06 finite difference-6

30
Numerical Method Finite Differencing x = 1 i-1 i i+1 x = 0 h niform interval h is constant signed at each node, f 1 , f 2 , f i-1 , f i , f i+1 , f N-2 , node each at x f x f e Approximat 2 2 &

Upload: qasim-ali

Post on 21-Jul-2016

10 views

Category:

Documents


0 download

DESCRIPTION

Heat transfer (finite difference method)

TRANSCRIPT

Page 1: 06 Finite Difference-6

Numerical MethodFinite Differencing

x = 1

1 2 3 i-1 i i+1 N-2 N-1 N

x = 0 h

Consider uniform interval h is constant

f(x) is assigned at each node, f1, f2, fi-1, fi, fi+1, fN-2, fN-1, fN

nodeeachatxf

xf

eApproximat 2

2

&

Page 2: 06 Finite Difference-6

)(Accuracy2

)(21

)(21

)12(NodesInternalFor:ExpansionSeriesTaylor

sideeachatnodeoneuse:Example

311

322

2

1

322

2

1

hOhff

xf

xf

forSolve

hOhxf

hxf

ff

hOhxf

hxf

ff

Ni

ii

i

i

iiii

iiii

Discretization

Page 3: 06 Finite Difference-6

)(Accuracy2

)(21

)(21

)12(NodesInternalFor:ExpansionSeriesTaylor

sideeachatnodeoneuse:Example

42

112

2

2

2

322

2

1

322

2

1

hOh

fffxf

xf

forSolve

hOhxf

hxf

ff

hOhxf

hxf

ff

Ni

iii

i

i

iiii

iiii

Discretization

Page 4: 06 Finite Difference-6

)(Accuracy234

Eliminate

)(4212

)(21

0orknownis,specifiedisGradient)(

knownis:boundarytheatspecifiedFunction)(

3

1132

12

2

32

12

2

113

32

12

2

112

111

1

hOhxf

fff

xf

hOhxf

hxf

ff

hOhxf

hxf

ff

Bfxf

Axf

b

fa

For Nodes at the Boundary Nodes (i=1, i=N)

Page 5: 06 Finite Difference-6

Example: Numerical Solution of the Fin Problem

0)1()1(&1)0(

)()(

1000

2

H

specifiedareXfandXawhere

XfAd

a

x = 1

1 2 3 i-1 i i+1 N-2 N-1 N

x = 0 h

Page 6: 06 Finite Difference-6

For Interior Nodes (2 ≤ i ≤ N-1)

12

02

2

2&2

eapproximatweside,eachatnodeoneUsing

0

211

211

21111

Nifor

fAd

ha

ha

hh

iiii

iiii

i

iiii

iii

x = 1

1 2 3 i-1 i i+1 N-2 N-1 N

x = 0 h

Page 7: 06 Finite Difference-6

Boundary Nodes (i = 1 and i = N)

NNN

N

NNNNNN

N

NNNN

NNNN

Hh

Hh

hOhh

hOhh

NiForiFor

234obtain,Eliminate

0since234Eliminate

)(4212

)(21

1,1

21

21

322

321

1

Page 8: 06 Finite Difference-6

Algebraic Equation

matrixt coefficien

0...,0,0,2/22/2

vector known :,1...,3,2

vector unknown ::formmatrixtheIn

:11

xNNA

Thahab

b

TNNx

xbAx

Page 9: 06 Finite Difference-6

Algebraic Equation

hHAAA

hiahiaA

AifdhiaA

hiahiaA

hahaA

AfdhaA

NNNNNN

ii

ii

ii

2341

2/2/

0/22/2

2/2/

2/22/2

0/222/22

:formmatrix Aoft coefficienThe

1,12,13,1

1,

,

1,

2,1

1,1

Page 10: 06 Finite Difference-6

Solution

solution Iterative - MethodIndirect

1matrixInvertMethodDirect

:solveTo

bAx

A

Page 11: 06 Finite Difference-6

ASSIGNMENT 2 – due Feb 16 Fin

w0Tb

T0

k=k11

k=k22

Streaming fluid

r1 r2r3

h=h1h=h2

r1

r2

r3

Top view

h=0

Cross-section

Page 12: 06 Finite Difference-6

ASSIGNMENT 2

For two fin whose cross - sections are shown calculate the temperature and the heat flux at any cross -section. Run the program for a perfect interface.

Find the temperature at the cross-section where the fin changes shape. Plot the temperature as a function of r in r1 ≤r ≤ r3.

.15,0.9,0.7,5,0.3,/60,/40

,/150,/100,20,150

3210

21

22

210

cmrcmrcmrcmwCmWkCmWk

CmWhCmWhCTCTb

Page 13: 06 Finite Difference-6

ASSIGNMENT 2

Use the fact that the temperature and the heat flux are continuous at the cross-section for a perfect interface.

xTk

xTk

tzyxTtzyxT II

22

11

21 ),,,(),,,(

Page 14: 06 Finite Difference-6

Conduction-Conditions at the Interface

Perfect Interface

xTk

xTk

tzyxTtzyxT II

22

11

21 ),,,(),,,(

Imperfect Interface

x = xI

Material 2k2 T2(x,y,z)

Material 1k1 T1(x,y,z)

Interface

xTk

xTk

xTkTThc

22

11

1121Rc is the contact resistance

Rc ≈ 10-6 – 10-3 m2K/W

hc ≈ 102 – 106 W/m2K

Page 15: 06 Finite Difference-6

RkhrRfR

AARa

RTTTTRfkSh

wrArwArrR

b

1

111

0

11

1001

1111

010011

4)( and)(

).()()(

2,2,/:1Region

Introduce Normalized Variables:

10

2112

11211

1

1222

2 where0)(

:)(for Equation where1 :1Region

kwrhRR

RrrRRR

Page 16: 06 Finite Difference-6

Introduce Normalized Variables:

0

1

2

2122

0

22

2002

2222

2021

13332

tan2with

4)( and1)(

).()()(

tan2,2,/ where:2Region

wrc

RkhrRfRRcR

AARa

RTTTTRfkSh

rrwwrwArrRrrRRRR

b

Page 17: 06 Finite Difference-6

0

122

20

2122

222222

2

32

tan2 where1)(

2 where0)(

:)(for Equation :2Region

wrcRRcRRa

kwrhRa

RRRR

Page 18: 06 Finite Difference-6

0)( tipat the

whereinterface at the continuousflux heat and

)continuous re(temperatuinterface, at the

1)1(1base at the

323

212221

2221

2

1

RRR

kkRR

RRRR

R

Boundary Conditions – with the Perfect Interface

Page 19: 06 Finite Difference-6

0)(tip theat

whereinterface theat continuousflux heat and

where0interface, theat

1)1(1base theat

323

212221

11c211

2

1

RRR

kkRR

krhHHRR

R

cc

Boundary Conditions – with the imperfect Interface

Page 20: 06 Finite Difference-6

212221

2221

321

20

2122

22222

32

10

2112

11211

2

where

interfaceperfect aFor 0)(,1)1(

2 where0)(

For

2 where0)(

1 For

kkRRRR

RkwrhRR

RRRkwrhRR

RR

Special Case = 0

Page 21: 06 Finite Difference-6

:conditionsboundary theapplyingbydeterminedbecan),,,(Constants

)(and

)(kind second andfirst zero,order of

funtions Bessel modifiedin expressed becan )( and )(for solution The

20202

10101

21

DCBARDKRCIR

RBKRAIR

RR

Solution

Page 22: 06 Finite Difference-6

2212212

2112111

220220

210210

321321

1010

and,

,0,1

:are for Equations

RDKRCIRBKRAI

RDKRCIRBKRAI

RDKRCIBKAI(A,B,C,D)

Page 23: 06 Finite Difference-6

hiRkwrh

RRcRaN-iI

hiRkwrh

hiRa-Ii

Rh

ah

a

i

iii

i

ii

iiii

iiii

i

21with2

,1 11for

11with2

11 12for

02

2nodesinterior for ng,differenci centralUsing

20

2122

22

10

2112

1

211211

R = R3

1 2 3 I1-1 (I1,I2) I2+1 N-2 N-1 N

R = 1 h R = R2

Finite Difference Discretization – for each regionUse two nodes at the interface one for region 1 (I1) and one for region 2 (I2)

Page 24: 06 Finite Difference-6

Boundary condition: Nodes i = 1 and i = N

034 insulated is Tip

1,11 base at the re temperatuSpecified

21

1

NNNNiForNi

iFori

Page 25: 06 Finite Difference-6

Condition at the interface: Interface Nodes, i = I1 ,I2

(I1 ,I2 are at the same point)

hh

h

h

IIIIII

III

III

II

243

243

243

243

)continuousheatflux (

)continuous eTemperatur(:interfaceperfect aFor

1212

12I

12I

II

222111

222

2

111

1

21

21

Page 26: 06 Finite Difference-6

Condition at the interface: Interface Nodes (i = I1 ,I2)

hh

Hh

H

IIIIII

IIcIII

IIc

243

243

)continuousflux heat (

02

43

)resistancecontact (0:interfaceimperfect an For

1212

II

12

I

222111

21

21

111

211

Page 27: 06 Finite Difference-6

22312

232321

11

1IIRegion For IRegion For

and11

dd

RRdRd

dd

RdRd

RRRRRR

Another Approach: Multi-region Problems - Transformation

R

1 R2 R3

0 01

ξ1

ξ2

Page 28: 06 Finite Difference-6

variablesdependent areandst variableindependen areand

10 For

0110 For

0111

1

21

21

2

22323222222

23

1

121211112

2

RRRaRR

RaR

Multi-region Problems – Transformation

Page 29: 06 Finite Difference-6

,0)0(,1)0(

01

0111

110 For

21

223322222

23

1221112

2

with

RRRaRR

RaR

Multi-region Problems – Final

Page 30: 06 Finite Difference-6

)1(1)1(1

1

0)1()1()1(1

1:interfaceimperfect an For

)1(1)1(1

1)1()1(

:interfaceperfect aFor

223

12

2112

223

12

21

RRR

HR

RRR

c

Multi-region Problems – Final