08 finite elements basis functions

Upload: shafqat-hussain

Post on 06-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 08 Finite Elements Basis Functions

    1/20

    1Finite element method basis functions

    Finite Elements: Basis functions

    1-D elements

    coordinate transformation 1-D elements

    linear basis functions quadratic basis functions cubic basis functions

    2-D elements

    coordinate transformation triangular elements

    linear basis functions quadratic basis functions

    rectangular elements linear basis functions quadratic basis functions

    Scope: Understand the origin and shape of basis functions used in classical

    finite element techniques.

  • 8/2/2019 08 Finite Elements Basis Functions

    2/20

    2Finite element method basis functions

    1-D elements: coordinate transformation

    We wish to approximate a function u(x) defined inan interval [a,b] by some set of basis functions

    ==

    n

    i

    iicxu1

    )(

    where i is the number of grid points (the edges ofour elements) defined at locations xi. As the basis

    functions look the same in all elements (apart fromsome constant) we make life easier by moving to alocal coordinate system

    ii

    i

    xx

    xx

    =+1

    so that the element is defined for x=[0,1].

  • 8/2/2019 08 Finite Elements Basis Functions

    3/20

    3Finite element method basis functions

    1-D elements linear basis functions

    There is not much choice for the shape of a(straight) 1-D element! Notably the length can varyacross the domain.

    We require that our function u() be approximatedlocally by the linear function

    21)( ccu +=

    Our node points are defined at 1,2=0,1 and werequire that

    212

    11

    212

    11

    uuc

    uc

    ccu

    cu

    +=

    =

    +=

    =Auc =

    = 11-

    01

    A

  • 8/2/2019 08 Finite Elements Basis Functions

    4/20

    4Finite element method basis functions

    1-D elements linear basis functions

    As we have expressed the coefficients ci as afunction of the function values at node points 1,2we can now express the approximate functionusing the node values

    )()(

    )1(

    )()(

    211

    21

    211

    NNu

    uu

    uuuu

    +=

    +=++=

    .. and N1,2(x) are the linearbasis functions for 1-Delements.

  • 8/2/2019 08 Finite Elements Basis Functions

    5/20

    5Finite element method basis functions

    1-D quadratic elements

    Now we require that our function u(x) beapproximated locally by the quadratic function

    2

    321)( cccu ++=

    Our node points are defined at 1,2,3=0,1/2,1 andwe require that

    3213

    3212

    11

    25.05.0

    cccu

    cccu

    cu

    ++=

    ++=

    =

    Auc =

    =

    242

    143

    001

    A

  • 8/2/2019 08 Finite Elements Basis Functions

    6/206Finite element method basis functions

    1-D quadratic basis functions

    ... again we can now express our approximatedfunction as a sum over our basis functionsweighted by the values at three node points

    ... note that now we reusing three grid pointsper element ...

    Can we approximate aconstant function?

    =

    =

    ++++=++=3

    1

    2

    3

    2

    2

    2

    1

    2

    321

    )(

    )2()44()231()(

    i

    iiNu

    uuucccu

  • 8/2/2019 08 Finite Elements Basis Functions

    7/207Finite element method basis functions

    1-D cubic basis functions

    ... using similar arguments the cubic basisfunctions can be derived as

    32

    4

    32

    3

    32

    2

    32

    1

    3

    4

    2

    321

    )(

    23)(

    2)(

    231)(

    )(

    +=

    =

    +=+=

    +++=

    N

    N

    N

    N

    ccccu

    ... note that here weneed derivative

    information at theboundaries ...

    How can we

    approximate a constantfunction?

  • 8/2/2019 08 Finite Elements Basis Functions

    8/208Finite element method basis functions

    2-D elements: coordinate transformation

    Let us now discuss the geometry and basisfunctions of 2-D elements, again we want toconsider the problems in a local coordinatesystem, first we look at triangles

    P3

    P2

    P1

    x

    y

    P3

    P2P1

    before after

  • 8/2/2019 08 Finite Elements Basis Functions

    9/209Finite element method basis functions

    2-D elements: coordinate transformation

    Any triangle with corners Pi(xi,yi), i=1,2,3 can betransformed into a rectangular, equilateral trianglewith

    P3

    P2

    P1

    P1 (0,0)

    P3 (0,1)

    P2 (1,0)

    )()(

    )()(

    13121

    13121

    yyyyyy

    xxxxxx

    ++=

    ++=

    using counterclockwise numbering. Note that if

    =0, then these equations are equivalent to the 1-D tranformations. We seek to approximate afunction by the linear form

    321),( cccu ++=

    we proceed in the same way as in the 1-D case

  • 8/2/2019 08 Finite Elements Basis Functions

    10/2010Finite element method basis functions

    2-D elements: coefficients

    ... and we obtain P3

    P2

    P1

    P1 (0,0)

    P3 (0,1)

    P2 (1,0)

    ... and we obtain the coefficients as a function of the

    values at the grid nodes by matrix inversion

    313

    212

    11

    )1,0(

    )0,1(

    )0,0(

    ccuu

    ccuu

    cuu

    +==

    +==

    ==

    Auc =

    =

    101

    011

    001

    A containing the1-D case

    =

    11-

    01A

  • 8/2/2019 08 Finite Elements Basis Functions

    11/2011Finite element method basis functions

    triangles: linear basis functions

    from matrix A we can calculate the linear basisfunctions for triangles

    P3

    P2

    P1

    P1 (0,0)

    P3 (0,1)

    P2 (1,0)

    ==

    =

    ),(

    ),(

    1),(

    3

    2

    1

    N

    N

    N

  • 8/2/2019 08 Finite Elements Basis Functions

    12/2012Finite element method basis functions

    triangles: quadratic elements

    Any function defined on a triangle can be approximated by the quadraticfunction 2

    65

    2

    4321),( yxyxyxyxu +++++=and in the transformed system we obtain

    2

    65

    2

    4321),( ccccccu +++++=

    as in the 1-D casewe need additionalpoints on theelement.

    P3

    P2

    P1

    P1 (0,0)

    P3 (0,1)P2 (1,0)

    P5 (1/2,1/2)

    P4 (1/2,0)

    P6 (0,1/2)

    ++

    +

    + +

    +

    P5

    P4

    P6

  • 8/2/2019 08 Finite Elements Basis Functions

    13/2013Finite element method basis functions

    triangles: quadratic elements

    To determine the coefficients we calculate thefunction u at each grid point to obtain

    6316

    6543215

    4214

    6313

    4212

    11

    6/12/1

    4/14/14/12/12/1

    4/12/1

    cccu

    ccccccu

    cccu

    cccu

    cccu

    cu

    ++=

    +++++=

    ++=

    ++=

    ++=

    =

    P3

    P2P1

    P1 (0,0)

    P3 (0,1)P2 (1,0)

    P5 (1/2,1/2)P4 (1/2,0)

    P6 (0,1/2)

    ++

    +

    + +

    +

    P5

    P4

    P6

    ... and by matrix inversion we can calculate the coefficients as a function ofthe values at Pi

    Auc =

  • 8/2/2019 08 Finite Elements Basis Functions

    14/2014Finite element method basis functions

    triangles: basis functions

    =

    400202

    444004004022

    400103

    004013

    000001

    A

    P3

    P2P1

    P1 (0,0)

    P3 (0,1)P2 (1,0)

    P5 (1/2,1/2)P4 (1/2,0)

    P6 (0,1/2)

    ++

    +

    + +

    +

    P5

    P4

    P6

    ... to obtain the basis functions

    Auc =

    )1(4),(

    4),(

    )1(4),()12(),(

    )12(),(

    )221)(1(),(

    2

    5

    4

    3

    2

    1

    =

    =

    ==

    =

    =

    N

    N

    NN

    N

    N

    ... and they look like ...

  • 8/2/2019 08 Finite Elements Basis Functions

    15/2015Finite element method basis functions

    triangles: quadratic basis functions

    P3

    P2P1

    P1 (0,0)

    P3 (0,1)P2 (1,0)

    P5 (1/2,1/P4 (1/2,0)

    P6 (0,1/2)

    ++

    +

    + +

    +

    P5

    P4

    P6The first three quadratic basis functions ...

  • 8/2/2019 08 Finite Elements Basis Functions

    16/2016Finite element method basis functions

    triangles: quadratic basis functions

    P3

    P2

    P1

    P1 (0,0)

    P3 (0,1)P2 (1,0)

    P5 (1/2,1/P4 (1/2,0)

    P6 (0,1/2)

    ++

    +

    + +

    +

    P5

    P4

    P6.. and the rest ...

  • 8/2/2019 08 Finite Elements Basis Functions

    17/2017Finite element method basis functions

    rectangles: transformation

    Let us consider rectangular elements, and transform them into a localcoordinate system

    P3

    P2P1

    x

    y

    P3

    P2P1

    beforeafter

    P4

    P4

  • 8/2/2019 08 Finite Elements Basis Functions

    18/2018Finite element method basis functions

    rectangles: linear elements

    With the linear Ansatz

    4321

    ),( ccccu +++=

    we obtain matrix A as

    =

    1111

    1001

    0011

    0001

    A

    and the basis functions

    )1(),(

    ),(

    )1(),(

    )1)(1(),(

    4

    3

    2

    1

    =

    =

    ==

    N

    N

    N

    N

  • 8/2/2019 08 Finite Elements Basis Functions

    19/2019Finite element method basis functions

    rectangles: quadratic elements

    With the quadratic Ansatz

    2

    8

    2

    7

    2

    65

    2

    4321),( ccccccccu +++++++=

    we obtain an 8x8 matrix A ... and a basis function lookse.g. like

    P3

    P2P1

    P4

    +

    +

    +

    +

    P5

    P6

    P7

    P8

    )1)(1(4),(

    )221)(1)(1(),(

    5

    1

    ==

    N

    N

    N1 N2

  • 8/2/2019 08 Finite Elements Basis Functions

    20/20

    1-D and 2-D elements: summary

    The basis functions for finite element problems can be obtained by:

    Transforming the system in to a local (to the element) system Making a linear (quadratic, cubic) Ansatzfor a function defined across

    the element.

    Using the interpolation condition (which states that the particular basisfunctions should be one at the corresponding grid node) to obtain thecoefficients as a function of the function values at the grid nodes.

    Using these coefficients to derive the nbasis functions for the nnode

    points (or conditions).