of lime.

3. Heat arrives at the reaction front and causes the dissociation of CaCO3 into

CaO and CO2.

4. The CO2 produced migrates from the reaction front, through the lime layer, to

the particle surface.

5. CO2 migrates away from the particle surface into the kiln’s atmosphere.

Page 104: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Solid B

C

A

Shrinking – Core Model for Spherical Particles of

Unchanging Size

Fluid A

A (fluid) + b B (solid) = c C (fluid) + d D (solid)

Fluid phase mass transfer

(STEP1)

Fluid phase mass transfer

(STEP 5)

C A bulk

C C bulk

T bulk

Chemical

Reaction

(STEP 3)

Page 105: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Lime Making in Rotary Kiln

Page 106: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Lime Kiln, Heat and Material Balance

Page 107: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Cement Making in Rotary Kiln

Rotary Kilns are synonymous with cement making.

Raw materials (CaCO3, Al2O3, Fe2O3, SiO2) are charged to

produce:CaO·SiO2 (C3S), 2CaO·SiO2 (C2S), 3CaO·Al2O3 (C3A), and

4CaO·Al2O3·Fe2O3 (C4AF).

Kiln is divided into three zones:

- decomposition zone (900°C),

- transition zone (900-1300°C), and

- sintering zone (1300-1400°C).

Page 108: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Cement Making in Rotary Kiln

Decomposition zone:

Page 109: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Cement Making in Rotary Kiln

Transition zone:

Sintering zone:

Page 110: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Cement Making in Rotary Kiln

Page 111: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Cement Making in Rotary Kiln

Page 112: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Page 113: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

▪ Calcination is carried out in Rotary Kiln to remove moisture

(hydrates water from ore) and LOI (loss on ignition). Partial

reduction is also performed in rotary kiln using counter current

principles.

▪ 20% NiO is reduced to Ni and 80% Fe2O3 to FeO in the rotary kiln

▪ Hot gas in rotary kiln is produced by pulverized coal combustion at

the calcine discharging end. Temperature of hot gas ~ 12400C. Hot

gas will heat the material up to 10200C near the discharge end.

▪ Hot spot of the burner flame may reach over 18000C and will heat

the material up to partial fusion (clinker).

Rotary Kiln (PT Aneka Tambang)

114

Page 114: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln (PT Aneka Tambang)

115

Page 115: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln

116

Page 116: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Reduction Kiln (PT International Nickel Indonesia)

Page 117: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln (PT International Nickel Indonesia)

Page 118: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln SL/RN Process

Page 119: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Rotary Kiln SL/RN Process

Page 120: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Roasting

Aim of roasting:

1. Conversion of material to the oxide form as prelimanary to a metal

extraction

2. Formation of water soluble sulphates which can be employed in in

subsequent hydrometallurgical processes.

Typical ores which are roasted: sulfides of copper, nickel, zinc and lead.

Roasting is carried out below melting point of sulfides, usually below 1000°C

From kinetic point of view, temperature should be above 500°C

Temperature range: 500-1000°C.

Page 121: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Equations:

K log- p log p log 2

2MeSO O 2SO 2MeO 4.

4OSO

422

22=+

=++

K log - p log

MeO 2 O 2Me 2.

2O

2

2=

=+

K log p log 3 - p log 2

2SO 2MeO 3O 2MeS 3.

3OSO

22

22=

+=+

K log p log - p log

O MeS SO Me 1.

1SOO

22

22=

+=+

K log - p log 2

MeSO 2 2O MeS 5.

5O

42

2=

=+

p log K log p log 2 - p log 2

SO 2 2O S 6.

222 S6OSO

222

+=

=+

p log 2 K log- p log p log 2

2SO O SO2 7.

322 SO7SOSO

322

+=+

=+

Page 122: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Schematic: Equilibria and Predominance Areas at

Constant Temperature (Kellog diagram) for System

Me-S-O

Page 123: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Roasting Equipment

Page 124: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Multi Hearth Furnace

Page 125: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Roasting Equipment: Multi Hearth Furnace

Page 126: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Multi Hearth Furnace

Page 127: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Multi Hearth Furnace

Page 128: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Multi Hearth Furnace

Page 129: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Multi Hearth Furnace

Page 130: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Roasting Equipment: Fluidized Bed

Page 131: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Fluidized Bed

Page 132: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Fluidized Bed: Combustion

Page 133: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Ni-S-O System

When nickel sulfide (NiS) is roasted in an oxygen bearing atmosphere,

nickel oxide (NiO) or nickel sulfate (NiSO4) is formed, depending on

temperature, pO2 and pSO2

Page 134: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Equilibrium constant data for different reactions in

Ni-S-O System

Page 135: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

In a roaster operating

at total pressure of 1

atm, gas composition in

the range 3-10% O2

and 3-10% SO2, nickel

suphate will be

produced

If gas phase containing

1% O2 and 1% SO2,

nickel oxide will be

formed

Determine which phase

is most stable when log

pSO2 = -1 and log pO2 =

-12. Total pressure is 1

atm

Page 136: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Example 1:

Nickel sulfide concentrates with 60% NiS and 40% SiO2 are roasted in a

fluidized bed reactor using oxygen-enriched air. The composition of the gas

phase is found to be 10% SO2, 7.5% O2 and 82.5% N2. Temperature and

pressure in the reactor are steady at 1000°K and 1 atm. The roasted

product is found to contain 2.4% S.

a. Which solid phases are present in the solid product and in what

amount?

b. What is the oxygen content of the enriched air used in the operation?

c. How much air is required per 100 kg of concentrate?

d. How much heat is lost to the surroundings? (assume that the

concentrates and the air enter the reactor at 298°K and the gaseous

and solid products leave it at 1000°K)

Page 137: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Example 1

The following data are given:

Page 138: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Example 1: Solution, a.

Consider 100 kg of concentrates as basis:

Amount of Ni = 38.83 kg

Amount of S = 21.17 kg

Kmol of Ni = 0.6615

Gas phase contain SO2 and O2,

pSO2 = 0.1 atm, log pSO2 = -1

pO2 = 0.075 atm, log pO2 = -1.1249

From diagram, solid product = NiSO4

However, sulphur content in the roated product is too small (2.4%S).

The product may contain NiO and NiSO4

Page 139: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Example 1: Solution, a.

Suppose that the weight of roasted product is w kg

Amount of sulphur in the product = 0.024w kg

Kmol of sulphur =

Kmol of NiSO4 in product =

Kmol of Ni present as NiO = 0.6615 –

Amount of NiSO4 = kg

Amount of NiO = kg

Amount of SiO2 = 40 kg

89.42 + 0.06 w = w; w=

Product: NiO = 44.08 kg, NiSO4 = 11.04 kg, SiO2 = 40 kg

Page 140: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Example 1: Solution, b and c.

Suppose that the volume of enriched air supplied is y m3 at STP.

q is volume percent of O2 in dry air.

Volume of O2 supplied = 0.01 qy m3 at STP

Volume of N2 supplied = y -0.01 qy m3 at STP

Kmol O2 supplied = 0.01qy/22.4

Kmol N2 supplied = (y -0.01 qy)/22.4

Volume of gaseous products at STP from reactor is z m3

Volume of O2 in products = 0.075 z m3 at STP

Volume of SO2 in products = 0.1 z m3 at STP

Volume of N2 in products = 0.825 z m3 at STP

Page 141: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Example 1: Solution, b and c.

kmol of O2 in products = 0.075 z/22.4

kmol of SO2 in products = 0.1 z / 22.4

kmol of N2 in products = 0.825 z/22.4

Oxygen balance:

O2 input = O2 in gases (as O2 and SO2) + O2 as NiO + O2 as NiSO4

0.01 qy = 0.175 z + 9.8111

Nitrogen balance:

N2 input = N2 output (as O2 and SO2)

y - 0.01 qy = 0.825 z

Page 142: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Example 1: Solution, b and c.

sulphur balance:

S in NiS concentrate = S in NiSO4 + S in SO2

0.6615 = 0.07136 + 0.1 z / 22.4

z = 132.27 m3; y = 142.08 m3; q = 23.2 %(vol.)

Volume air required = 142.08 m3

Oxygen content of enriched air = 23.2%

Page 143: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Example 1: Solution, d

Reactions:

NiS + 3/2 O2 = NiO + SO2

NiS + 2O2 = NiSO4

Heat losses = 132 502 kJ

Page 144: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Cu-S-O System

Page 145: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Cu-S-O System

The purpose of copper

sulfides roasting is to produce

either CuO product or water

soluble CuSO4 product

T < 677°C CuSO4 is stable

T > 800°C CuO is stable

T ~ 677- 800°C CuO.

CuSO4 is stable

Page 146: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Fe-S-O System

If in concentrate copper contains

Fe, i.e. chalcopyrite (CuFeS2),

roasting temperature should be

considered:

At T > 677°C, Fe2O3 is stable!

For hydrometallurgy process:

Roasting temperature: 677-

800°C, product: CuO.CuSO4

and Fe2O3

In subsequent pyrometallurgy

process, the presence of

Fe2O3 (or Fe3O4) leads to

over oxidation condition.

Page 147: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Page 148: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

8% SO2 and 4% O2,

CuSO4 and Co SO4

are stable

In case of Cu and Co

will be separated by

leaching, then

roasting operation

should be in area „A“

Page 149: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Pb-S-O System

Page 150: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Pb-S-O System

Page 151: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Extraction of Mercury from Cinnabar

Mineral Cinnabar is a relatively pure form of HgS, the metal can be

obtained by direct oxidation:

HgS(s) + O2(g) = Hg(l) + SO2(g) DGo = -57000 – 8.6 T cal

Hg (l) = Hg(g) DGo = 14100 – 22.4 T cal

Or:

HgS(s) + O2(g) = Hg(g) + SO2(g) DGo = -42100 – 31.0 T cal

Page 152: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG-3111 Pyrometallurgy

Roasting Flash Smelting

Page 153: 04. Material Preparation: Agglome- ration, Drying

Zulfiadi Zulhan/Taufiq Hidayat/Imam Santoso 2021 MG3111 Pyrometallurgy

Terima kasih!Program Studi Teknik Metalurgi

Fakultas Teknik Pertambangan dan Perminyakan

Institut Teknologi Bandung

Jl. Ganesa No. 10

Bandung 40132

INDONESIA

www.metallurgy.itb.ac.id

Dr.-Ing. Zulfiadi Zulhan, ST., MT.

[email protected]

Taufiq Hidayat, ST., M.Phil., Ph.D.

[email protected]

D.Sc. (Tech.) Imam Santoso, ST., M.Phil

[email protected]