09-03-31 go kawakita eesb thesis 2008

Upload: bojuskrojus

Post on 08-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    1/85

    Environmental Optimisation Methods in Sustainable Design Process:In Combination with Evolution-Based Digital Technologyby

    GoKawakita

    SubmittedtotheDepartmentofArchitecture

    inpartialfulfilmentoftherequirementforthedegreeof

    MasterofScienceinEnergyEfficientandSustainableBuilding

    atOxfordBrookesUniversity

    April2008

    Abstract

    Thisdissertationdiscussesemergent,sustainabledesignmethodscombinedwithevolutionarycomputationandenvironmentalsimulationtools.Digitaltechnologiesarefrequentlyappliedto

    engineeringfieldsresultinginimprovedsolutions.Ontheotherhand,veryfewarchitectscan

    benefitfromsuchtechnicaladvancesinthefieldofsustainablearchitecture.Themainaimofthis

    thesis is to research and developnovel designmethodscorresponding to the production of

    environmentallyoptimisedarchitecturebyusingdigitaltechnologies.

    Thecompletedprojectsexaminedinthefirstpartofthedissertationareanalysedtoinvestigate

    possible future developments of digital tools applied to sustainable design. Moreover, the

    analysesare expanded to create an experimental design tool that generates and optimises

    windowsonselectedwallsundergivenenvironmentalcriterions.ThesystemusesaGenetic

    Algorithm as an optimisation method, which is integrated into ECOTECT to provide

    environmental simulations and enable the output of more optimal solutions. Finally, some

    solutions to the practical problems of implementing this particular design methodology are

    discussed.

    i

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    2/85

    Acknowledgments

    Iwouldliketoshowappreciationtoallmyadvisors.BenDoherty,whohasbeenmysupervisor

    duringthiswork,hashelpedmetolearnalotincludingtechnicalaspects.MaryHancock,the

    coursechairofMSc inEnergyEfficientandSustainableBuilding,gavemeanopportunityto

    achievemyspecialtopic.

    Ialsowouldliketothankeveryonewhohassupportedmeinthiswork.Especially,Iamvery

    gratefultomyfamily;myfather,mymotherandmysister.

    ii

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    3/85

    iii

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    4/85

    Contents

    1.Introduction 1

    1.1BackgroundArchitectureandDigitalTechnology............................1

    1.2MotivationandMainAim................................................2

    1.3ThesisOutline........................................................3

    2.CaseStudy4 4

    2.1ComputerScienceEvolutionaryalgorithmsanddesign......................4

    2.1.13DVirtualCreaturesKarlSims...................................4

    2.1.2Genr8........................................................7

    2.2ArchitectureGenerativedesignandcomputation............................9

    2.2.1EvolutionaryArchitecture-JohnFrazer.............................9

    2.2.2TheGenerativeSystem-LuisaCaldas.............................12

    2.2.3LightHouse-GianniBotsford....................................15

    2.2.4InductionDesign-MakotoWatanabe..............................18

    2.3SummaryandAnalysis-EmergentTechnologiesandSustainableDesign.......21

    3.ResponsiveFaadeDesignSystem(RFDS) 24

    3.1DescriptionofRFDS..................................................24

    3.2GeneticAlgorithmOptimisationMethod.................................25

    3.2.1OverviewofGAs..............................................25

    3.2.2BiologicalTerminology..........................................25

    3.2.3ImplementationsofaSimpleGeneticAlgorithm......................26

    3.2.4AdvantagesandDisadvantages..................................28

    iv

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    5/85

    3.3TestingSimpleModel.................................................29

    3.3.1Non-EvolutionaryComputationalModel............................29

    3.3.2Implementation................................................30

    3.3.3ResultsandSystemDevelopments................................33

    3.4ResponsiveFaadeDesignSystem......................................35

    3.4.1SystemImplementation.........................................35

    3.4.2CodingMethodGenotypeandPhenotype.........................38

    3.4.3FitnessFunction...............................................39

    3.5TestingtheResponsiveFaadeDesignSystem............................40

    3.5.1OptimisationProcessesunderSimpleConditions....................40

    3.5.2ResponsesofUser-DefinedPriorityLevels.........................49

    3.5.3BenchmarksoftheRFDS.......................................53

    3.5.4ExperimentalAdaptationtoPracticalDesignProcess.................56

    4.FutureDevelopmentsandPossibilitiesoftheRFDS 61

    4.1OtherSearchMethods.................................................61

    4.2AdditionalEnvironmentalParametersandMulti-ObjectiveSituations...........61

    4.3InteractiveOperationsAestheticDesignandEnvironmentalOptimisation......62

    4.4AccessibilitytotheSystem.............................................63

    4.5ComplexGeometryandGenerativeDesignTool...........................64

    5.Conclusion 65

    Bibliography 67

    AppendixA 70

    v

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    6/85

    List of Figures

    2-1 3Dvirtualcreaturesevolvedforcompetition.............................................52-2 3Dvirtualcreaturesevolvedforswimming..............................................52-3 3Dvirtualcreaturesevolvedforwalking................................................52-4 3Dvirtualcreaturesevolvedforjumping................................................52-5 DiagramofconceptualmodificationofEvolvingVirtualCreatures............................72-6 ExamplesofgrowthmodelinGENR8withexternalforces..................................82-7 Diagramofbasicconceptandanexampleofoutput

    derivedfrombuildingareaoptimisationprogramme......................................102-8 ObjectsgeneratedbytheBuildingEnvelopeDesignSystem...............................112-9 OptimisationsolutionsforthecaseofOporto...........................................122-10 AnnualenergyconsumptionforOportosimulation.......................................132-11 Paretofronttowardannualenergyconsumptionandgreenhousegasemissions...............142-12 TheLightHouseandsiteconditions..................................................152-13 Voxelsunlightanalysis..............................................................162-14 Environmentaldataineachheightandseason..........................................162-15 TheWebFrame;physicalconditionsforformfindings....................................182-16 Formfindingsandhumanpreferences.................................................192-17 Theflowofhumanevaluationanddevelopmentofcomputation............................20

    2-18 Keiriki1-Formgenerationandstructuraloptimisation....................................203-1 SystemflowchartoftheRFDS......................................................24

    3-2 SimpleGAflowchart..............................................................26

    3-3 SimpletestmodeloftheRFDSgeneratingcircularwindows...............................29

    3-4 Programflowchartofthetestmodel...................................................30

    3-5 Differencesinthenumberofnodes...................................................313-6 Generativeprocessofthetestmodelshowingdaylightlevelsatthereferencepoint............32

    3-7 Naturaldaylightlevelsimulationbyanalysisgrid........................................333-8 AnimageoftheRFDSgeneratingpixel-likefaade......................................353-9 RFDSsystemflowchart............................................................363-10 Animageofarrangementofreferencepoints...........................................373-11 Compositionofachromosomeandcodingmethod......................................383-12 ThefitnessfunctionoftheRFDSandfunction-basedweightingfactors......................393-13 Simpleexplanationsofatestimplementation...........................................40

    vi

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    7/85

    3-14 Ageneratedsolutionandlightinganalysis..............................................42

    3-15 Lightinganalysiswithfourreferencepoints.............................................43

    3-16 Naturallightinglevelateachreferencepoint............................................44

    3-17 Fitnessscoresofthefirstsimulatedmodel.............................................44

    3-18 Fitnessscoresofthesecondsimulatedmodel..........................................45

    3-19 Lightinganalysisattwoheightlevels..................................................46

    3-20 Naturallightinganalysiswitheightreferencepoints......................................47

    3-21 Naturallightinglevelateachpoint....................................................48

    3-22 Arrangementofreferencepointsandtargetdaylightlevels................................49

    3-23 Fitnessscoresofthesimulationwithweightingfactors....................................50

    3-24 Naturallightinglevelofeightreferencepoints...........................................51

    3-25 Differencesfromeachtargetlevel.....................................................52

    3-26 Initialfitnessscoresandcalculationtimeindifferentpopulationsizes........................54

    3-27 Calculationtimeandchromosomelengthindifferentwindowsizes..........................54

    3-28 Generatedwindowsindifferentwindowsizes...........................................55

    3-29 Arrangementofroomsandreferencepoints............................................56

    3-30 Generatedoptimumwindowarrangement..............................................57

    3-31 Lightinganalysisofthesimulationmodel..............................................58

    3-32 Lightinganalysisshowinglightinglevels...............................................59

    3-33 Fitnessscoresofthesimulationmodel................................................60

    3-34 Naturallightinglevelsofsixreferencepoints............................................60

    vii

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    8/85

    Environmental Optimisation Methods in Sustainable Design Process:In Combination with Evolution-Based Digital Technology

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    9/85

    Chapter 1: Introduction

    1.1 Background Architecture and Digital TechnologySincecomputerswereinvented,manyaspectsoflifehavebeenchanged.Onemightbeableto

    recogniseeasilysuchvariationsbyonlysweepingonesroom.Theremightbeacomputeritself,

    andmanypiecesofelectricequipmentcontrolledbycomputers.Evennon-digitalitemssuchas

    books,clothes,etc,arealsorelated tocomputersdirectlyorindirectlythroughmanufactureor

    distributionetc.Moreover,itmightbenoticedthatbyexpandingoursights,almosteverythingin

    relation toour lives isbased ondigital technologies. Inother words, our livesmightnot be

    feasibleanylongerwithoutcomputers.

    As faras thefieldofarchitectureis concerned,the situation issimilarto other fieldsaswell.

    Architecturewasregardedastheresultofworkingbyhand.However,thesituationisnolonger

    asitwasinthepast.Drawingsandevenmodelmakingisproducedandcontrolledbycomputers.

    Furthermore,notonlysimpletaskssuchasthese,butalsodesignitselfhascometobelongto

    thecategory of theabilityofcomputers.Designprocessesderived from piecesofarchitects

    sketchesarereplacedbycomputersinthelatestdigitaldesign.VariousarchitectssuchasZaha

    Hadid,Ali Rahim,GregLynn,Nox,etc incorporatecomputers into theirdesignasmore than

    mere drawing tools. Such trends of digital design are more conspicuous amongst younger

    architects. Achim Menges, Alisa Andrasek, Aranda/Lasch, and so on are representative ofyoungergenerationinemergenttechnologyandarchitecture.Intheirdesigns,computersareno

    longerapartoftheirdesign toolsordesignprocesses.Suchdigitaltechnologyistheirdesign

    itself.

    Althoughcomputersarewellutilisedinarchitecturaldesignatpresent,theapplicationofdigital

    technologies is more advanced in the engineering field, especially structural simulation and

    design.Structuralmembersareoptimisedbydigitalsimulationintermsofconstructioncosts,life

    cyclecosts,energyconsumptionandevengreenhousegasemissions.Structuraloptimisationof

    trussesisoneofthemosttypicalapplications.Inaddition,optimisationofthesizeandcontrolof

    HVACsystemsisalsooneexampleinanotherengineeringfield.

    Ontheotherhand,therelationshipbetweendigitaldesignandsustainabledesigninarchitecture

    isfarbehindcomparedwithotherfields.Currentlyifweusedigitaltechnologiesforsustainable

    design,conventionalmethodswouldgenerallyproducebettersolutions.Inotherwords,therole

    ofcomputersisonlytosimulateobjectspreviouslydesignedbyarchitects.Firstlyarchitectureis

    designed, and it is simulated to gather environmental data. Afterward, the architecture is

    changedorfixedpartially,andisenvironmentallyanalysedagain.Suchtasksareiterateduntil

    the satisfactory completion of the design, or the budget runs out. Generally, sustainable

    architecture goes through such design processes at present. Other non-architectural fields

    1

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    10/85

    frequentlyuseoptimisationtoproduceimproveddesignoutcomes;however,thisisnotthecase

    insustainablearchitectural design.Thehigh performanceofmoderncomputing cannowbe

    usedadvantageouslyforsustainabledesignaswellasotherarchitecturalfields.

    Thus, digital technologies are well combined with architecture in various fields except for

    environmental design. Moreover, such connections between architecture and digital

    technologies might become more intimate in future compared with present circumstances.

    Therefore,ascomputersareeffectivelyutilised intheotherarchitecturalfields,environmental

    designmustincorporatedigitaltechnologiesinordertoremaincurrent.

    1.2 Motivation and Main Aim

    Theenergyconsumptioninthebuildingsectoriscurrentlymorethan45%oftheUKtotalenergy

    use. Therefore, energy savings in the building sector are exceedingly important in termsof

    overallenergyconsumption.Currently,therearevariouswaysofenergyconservationincluding

    insulation, thermal mass, controlled ventilations, renewable energy sources, and so on.

    Researchintosuchelementshasresultedinbetterbuildingperformancesintermsofenergy

    efficiency.Meanwhile,theseissuesarerelatedtootheraspectssuchasembodiedenergy,use

    ofnatural sources,etc.According to this, itmight be alsonecessary toresearch theway to

    optimise theutilisations of the natural environment itself, including passive heating, passive

    cooling,andsoon.Inthisthesis,anemergentmethodforsustainablearchitecture,whichrelatedtodigitaltechnologiesandpassivedesignmethods,isinvestigatedandadvanced.

    Therelationshipbetweensustainabledesignanddigital technologiesis notwell advancedat

    present,asreferredtoin theprevioussection.However,accordingtothehighperformanceof

    computation in other architectural fields, the combination between digital technologies and

    sustainabledesignmightbeanewwayofsavingenergy.Additionally,morethan70%to80%of

    thetotalenergyinbuildingsisconsumedbyspaceheatingandlightinginbothresidentialand

    commercial buildings. Becauseof that, it could bevery efficient and hold great potential for

    energysavingstooptimisethepassiveenvironmentintermsofheatgains,heatlosses,natural

    light,andsoon.Forinstance,unnecessarywindowsincreaseheatlosses.Moreover,theglare

    derivedfrombadcontrolofthenaturallightencouragesoccupantstouseartificiallights.Itisthe

    mostimportanttooptimisewindowarrangementsinordertobalancethepenetrationofnatural

    lightwithheatlossesthroughwindows.

    Thus,themainaimofthisthesisistoinvestigateanddevelopthewaysanddesignprocessesfor

    effectiveuseofthenaturalenvironmentby usingemergentdigital technologies.Furthermore,

    theresultsof researchareexpectedtobeextendedandappliedtonewenvironmentaldesign

    systems. Therefore, the production of simple environmental optimisation tools is partial

    objectivesofthisthesisaswell.

    2

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    11/85

    1.3 Thesis Outline

    This thesis describes the conceptual new method of sustainable design in terms of

    environmentaloptimisationsbasedonemergentdigitaltechnologies.Themainaimofchapter2

    istoresearchdigitaltechniquesattheforefrontofdesign,andcriticallyconsideringtheirpractical

    applications.Accordingtotheinvestigationofpresentsituationsofdigitaldesign,possiblefuture

    developmentsarealsodiscussedinthischapter.

    Based on the results of research in chapter 2, some experimental models in terms of

    environmentaloptimisationsareimplementedinchapter3.ECOTECTcontrolledbyLuawhichis

    simple programming language is applied to the models. The results derived from the

    implementationsareanalysedandutilisedforfuturedevelopmentsofadvanceddesignsystems.

    Inchapter4,furtherstagesandpossibilitiesbasedonthemodelsorsystemsaredemonstrated.

    Finally, the overall aspects of sustainable design and digital technologies are concluded in

    chapter5.

    3

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    12/85

    Chapter 2: Case Study

    Inthischapter,someexamplesofdigitaldesignsaredescribedandanalysedintermsoftheir

    presentimplementationandfuturepossibledevelopments,especiallyfromthepointofviewof

    sustainablearchitectureanditsdesignprocesses.Technicalaspectsofemergenttechnologies

    are mainly discussed in the first section, and, on the other hand, practicalities of such

    technologicaldevelopmentsaretheobjectiveofthenextsection,focusingonarchitectureand

    computation.Finally,thepotentialofdigitaldesignandsustainabilityisdiscussedconsideringall

    aspectsanalysedinprevioussections.

    Theuseofcomputers issignificantand fundamental inthepresentarchitecturalfield.Almost

    every aspect such as drawings, simulations, presentations and so on, is computerized.

    Especially, activities such as structural analyses might not be feasible without digital

    technologies.Meanwhile,computationsarenotaseffectivelyappliedtosustainablearchitecture,

    comparedwith other fields.For instance, the forefront digital design, complexenvironmental

    simulations, etc. Considering the successful application of digital technologies to other

    architectural fields and advantagesderived from them, this thesis seeks toprove that such

    technologiesmustbe beneficial tosustainabilityaswell.Therefore, it isnecessary forfurther

    developments in sustainable design to research and investigate the advantages and

    disadvantagesoftheseemergenttechnologies.

    2.1 Computer Science Evolutionary algorithms and design2.1.1 3D Virtual Creatures Karl SimsKarlSimsisoneofthemostwell-knowncomputerartistsusingevolutionarycomputationintheir

    work.Heshowsustheattractionofevolutionaryalgorithmsandtheirpossibilities throughhis

    computeranimations.Oneofhisworks,EvolvingVi ualCreatures (1994) isanexpositionof

    resultsofhisresearchabout'virtualcreatures'producedandevolvedundercertainsituations.In

    this work, 3D virtual creatures are expected to become more complex and behave more

    interestingly thanwhen theyarefirstcreated,as anoutcomeof optimisation,althoughvirtual

    creatures are basically dependent on their fitness in thesamewayasother evolutionary art

    works.Creaturesareevaluatedwithafitnessfunctionandhigheradaptationsareabletosurvive

    underagivensimulatedenvironmentalconditionssuchasgravity,groundfriction,andsoon.

    rt

    4

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    13/85

    However, the work is different from others in the aspect that control systems which are

    user-definedareintroducedto decidetheformsofvirtualcreatures,aswellas theevolution.

    Creatureshavesomenodeslabelledashead,body,limbandsoon,butnotspecificfunctional

    components in their biological concepts. Each node and its connectionaffect the results of

    morphologies and creature behaviour. In addition, creature behaviour is controlled by three

    effects which are sensors, neurons and effectors. Such control systems of phenotype

    morphologiesarethereasonwhyinthiswork,virtualcreaturesaremorecomplicatedandtheir

    behavioursaremoreinterestingthanothersproducedinordinaryevolutionaryways.

    Figure2-1:3Dvirtualcreaturesevolvedforcompetition.

    Source:KarlSims(1994)

    Figure2-2:3Dvirtualcreaturesevolvedforswimming.

    Source:KarlSims(1994)

    Figure2-4:3Dvirtualcreaturesevolvedforjumping.

    Source:KarlSims(1994)

    Figure2-3:3Dvirtualcreaturesevolvedforwalking.

    Source:KarlSims(1994)

    5

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    14/85

    Fitnessfunctionsareoneofthemostintricateandstimulatingelementsingeneticalgorithms.A

    fitnessfunctionisasinglevaluederivedfromafunctionwhichexplainstheaimofexperiment,

    ntheotherhand,theoptimumsolutionundercertainenvironmentisnottheoptimumsolution

    nderdifferentconditions.Accordingtothis,itmightbeeasilyunderstoodthatspeciesdevelop

    s demonstrated above, 3D virtual creatures are successfully produced by Karl Sims.

    eanwhile, his works could be modified in terms of architecture and its environmental

    and it is the key factor which encourages reaching the conclusion of the experiment. For

    example, in the worksofKarlSims demonstrated in figure 2-1 to2-4,walkingorswimming

    speed,themaximumheightofthejumporthedistancetothecubeaftermovementtowarditina

    fixedtime isusedforcalculationofthefitnessscores.Thesevariousconditionsforevaluation

    resultindifferentoutputsevenifthegivenenvironmentforexperimentsisentirelythesame.The

    relationshipbetweentheinfluenceofthefitnessfunctionandagivenenvironmentisoneofthe

    pointsforconsiderationwhenevaluatingthefitness,andviceversa.

    O

    u

    ineachenvironment inadifferentway.EvolvingVirtualCreatures clearlydemonstratessuchevolutions of creatures and their possibilities in different conditions including gravity, water

    resistance, andsoon. In fact, the physical featuresofvirtual creaturesaredifferent in each

    conditionorpurpose;swimming,walkingandjumping.Forinstance,paddlingandtailwagging

    creatures are produced by the swimming fitness function and there are shuffling creatures

    produced by the walking fitness function. Each creature evolves strategies to exist in its

    particularcircumstances.

    A

    Moptimisationsasfollows.Creaturesareinterpretedasvirtualspace,andcreaturemorphologyor

    behaviour is regardedasphysicalspaceor itsuse.Figure2-5showsaconceptualmodelof

    architecturalreinterpretationofKarlSimsworksbytheauthor.Inthefirststageofanexperiment,

    genotypevirtualspaceiscreated,whichhasarchitecturallycategorizednodessuchaswindows,

    shading devices,andso on.Thevirtualspace formsphenotypespace,which isphysical3D

    spacewith some restrictions. Afterwards, generated 3Dspacebehaves and changesunder

    control systems. That is to say, this virtual space behaviour involves occupant activities

    determinedby 'neurons', which isone of operators used in Sims works,with the values of

    sensorssuchaslightingsensor,temperaturesensors,orweathersensor,forexample,opening

    orclosingwindows,usingshadingdevices,etc.However,therearenaturallyphysicallimitations

    inthesamewayastheSimsexperiments,forexample,whetherwindowscanbeopenedornot,

    orwhethershadingdevicescanbefullyclosedornot.Thus,simulatedoccupancyactivitiesare

    restrictedbyimposedphysicallimits.Meanwhile,afitnessfunctioninthismodifiedcasemightbe

    energy consumption orCO2 emissions within a givenperiod. Through theseprocesses and

    genetic evolutions, optimised virtual spaces are created. This is one of possible ways to

    reinterprettheproject,EvolvingVirtualCreatures,intoarchitecture.

    6

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    15/85

    VirtualSpace(Genotype)

    SpaceMorphology

    MainSpace

    Window

    ShadingDevice

    Wall

    SpaceVolume

    WindowSize

    ShadingDeviceSize

    WallDepth

    OccupantActivities Sensors

    Energyconsumptions

    Neurons

    Effectors

    VirtualSpace(Phenotype)

    Environmentalfactors

    Weather

    Sunpath

    Season

    U-value

    G-value

    Shadingfactor

    Airtightness

    Evaluation(FitnessScores)

    Evolution

    LightingSensor

    TemperatureSensor

    WeatherSensor

    Physicallimitation

    Materiality

    CO2Emissions

    Window-Openornot

    Shadings-Activeornot

    Figure2-5:DiagramofconceptualmodificationofEvolvingVirtualCreatures.

    2.1.2 GENR8GENR8isasurfacemodellingtoolusingabiologicalgrowthmechanismwhichisbasedonmap

    L-Systems.ThemapL-SystemsareoneoftheL-Systemsspecifiedforsurfacegeneration.The

    main aim of GENR8 is interactive design, so various parameters are available in order to

    generate and evolve surfaces. Basically, in the system, parameters can be regarded as

    environmentalfactors,andsurfacesaregeneratedwiththesesurroundinginfluences.Figure2-6

    showsexamplesofsurfacesproducedbyGENR8withexternalinfluences.Intheleftcase,a

    surfaceisattractedbygravityanddisturbedbyasphereinthesamewayasintherealworld.

    Meanwhile,intherightcase,cylindersmagnetizeasurfaceinrelationtothedistancebetweena

    surfaceandattractors.

    7

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    16/85

    Figure2-6:ExamplesofgrowthmodelinGENR8withexternalforces.

    Source:OReillyandHemberg(2006)

    Users are not able to control the whole system of form finding in other traditional surface

    generationtools,becausetheiralgorithmstocreatesurfacesaredeterminedbeforehandandthe

    algorithms aredesigned by system developers.Manipulation is only possible through initial

    setup, and thegenerativeprocessitself isnotmodifiable. That is tosay,althoughuserscan

    decideinitialinputas theylike,thewaystocreateobjectsarefixed.Ontheotherhand,unlike

    suchconventional design tools,GENR8 encouragesusers to access every stage of surface

    growthandevolutionarycomputationbecauseinthesystem,componentsrelatedtoevolutionary

    algorithmsarealsopartofthesystemsparameters.

    Meanwhile,inaestheticdesign,oneofthemostdifficultelementsaboutevolutionaryalgorithms

    isafitnessfunction.Mathematicalfunctionsareveryusefulinthecaseofoptimisationfor'hard'

    quantifiableparameters;however,it isdifficult toexplainhumansensibilitiesin termsofexact

    mathematical functions.Therefore, InteractiveEvolutionaryComputation(IEC) isused forthe

    fitnessfunction inGENR8.Thisis thealgorithmaimedatpredictinguserpreferences.Fitness

    functions are parametric factors in GENR8 aswell as the other elements explained above.

    According to this, aesthetic sensations of users are reflected in the generated forms, even

    thoughtheevolutionaryalgorithmsarecarriedoutinsidethesystem.

    Thus,Genr8isdevelopedconsideringinteractionsbetweenusersandthesystem.Theyarethe

    most considerable aspect of the system due to the fact that even ifone isnot an expert in

    programming, generative design is made easily available. Generally speaking, designers or

    architectspreferintuitivemanipulations,sothatcomplicatedandintricateprocessesarelikelyto

    beavoided.Moreover,itmightbetruethatitiscommonlynotnecessaryfordesignerstolearn

    suchcomplexcomputer sciences.Emergentdesigntoolsareattractiveandmanypeopleare

    likelytousethem;however,thedeepmechanismsofsuchtechnologiestendnottobetheusers

    focus.Therefore,intermsofdevelopmentofdigitaldesigntools,accessibilityofanapplicationto

    itsusersmustbeoneofthemostfundamentalandnotableaspects.

    8

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    17/85

    Asfarasthesurfacegenerationprocessitselfisconcerned,GENR8isaninnovativedesigntool

    asdemonstratedabove.Nevertheless,noenvironmentalparameterssuchas lighting factors,

    winddynamics, sunlightandso on,arecurrentlyavailable.Although it isbecauseGENR8is

    createdasnotanoptimisationtool,butanaestheticsurfacemodellingtool,thetoolwouldbe

    significantlymoreusefulforresponsivedesignifitwasabletobeequippedwithenvironmental

    parameters.

    Thereareseveralpossibilitiesforfurtherdevelopmentofthesystem.Firstly,referencepointsto

    measurenaturallight,internaltemperature,andsoon,couldbeoneoftheadditionalparameters.

    Thepointswouldhavepredeterminedvaluesastargets,andsurfaceswouldbegeneratedand

    modifiedunderthoseconditions.Forinstance,ifareferencepointaboutnaturallightissetupin

    thescene,asurfacewouldbederivedfromthecalculatedannualaverageluminancebynatural

    light.Ifasurfacecouldgrowwithoutcoveringorunveilingareferencepointtoomuch,itcouldbeapplied topassivesolardesign.Thesecondpossibility isthewinddynamicsparameter.What

    this parameter would do is to simulate and calculate air flow through a generated object.

    Accordingtothisparameter,idealformswouldbecreatedandoptimalairflowmadeavailable.

    Suchtechnologiesmightbeusefulforarchitectureinthetropics.Thus,ifit isnotnecessaryto

    considerthetechnicalproblemsofsoftwaredevelopment,possibleimprovementsareinfinite.

    Needless tosay,therearevariousproblemsspecial toenvironmentaldesignsoftware,which

    cause difficulties of system developments. From the computer scientific points of view,

    complexityofenvironmentalsimulationmightbethemostproblematictopic.Duetothefactthatenvironmentalsimulationstakea greatdeal of time, thesystemsarenot interactiveatall. In

    otherwords, changes ofobjects in the scene donot respond to the result ofenvironmental

    calculations simultaneously. In the same way as rendering in 3D visualization software,

    calculations are necessary every time the scenes are changed. These facts might be

    troublesomeobstructionsfortheearlystageofdesigntasksorresponsivedesign.Userscannot

    work comfortably, for example by sketching their ideas. Moreover, developments of new

    softwaresolvingsuchproblemstakeenormouscostandtimetoproduce;therefore,itcouldbe

    statedthatitistoodifficultforindividualstocopewiththesecomplexities.

    2.2 Architecture Generative design and computation2.2.1 Evolutionary Architecture - John Frazer

    JohnFrazerbrokenewground inthefieldofdigitalarchitecture.Hisfocusdiffersfromother

    algorithmic architecture which creates the latest attractive objects, which might be the

    mainstream in present digital design. As far as evolution is concerned, such present

    mainstreamsareprobablymerecomplicatedformfindingexercises.Inshort,theyarecreatedby

    uncountableiterationsofworks,whethertheyareintricateorsimpletasks.Ontheotherhand,

    Frazersarchitectureisasolutioncorrespondingtocertainconditions.Theyaregeneratedand

    evolvedinasimilarwaytothenaturalworld.

    9

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    18/85

    In his projects, environmental conditions, especially solar constraints, are one of the most

    importantfactors.TheGroningenExperiment(1995),whichisacomputationalurbandesign,is

    one of his notable research projects. In the project, he demonstrates a responsive design

    processwhichissimilartothewaysthatsomearchitectsusecomputationalmethodsatpresent.

    Althoughnaturallightistheonlyfactorofgenerativedesignatthispoint,itcouldbesaidthathis

    ideaoftherelationshipbetweenarchitectureandthenaturalenvironmentisimportantduetoits

    innovativeparts.Afterwards,theideaofenvironmentallyresponsivedesigndevelopedwiththe

    growthoftechnology.In2003,heputforwardamoreadvancedandcomplexmethodwhichisa

    computer programme to generate and arrange architecture, optimised under the maximum

    buildingareaandcontrolofsolargains.Inshort,thissystemisbasicallyappliedtourbandesign

    accordingtothefactthatbuildingsincertainareaarecomprehensivelyoptimised.Figure2-7is

    anexampleoftheoutputofthesystem.

    Figure2-7:Diagramofbasicconceptandanexampleofoutputderivedfrombuildingareaoptimisationprogram.Source:Frazer(2003)

    Oneofimportantpointsoftheprojectisthewaytointeractivelyarrangegeneratedarchitecture.

    Theshadowderivedfromeachbuildingiscalculatedthroughayear,andthosedataareusedfor

    optimisationoflayoutscheme.Thesurroundingenvironmentinfluencestheplaceandsizeofa

    building and vice versa. Needless to say, the project is basically about optimising building

    arrangement,andtherefore,itisnotpossibletoapplytheprojecttothecaseofasinglebuilding

    simulation.However,unliketheordinarywaysofpassiveenvironmentalsimulationsinwhichthe

    environmentinfluencestheresultinaunidirectionalway,thegenerativeprocessesinhisproject

    are interesting and remarkable due to the fact that influencesare bidirectional between the

    surroundingsandthegeneratedarchitecture.Suchinteractionmightbeexceedinglyimportant

    forsustainabledesign.

    However,thecomputerprogramhedevelopedcanhandleonlysimpleobjectssuchasacuboid;

    therefore, practicality and accuracy are not well achieved in the present circumstances. In

    addition to this, notonly natural light,butalsoother environmental factorsare necessary for

    further development, and other elements such as energy consumption, greenhouse gas

    emissionsandsooncanbeappliedtosuchobjectivesaswell.

    10

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    19/85

    Frazeralsoshowsusmanyotherinterestingpointsingenerativedesign,aswellasresponsive

    design demonstrated above. TheBuildingEnvelopeDesignSystem isa softwaresystem to

    generatenovelformsbyevolutionarycomputationasfigure2-8shows.Preliminaryoutlinesand

    somesupportiveaxesdeterminedbyuserscreatecomplexformsthroughseveralcomputations.

    Intermsoftheflowofthegenerativedesign,thesystemisconsiderablydeveloped,andthere

    are many applicable ideas to other generative systems or generative design processes.

    Meanwhile,duetothefactthatthemainfocusofthesystemisthemathematicalformgeneration

    andevolution,createdshapesarenotcomposedofanyenvironmentalelements.Briefly, they

    aresimplyaesthetic,andnotgeneratedwithinfluencesbyanyexternalconditions.

    Figure2-8:ObjectsgeneratedbytheBuildingEnvelopeDesignSystem.

    Source:Frazer(2003)

    As demonstrated above, each aspect such as generative design or responsive design is

    gradually, but definitely being developed, although there are still problems to be solved for

    practical use. In the environmental design,one of themost important factors isaccuracy or

    practicalityderivedfromtheplacingandorientationofbuildings,materials,sizesofeachbuilding

    part,etc.Infact,manycomplicatedequationsareusedtosimulateenvironmentalconditionsin

    theprojectdemonstratedabovetoarrangearchitectureintermsofmaximumsolargain,evenif

    each model is simple in the project. Such complexity might be the reason why technology

    development in termsofenvironmentaldesign isnotmainstreamatpresent. Inotherwords,

    designers or architects might prefer to create aesthetic objects, rather than solving difficult

    environmentalsituationsandmakingcomplicatedequations.

    11

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    20/85

    2.2.2 The Generative System - Luisa CaldasLuisaCaldasisoneofthepioneerswhoappliedevolutionaryalgorithmstoenvironmentaldesign.

    TheGenerativeSystem (GS)which isaGA-based simulationsystem invented byher, helps

    designersorarchitectstofindsolutionsmainlyintermsofenergyefficiency.Inasimulationusing

    GS, thereare two main factors tomeasure fitness scores; annual energy consumption and

    satisfactionofdesignconstraints.Annualenergyconsumptioniscalculatedduetobothlighting

    andheatingorcoolingenergy,andwithconsiderationofsurrounding influencessuchassolar

    gains, heat losses, internal radiation, and soon.On the otherhand,design constraints are

    slightlymorecomplicated.AccordingtoCaldas,GS isnotonlyanevaluationtool,butalsoa

    designtool;therefore,theresultsofsimulationsneedtoreflecttheopinionofdesigners.Inother

    words,designconstraintsarepartofthefitnessfunctiontoavoidunexpectedresultsandcontrol

    thegenerativeprocesstoacertainextent.

    Figure2-9:OptimisationsolutionsforthecaseofOporto.

    Source:Caldas(2001)

    GS isappliedto existing architecture tocomparepresentenergyperformance and simulated

    solutions. The selected building for the experiment is the school of architecture in Oporto

    designedbyAlvaroSiza.Figure2-9demonstratestheresultsprovidedbyGS.Thewindowsize

    and the depth of shadingdevices are optimised.The red lines are user determineddesign

    constraintsintermsofSizasdesignconcept.Figure2-10showsannualenergyconsumptionfor

    bothexistingbuildingandsolutions.Accordingtothefigure,thereductionofenergyconsumption

    isabout10%forthebestsolution.Moreover,Caldas(2001)claimedthatthereductionmight

    12

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    21/85

    becomemore,whichcouldbeconfirmedbyamoreaccurateenergycalculationinGS.Thus,the

    Generative System encourages finding environmentally better design solutions within

    architecturaldesignintentions.Thisuser-dominantoptimisationforGAisremarkable,anditcan

    bedevelopedandappliedtoadvancedgenerativedesigntoolsforfurtherstages.

    0best-shading best average existent worst

    Others

    Ventfans

    Spacecool

    Spaceheat

    Lights

    oporto-shading

    oporto-best

    oporto-average

    oporto-existent

    oporto-worst

    87.58

    89.99

    96.22

    96.45

    110.55

    20

    40

    60

    80

    100

    120

    Figure2-10:AnnualenergyconsumptionforOportosimulation.

    Source:Caldas(2001)

    However,itisalsotruethatGScurrentlyoptimisesjustwindowsizeandthedepthofshading

    devices.Additionally, the fitness issimplyameasure ofenergyconsumption. It ispractically

    necessarytoconsiderotherfactorsincludingconstructioncosts,embodiedenergy,lifecyclecost,

    andsoon.Thelowestenergyconsumptionisnotalwaysthebestsolutionforotherelements,

    andvice versa.For instance, the latest products includingglazingmight beexpensive even

    thoughtheirenvironmentalperformanceis better than theoldersolutions.Suchasituation is

    knownasParetoefficiency,whichistheconditionthatifsomeinagroupareimproved,others

    become worse. As far as such multi-objective optimisation problems are concerned,

    multi-objectivegeneticalgorithms (MOGA)areappliedtoGS forthesecondstage.This isa

    substantialapproachintermsofpragmaticsolutions.Theblacksquaresinfigure2-11explain

    trade-offs for twoobjectives, the reduction of greenhousegasemissions and annualenergy

    consumptions,sothatusersareabletochoosemoreidealandpracticalsolutionsthanthosefor

    singlefunctions.Furthermore,intheexperimentsofGSforParetooptima,othercombinationsof

    objectives,forexampleconstructioncost,energybalance,etc,arealsosuccessfullysimulated.

    13

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    22/85

    0

    1000

    22 22 24 25 26 27 28 29 30

    MWh

    gen1

    gen200

    2000

    3000

    4000

    5000

    6000

    7000

    Figure2-11:Paretofronttowardannualenergyconsumptionandgreenhousegasemissions.

    Source:Caldas(2001)

    Thus,becauseofitsenvironmentaloptimisations,theGenerativeSystemisaninterestingand

    usefultoolevenifitisunderdevelopment.Ontheotherhand,itisafactthatsomeproblemsstill

    remaintobesolved.Firstly,atthisstage,GSisnotintegratedintoanyCADsoftware,anditis

    notdevelopedasaplug-intool.SolutionsderivedfromGSarenotvisualizeduntilevaluations

    and simulations are completed. This means that intuitive manipulations, which designers or

    architectsmightpreferin thedesignprocess,arenotavailable.Therefore,GSdoesnot reach

    thelevelofagenerativedesigntool,andisstillasimulationsupporttool.Secondly,formfinding

    or form generation is not supported in the tool unlike Genr8. Although shape generation is

    experimentallydevelopedasthethirdstageofGSatpresent,feasibilityisextremelylimitedand

    itispossibletomodifyonlythegivenrectangularbox.

    Nevertheless, these limitationsunder3Dvisualizationandproductivitymightnotbethemost

    problematicin termsoftheadvancesofothermorphologytools.Integrationoftechnologiesin

    differentresearchstudiesisnecessaryandpossibleforfurtherimprovement.Themostserious

    problemisdifferencesbetweenvirtualandrealspaceinthesoftware.Buildingfabrics,purpose,

    and other physical situations are fundamental for environmental building simulations. For

    example, it is impossible to calculate heat losseswithoutU-values, and solar gains without

    g-values or glazing types. Moreover, it is not possible to compare building performance to

    benchmarkswithoutoccupancy.Ontheotherhand,virtualspacesinsoftware,ofcourseexcept

    forenvironmentalsimulationtools,donothaveanyphysicalexistences.Aboxisnotabuilding

    14

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    23/85

    oraroom.Averticalobjectisnotaconcretewallorawoodencolumn.Suchbasicfactorsfor

    environmentalsimulationsareobstaclestointuitivemanipulations,andarethemostproblematic

    andcomplicatedelementsforfurthersoftwaredevelopment.

    Asexplainedabove,GSisaninterestingsystem,althoughithasvariousproblemstobesolved,

    including design ability, reality in a virtual space, etc. Especially, approaches toward

    multi-objective optimisation problems are notable in terms of comprehensive solutions.

    Therefore,itcouldbeclaimedthattheconceptsoftheGenerativeSystemareusefulfornotonly

    developmentofothertools,butalsoenvironmentaldesignitself.

    2.2.3 Light House - Gianni Botsford

    TheLightHouseinNottingHill,LondondesignedbyGianniBotsfordisoneofasmallnumberof

    real computational design projects. Due to the restricted site situations, the project is

    conspicuousbyitsuseofsophisticatedenvironmentalanalysisandoptimisation.Asfigure2-12

    demonstrates, the site is surrounded onall sidesby three to five storey houses and trees;

    therefore,theonlywaytogainsunlightisthroughtheroof,whichBotsfordcallstherooffaade.

    One ofbasic requirements for the project is toprovide natural light to thewhole area in the

    house;notonlythetopfloor,butalsothebottomfloors.

    Figure2-12:TheLightHouseandsiteconditions.

    Source:GianniBotsford(2006)

    15

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    24/85

    Figure2-13:Voxelsunlightanalysis.

    Source:GianniBotsford(2006)

    Figure2-14:Environmentaldataineachheightandseason.

    Source:GianniBotsford(2006)

    Inthesolutiontosuchlimitedconditions,therearetwomainimportantkeywords;SolarLogic

    and Building Envelope Optimisation. At the first stage of the project, extremely detailed

    environmentaldatawascollectedbyusingtheSolarLogicwhichBotsforddevelopedinorderto

    visualizeandanalysethebehaviourofnaturallight.Duetothesystem,environmentalconditions

    aredemonstratedasa three-dimensionalgridbyvoxelswhichare1mcubes.Figure2-13and

    2-14areexamplesofvoxeldataanalysis.ThewayofexplainingnaturallightbytheSolarLogic

    cangreatlyencourageuserstoanalyseexistingconditionsofthesiteatanypointandanytime

    throughayear.Forexample,itispossibletorecognizethree-dimensionallythebrightestorthe

    16

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    25/85

    darkestpartofthesite,orthecomprehensivechangesofnaturallight.Itisjustlikethewaythat

    engineers collect anddissectmicroscopic information for further developments. There is no

    entirelysubjectivedesignprocessbecauseofpreconceptions.Scientificenvironmentaldatais

    gatheredat thefirst stageof thedesignprocesses.Thismightbeoneof themostimportant

    factors for environmental design, although various buildings are controlled by designers

    preoccupationsfromthefirststageofprojects.Moreover, itmightavoidarchitectstostrayinto

    time-wastingonunnecessarysimulationscausedbywrongintuitions.

    Althoughthesystemexplainedaboveisexceedinglyinterestingandsubstantialfordataanalysis,

    theyarecurrently visualisationsofenvironmentaldata, notarchitecture itself yet. In termsof

    architecture, thecollected data is used forspatiality andmateriality withclientspreferences

    including room arrangement, room size and soon.Meanwhile,as explainedabove, the roof

    faadeistheonlypossiblewaytoobtainnaturallightinthesite;therefore,buildingmaterialsfortheroofareoptimisedbyusingthesoftwaredevelopedbyBotsfordandArup.Thesoftwareuses

    ageneticalgorithmand canbe applied tomulti-objectiveoptimisationproblems.This topic is

    alsodiscussedintheprevioussection,andmightbeimportantwithregardtopracticalsolutions.

    InthecaseoftheLightHouse,Paretofrontbetweendaylightfactoranddirectsunvisibilityis

    evaluatedwithglazingtypessuchasopaque,filmedorclear.Dueto themanyobjectivesand

    thereforemultiple fitness functions, reconciling thesebecomesdifficult. Is themostimportant

    factoreconomical,environmental,or functionaloptimisation?Therecouldbeasmany fitness

    functionsasthenumberofproblemstobesolved.

    Considerably,intheLightHouseproject,computationaldesignandtechnologiesareactualized

    unlikemanyotherprojectswhichremaininaconceptualstate.Ontheotherhand,suchareal

    project demonstrates some remarkable aspects for reality and computational optimisation.

    Generallyspeaking,clientstrulycontroleachproject.Solutionsderived fromcomputersmight

    not be the best solutions or even satisfactory solutions for them. This is probably more

    conspicuous in the caseofprivate projects thanpublic ones.For instance, even ifa limited

    glazingareaonthenorth faadeisabettersolution intermsofenergyefficiency,onemight

    requireaglassbox.Logicalsolutionscouldsometimesbeagainstpurepreferences.

    Tosumup,itmightmeanthatduetothefactthatarchitecturealwaysexistswithhumanbeings,

    it isalsonecessary for computation tohandle humanity. This isdeeply related to two huge

    topics:multi-objectiveoptimisationproblemsandinteractiveevolutionarycomputation(IEC).IEC

    is the algorithm which handles human preferences and evaluations. It might be true that

    evaluationof scientificmatters isnot truly complicated in regards tomathematical functions.

    Meanwhile, numerical expressionsof human preferences arequite difficult.What is good?

    Whatdoesgoodmean?Computersareverybadatsuchsubjectiveelements.Moreover,even

    ifnumericalexpressionsofhumanpreferenceswerepossible,itisnotequivalenttotheabilityto

    createpreferablesolutions.Onecanselectandgradefavouritecolours,shapes,materials,and

    soon;however,acombinationofthemdoesnotbecomeonespreferenceinahighprobability.

    17

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    26/85

    2.2.4 Induction Design - Makoto WatanabeInductionDesign isa series ofprojects whichMakotoWatanabe launched in 1990andhas

    researched up to the present. Everyproject in the InductionDesign series isdeveloped by

    computerprogramstofindsolutionswhichadapttogivenconditions.Heclaimsthatcomputers

    andarchitecturecreatedby themarenottheresultofhighstandardgraphictechnologies,but

    solutionbasedtechnology.Inotherwords,simplificationofworks,forexampledrawingplans,or

    randomgenerationof infinite patternsas formcontrols isnot the essenceofcomputationof

    architecture.Theenormousamountofthoughtisthetruesubstanceofdigitaldesign.Therefore,

    developmentofdesignprocesseswhichgeneratesolutionsundercertainstatements,orsuch

    processesfortheirownsakearethemostimportantelementintheInductionDesignseries.

    Someofhisdigitaldesignsareactualized,althoughcountlessotherprojectsby otherpeoplefocusingon thecomputationofarchitecture,whicharesimilar tohisprojects, result invirtual

    schemesincomputerscreens.TheWebFrameisthefirstrealworkofthesetodemonstrateto

    usvariousaspectsofcomputationinrelationtothecombinationoftherealandthevirtual.Inthe

    project,themostimportantfactoristhefitnessfunctionfortheformgenerativeprocess.Basically,

    suchvalueevaluationsmightbecategorizedintotwomaingroupsintheWebFrameproject:

    physicalconditionsandaestheticsensations.Physicalconditionsmightberegardedassimilar

    elementswhicharecommonlysimulatedinotherprojects,andformgenerationsareexecuted

    undersuchphysicalconstraintsasspatiality,materiality,legalmatters,andsoon.

    Figure2-15:TheWebFrame,physicalconditionsforformfindings.

    Source:MakotoWatanabe(2000)

    On the other hand, the method of handling aesthetic sensations is extremely remarkable.

    Designersorarchitectspreferencesarereflectedinfitnessmeasurementsinthesamewayas

    physical conditions. However, human sensations are always problematic in computer

    programming dueto the fact thatnumerical formulations ofhumansensations areextremely

    difficult.Whatisthebestforsomebody?Whatisaesthetics?IntheWebFrameproject,such

    problems are resolved by assigning scores towards solutions derived from computers.

    18

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    27/85

    Generatedformsbycomputersareevaluatedbythedesigners,andthefitnessscoresareused

    inthenextsimulationforbettersolutions.After iterationoftheseoperations,computersmight

    becomeabletosatisfyhumanpreferences.

    Suchconceptofcomputationandhumanityisadvancedinanotherproject,theProgramofFlow.

    Figure2-16and2-17explainthedesignflowandhumanevaluation.Theimportantdevelopment

    inthisprojectisthewaytogradehumanpreferences.IntheWebFrame,designersorarchitects

    givescorestocomputersafterformgeneration;meanwhile,inthecaseoftheProgramofFlow,it

    ispossibletodecidedesignintentionsinadvancebygivinghandsketchesandtheirgrades.In

    short,designconstraintisslightlypossible.Theabilitytoactivelypredictuserpreferencesallows

    the system to 'design' new forms whichalready fit the conditions that the system has been

    'trained'with.AlthoughusepreferencesarealsoconsideredinGenr8,thewayitisexecutedinthisprojectismoreflexibleandintuitiveintermsofusinghandsketchesfordesigngrades,which

    manydesignersmightpreferratherthanparametricalconstraints.

    Figure2-16:Formfindingsandhumanpreferences.

    Source:MakotoWatanabe(2005)

    19

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    28/85

    Figure2-17:Theflowofhumanevaluationanddevelopmentofcomputation.

    Source:MakotoWatanabe(2005)

    AnotherimportantaspectintheInductionDesignseriesisoptimisation.Althoughthisconceptis

    notachievedatthispointintheWebFrame,inprojectsKeiriki1&2,theprogramforstructurally

    optimisedshapegenerationhasbeendevelopedandadvancedsince2005.Briefly,thesoftware

    creates objects with initial parameters and simple models, and the generated forms are

    structurallyoptimisedafterwardasfigure2-18demonstrates.Oneofthemostremarkablefactors

    intheKeirikiprojectsismaterialityandeconomicefficiency.Intheprogram,structuralmembers

    are automatically selectedby computers in termsof load, and simultaneously optimised for

    economicefficiency.Ornaments,whicharenotrelatedtostructure,andexcessivematerialsare

    reducedandremoved.Inshort,the totalvolumeofmembersisapproximatelyminimized,and

    this fact is important not only structurally, but also environmentally according to energyconsumption,includingembodiedenergy.Additionally,Keirikihasadvantagesintheaspectof

    intuitive manipulations. Arbitrary modification of generated shapes is also possible, and the

    softwarefindsoptimisedsolutionsthatcorrespondtosuchalternatives.

    Figure2-18:Keiriki1-Formgenerationandstructuraloptimisation..

    Source:MakotoWatanabe(2005)

    20

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    29/85

    Thus,theInductionDesignserieshasachievedandrealizedvariousimportantandremarkable

    elementsindigitaldesign.Ontheotherhand,problemstobesolvedalsoremain.Firstly,asfar

    ascreativityisconcerned,algorithmsusedforformgenerationintheInductionDesignseriesare

    generative, but not evolutionary, even if produced shapes are solutions to given conditions.

    Variousoptimised spider-web-like objects arecreated inevery softwareexecution; however,

    other shapes are by no means generated by the software. Needless to say, the extent of

    arbitrarinessindesignisanothermassiveacademictopic.Inadditiontosuchproblemsrelated

    tocreativity,multi-objectivesituationsareanotherelement.Thistopicisalsodiscussedinthe

    previoussection,anditmeansthatoptimisationundermulti-functionalconditionshasnotbeen

    solved in the present circumstances, and is a substantial problem currently. Finally,

    manageabilityasatoolisproblematic.ThesoftwarecreatedbyWatanaberequiresprofessional

    knowledgeofstructure,anditiscompletelydifferentfromformalknowledgetooperatesoftware

    includingCAD,3Dvisualizationsoftware,andsoon.Inotherwords,inrelationtomulti-objective

    optimisation problems, deeply comprehensive professional knowledge would be required ifgenerative optimisation software, similar to Keiriki, which covers every condition including

    structure,construction,environment,andsoon,wereinvented.Thereforethereare,ofcourse,

    toomanyprerequisitesanditwouldnotbesuitableforallusers.

    2.3 Summary and Analysis - Emergent Technologies and Sustainable Design

    Manyaspectsofemergenttechnologyanddigitaldesignhavebeendiscussedintheprevious

    sections with completed projects. Since computers became fundamental elements, digital

    technologiesseemtohavebeengraduallydeveloped.Somesystemsderivedfromcomputers

    canimitateevenbiologicalmechanisms.TheEvolvingVirtualCreatures(1994),byKarlSimsis

    oneof themostremarkableexamples,demonstratingsuchdigitalinnovationsasexplainedin

    theprevioussection.Itmightalsobeclaimedthatcomputersarenolongersimplyextensionsof

    our handwork, but even an augmentation to our brains. As far as digital design in the

    architecturalfieldisconcerned,generativedesigntoolssuchasGenr8orsoftwareinventedby

    JohnFrazerdemonstratedesignabilitiesofcomputersascreativetools.

    Although there are many remarkable aspects of digital technologies, the most significant

    advantageofcomputationmightbetheabilitytoprocessahugeamountofinformationinashort

    time.Thisisanexceedinglysimpletask,butasignificantlyimportantelement.Thehumanbrain

    mightnotbeabletocalculateahugeamountofcomplicatedfactors,forinstance,environmental

    simulations as Botsford has done in the Light House project. Application to solutions of

    optimisation problems is also one of examples of such an advantage derived from digital

    technologies.Infact,theprojectinOportobyLuisaCaldasprovesthatcomputerscancreate

    betterresultsthanhumanbeingsundercertainconditions.Intermsofsustainability,especially

    energyconsumption,thefactisremarkableforfuturedevelopment.

    21

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    30/85

    However,itisalsotruethatsuchaccurateiterationsofenormouscalculationsbecomeobstacles.

    Generallyspeaking,computersiteratetheirtasksuntiltheyfinishthem,oncecommandshave

    beenput in,evenif thetasksarenotfinite,andmoreover,theycalculatealltasksinthesame

    way.Ontheotherhand,humanbeingscanjudgethepossibilitiesoffinishingcalculations,or

    choosethewaytocalculate.Suchjudgementsaredevelopedbytheirexperiencesandintuitions.

    Computers do not have such abilities, and the only way to achieve them is well-designed

    algorithmscreatedbydesigners.Thus,digitaltechnologiesarenotfeasibleforeveryoneifthey

    arenotgoodatcomputing.Complexitiesandaccessibilitiestoemergenttechnologiesmightbe

    one of the most serious disadvantages of digital design. In other words, such forefronttechnologiesarestillfordesignerswithspecifictechnologyskills.

    As explained above, there are some advantagesand disadvantages in digital design itself.

    Meanwhile,intermsofthefurtherdevelopmentofcomputationinsustainablearchitectureanditsdesignprocesses,severalproblemsalsoneedtobesolved.Firstly,multi-objectivesituationsare

    one of the most problematic aspects. The perfectly optimised solution which satisfies every

    objective cannot exist in environmental design. As demonstrated in the previous section, if

    architectureisoptimisedintermsofacertaincondition,otherpurposesmightnotbeachieved

    verywell.Thisis deeplyrelated tosustainable designaccordingto thefact thatpracticalities

    suchasspatiality,materiality,cost,performance,andsoonaretheelementswhichdetermine

    theenvironmentalperformanceofarchitecture.Everyaspectisactuallylinkedtoeachother,and

    itisimpossibletopursueonlyoneelement.IntheprojectsofLuisaCaldasorGianniBotsford,

    theysearchforsolutionsofmulti-objectiveoptimisationproblemsbyusingthelatestcomputer

    technologies.However, theyarenotcompletely solved,andstill oneof themostcomplicatedtopics.

    Userpreferenceisthesecondmatterintermsofnotonlyenvironmentaloptimisation,butalso

    designaspectsofarchitecture.Itmightbeeasytoachievetargetsonlynumerically.Forexample,

    thepurposetogainmaximumsunlightissimplysolvedwiththelargestwindoworglassbox.The

    bestsolutionforthelowestheatlossesistoavoidarranginganywindowsonthewall.However,

    thesesolutionsare,needlesstosay,notacceptablefordesignersorarchitects.Environmental

    solutionsproducedbycomputersareonlyusefulwhentheyaresatisfiedwiththesesolutions.

    Moreover,projectsaremorecomplicateddueto theexistenceofclients.Therefore,optimised

    solutionsarenecessarytobegeneratedinaccordancewithuserpreferences.Intermsofsuch

    conditions, interesting technology called the Interactive Evolutionary Computation (IEC) is

    appliedtoGenr8andtheprojectsofMakotoWatanabe.Thesystemhandlesuserpreferences,

    andreflectsthemintooutputsderivedfromcomputers.Ontheotherhand,LuisaCaldascontrols

    designconstraintssuccessfullybyusingadifferenttechnologyinherproject inOporto.These

    technologies are emergent, and still under development; therefore, further research is

    fundamentallynecessary.

    22

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    31/85

    Finally, the way to explain a real space in a digital spacemight be regarded as themost

    problematicfactorinthedevelopmentsofemergenttechnologiesandsustainabledesign.Ina

    virtualspaceof3Dvisualisationsoftware,drawnobjectsdonothaveanymeanings,andthey

    arethebriefoutputofbinarydataonascreen.Ontheotherhand,usersregardsuchobjectsas

    buildings, rooms, parts ofarchitecture,etc. This gap of recognition between computers and

    humanbeingsisoneofthefactorsthatobstructcombinationsofdigitalandsustainabledesign.

    As also explained above in this section, accuracies and practicalities including spatiality,

    materiality and so onare exceedingly significant factors for environmental simulations. It is

    impossibletosimulateenvironmentalperformanceinanycasewithouttheseelements.Infact,a

    greatdealofdatamustbedeterminedforcalculationsinenvironmentalsimulationsoftwarelike

    ECOTECT,TAS,etctoproducemeaningfulresults.

    Suchtasksinenvironmentaltoolsmightbeacceptablein termsof theirmainaim.Meanwhile,theymight notbesuitable fordesign tools, becausedesignersorarchitects generally prefer

    intuitive design processes. Therefore, specifications of material, zones, etc, seem to be

    inconvenientasearlystagesofdesignprocesses.Thisisoneofthemostimportantreasonswhy

    environmental simulationshave notbeen connectedwith generative design.TheGenerative

    SystemcreatedbyLuisaCaldasisoneofthetoolstryingtodealwithsuchcomplexity;however,

    successfulresultshavenotbeenachievedyet.

    23

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    32/85

    Chapter 3: Responsive Faade Design System (RFDS)

    In this chapter, the Responsive Faade Design System (RFDS), which optimises window

    arrangementconsideringnaturaldaylightlevel,isdemonstrated.Thesystemisacombinationof

    evolutionarycomputationandenvironmentalsimulation.Oneofthetechnologiesofevolutionary

    computation, the genetic algorithm, is applied to the RFDS in order to investigate optimum

    solutionsundercertainconditions.Inthefirstpartofthischapter,geneticalgorithmsarebriefly

    explained includingbasic concepts, terms, implementations, and so on. Secondly, a simple

    environmentaldesignmodelwhichisnotbasedonevolutionarycomputationistestedintermsof

    furtherdevelopmentsandpotentialofthesystem.Thefinalpartofthischapteriscomposedof

    theimplementationoftheRFDSandsomeresultsofexperimentalsimulationsdemonstratingitsadvantagesanddisadvantages.

    3.1 Description of RFDSTheRFDSistheoptimisedwindowgenerationtool

    consideringnatural daylight level at user defined

    referencepoints.Inthepresentcircumstances,the

    system worksonly in ECOTECTwhich iswidelyusedenvironmentalsimulationpackage.Byusing

    the RFDS, it is no longer necessary to iterate

    traditional top-down search methods. In

    conventional ways, designers are required to

    repeatdesignandenvironmentalsimulationsuntil

    they obtain their target, which might not be an

    efficient method. On the other hand, the RFDS

    encouragesuserstofindsomeoptimumsolutions

    once initial parameters have been inputted.

    Various parameters are available for the

    optimisation processes, so that it is possible to

    generatewindowsonanywallsandinanysizes.

    Thedetailed implementationanddesignabilityof

    theRFDSisdemonstratedinthefollowingsections

    ofthischapter.

    GeneticAlgorithmOptimisationmethod

    EcotectEnvironmentalSimulation

    FinalResult

    Fitness

    No

    Yes

    Figure3-1istheflowchartoftheRFDSdescribing

    two main components; a genetic algorithm (GA)

    andECOTECT.Inthepresentsystem,Lua,which

    is a simple programming language, is utilised to

    Figure3-1:SystemflowchartoftheRFDS

    24

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    33/85

    controlthewholeoperationintermsoffacilitatingthesystemdevelopmentandaccessibilityto

    ECOTECT.Ageneticalgorithmisoneofsearchmethods,andiscurrentlyappliedtovarious

    kinds of optimisation problems. At the first stage of the design process, some parameters

    definedbyusers are passed into theGAgenerating an initial statement for theoptimisation

    process.Afterward,theGAgoesthroughsomecomputationalsteps,andtheresultsachieved

    by these steps are environmentally evaluated in ECOTECT. If the evaluations satisfy user

    targets, executions are finalised and optimised solutions are outputted for user evaluation.

    Meanwhile,thesameoperationsareiteratediftheevaluationsarenotadequateforthetargets.

    TheRFDSattemptstogenerateenvironmentaloptimalsolutions.

    3.2 The Genetic Algorithm Optimisation Method3.2.1 Overview of GAsGenetic algorithms (GAs) are search methods which draw heavily on the metaphor of the

    mechanismsofbiologicalevolution.Inbrief,itisthesimulationofvirtualcreaturesinacomputer

    derivingthecreatureinagroupbestadaptedtotheenvironment.Duetotheirexceedinglyhigh

    performance in optimisation problems, the algorithms are utilised in various fields including

    economics,socialsystems,schedulingsystems,andsoon.Thelistofapplicationsmightnotbe

    byanymeansexhausted.

    Originally,GAswereinventedanddevelopedbyJohnHolland,hiscolleagues,andhisstudents

    inthe1960s.Incontrasttothepresentwidespreadapplicationstoproblemsolutions,theinitial

    research of GAs was to simply study adaptation methods of natural selection and natural

    genetics.Ontheotherhand, it isgenerallystated thatcreaturesareevolvedadjustingto the

    surrounding environmentby iterating crossover, mutation, andselection. In other words, the

    higherthefitnessofindividualstowardtheirenvironmentis,thehighertheprobabilitythatthey

    willsurviveandproduceoffspringis.Suchanadaptationmechanismisaproblemsolutionitself,

    and the reason orbasic concept for the variousapplications in different fields, although the

    originalpurposeofGAsbyJohnHollandisdifferentfromthepresentutilisations.

    3.2.2 Biological Terminology

    Thefollowing is some of thebiological terminologywhich isused inGA implementations. In

    termsofGAimplementations,itisnecessarytounderstandtechnicaltermsatthispoint.

    Individual: Anautonomouspiececharacterisedbyachromosome. In this case, one possiblesolutiontothedesignproblem

    Population: AgroupofindividualsPopulation Size:ThenumberofindividualsinapopulationGene:AfunctionalblockofDNA

    25

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    34/85

    Allele: ApossiblevalueofageneChromosome:StringsofDNA.Inthiscase,alistofparametersLocus:TheplaceofageneinachromosomeGenotype:Geneticexplanationofachromosome(e.g.binarystrings)Phenotype: Thephysicalmanifestationofthegenotype

    3.2.3 Implementations of a Simple Genetic Algorithm

    As far asthesimplestGAs are concerned, there

    are just three types of operators; Selection,

    Crossover,andMutation.Figure3-2explains thesimplestGAsystem flow.After someparameters

    areinitialised,thethreeGAoperatorsareiterated

    untiltheresultsderivedfromthealgorithmssatisfy

    terminal criteria definedbyusers.Thus,GAsare

    executedbytwoverysimpleelementswhicharea

    loopofGAoperatorsandterminalcriterion.Each

    step of the algorithms is explained in detail as

    follows:

    Start

    End

    Yes

    No

    Initialisation

    Evaluation

    Selection

    Crossover

    Mutation

    Evaluation

    TerminalCriterion

    InitialisationIn this step, some parameters including

    population size, number of generations,

    chromosomelength,andsoonareinputted.

    Afterwards, the initial input randomly

    generates genotype individuals of the first

    generation. Especially, population size is

    significant in terms of the operations that,

    generally speaking, the longer the

    chromosome length is, the bigger the

    population size is. Additionally, the bigger

    population size requires longer calculation

    time until convergence. However, small

    population sizes may result in premature

    convergence.

    Figure3-2:SimpleGAflowchart

    26

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    35/85

    EvaluationFitnessscoresarecalculatedforfurtherselectionoffitterchromosomes.Oneofthemost

    important aspects in this step is the Fitness Function which calculates the fitnessmeasurementofeachindividual.Thisoperation isdeeplyrelated totheefficiencyofthe

    wholeGAflow;therefore,itneedstobedeterminedcarefully.

    SelectionThefitter chromosomesin thepopulationare basically selected for reproduction.As in

    biologicalevolution,thefitterchromosomesaremorelikelytobeselectedandreproduced

    ineachgeneration.Meanwhile,lowerfitnesschromosomesarealsopossiblyselected,butwith a lower probability. This probabilistic selection dependson the selectionmethod.

    Thereareseveraltypesofselectionsuchaseliteselection,rouletteselection,tournament

    selection,etc.Eachselection typehasadvantagesanddisadvantages.Forinstance, in

    eliteselection,thefitterchromosomesarecertainlyselectedinorder;however,premature

    convergenceishighlypossible.IntheRFDS,acombinationofeliteselectionandroulette

    selectionisused.

    CrossoverCrossoverroughlymimicsthegeneticoperationofbiologicalrecombinationbetweentwo

    chromosomes.Thefitterchromosomesarechosenbytheselectionoperator;however,it

    isnoteffectiveenoughtoevolvethepopulation.Thecrossoveroperatorencouragesmore

    variationbyexchanginggenesbetweentwochromosomes.

    MutationThemutationoperatorrandomlyflipsorchangesgenesinachromosomebetweenalleles,

    generallywithaverylowprobability.Chromosomesgeneratedbythecrossoveroperator

    are basically copies of the parent chromosomes; therefore, premature convergence

    possibly occurs. Chromosomes that have been mutated help to avoid premature

    convergence.Generallyspeaking,themutationrateshouldbe1/L,whereListhelengthof

    chromosome.Moreover,ifthemutationrateistoobig,thealgorithmbecomessimilartoa

    randomsearch.

    27

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    36/85

    Terminal CriterionInthisstep, the conditionsrequiredto terminate theGAis evaluated.If the process is

    regardedasbeingcompleted,thefittestindividualinthegenerationisoutputtedasoneof

    thepossibleoptimumsolutions.Theconditionsofconvergenceareasfollows:

    - ifthefittestscoreinthepopulationsatisfiesthecertaintargetstargene- if the average fitnessscore in the populationsatisfies the certain target populationimprovement

    - iftheincreaseordecreaseoffitnessscoresinthepopulationbecomesbelowacertainvalue-convergence

    - ifthenumberofgenerationsbecomesoverthedefinedvaluefiniteiteration

    3.2.4 Advantages and DisadvantagesGAscanbecharacterisedbysomefeaturessuchascodedparameters,globalheuristicsearch,

    fitness-basedselection,andsoon.Geneticalgorithmsareaverygeneralsearchmethod,and

    are not specific to any particular application. GAs are very effective at avoiding becoming

    trappedinlocaloptima.Ontheotherhand,therearealsosomedisadvantagesaswell.GAsare

    fitness-based, and it is necessary to calculate fitness scores for each individual every

    generation;therefore,processingloadsareveryhigh.Inordertoproducegoodsolutions,bigger

    population sizes are generally necessary, and the bigger population size causes higherprocessingloads.Meanwhile,themostseriousdisadvantage is thecomplexityandvariety of

    initialparameters.Satisfactorysolutionsrequireaccurateinputofinitialsetupparameterssuch

    aspopulationsize,mutationrateandsoon;however,theyarechangeabledependingonthe

    objectives.Therefore,itisverycomplicatedandunpredictableforuserstodetermineaccurate

    setupparameters.

    28

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    37/85

    3.3 Testing Simple Model3.3.1 Non-Evolutionary Computational ModelIn this section, a simple test model of RFDS is demonstrated. The RFDS is the

    evolutionary-baseddesignsystemfindingoptimumsolutionsunderuser-definedenvironmental

    conditions. However, in this simple test, evolutionary computation and optimum simulation

    methodsarenotyetoperated.Themainpurposeofthissimpletestistoobserveandanalysea

    generativeandresponsiveprocessofthesystem.Therefore,someaspectsofthetestmodel

    suchasparameters,outputs,andsoonareslightlydifferentfromthedevelopedRFDSinfurther

    stages.Meanwhile,themainaimofthethesis,thatistoinvestigateanddevelopthewaysand

    designprocesses foreffective naturalenvironment byusingemergentdigital technologies, is

    consistent,andisreflectedinthismodelaswell.Figure3-3demonstratesanexampleoutput

    generatedbythetestmodeloftheRFDSgeneratingcircularwindows.

    Figure3-3:SimpletestmodeloftheRFDSgeneratingcircularwindows.

    29

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    38/85

    3.3.2 Implementation

    Thetestmodelissimplyimplementedas

    figure3-4 explains.At thefirst operation,

    someparametersareinputtedtoinitialise

    the system, for example, the shape of

    window, the number ofwindows, and so

    on. After initialisation, new windows are

    generated,andthesizeofeachwindowis

    also increased until the environmental

    targetvalueissatisfied.Theevaluationof

    convergence is manipulated after every

    operation in terms of accuracy towardtarget values. The following is detailed

    informationofeachparameterforsystem

    initialisation.

    Start

    End

    Yes

    No

    Initialisation

    GenerateWindow

    TerminalCriterion

    TerminalCriterion

    No

    Target Daylight Level [lux]Inthesystem,theterminalcriterionis

    naturaldaylight level [lux]. Users are

    allowed toset up the target valueofdaylight level at a reference point in

    the model. It ispossible for users to

    placethereferencepointanywherein

    the model. In the case of this test

    model, only one reference point is

    allowedtobearrangedinthescene.

    Radius of circular windowsNewwindowsaregeneratedinterms

    of radius determined by users. The

    size of generated windows is

    increasedconstantlyin relation tothe

    initial radius; therefore, the value of

    the initial radius is one of the most

    important elements affecting the final

    output.

    Figure3-4:Programflowchartofthetestmodel

    30

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    39/85

    Maximum number of windowsItispossibletodeterminethemaximumnumberofwindowswhichwillbegeneratedinthe

    model.Oncethenumberofwindowsinthesceneisbeyondthisvalue,newwindowsarenot

    generated,andonlywindowsizeisincreasedinsteadinordertosatisfythetargetdaylight

    value.

    Number of nodes in a windowThis isa slightlytechnicaltermdemonstrating thenumberofpointscomposingawindow.

    Basically, the testmodelgenerates approximately circular windowsas figure3-3shows;

    however, the shape of windows actually depends on the number of nodes. Figure 3-5

    explainsthe typesofwindowshapesinthedifferencesof thenumberofnodes.Themore

    nodesthereare,thesmootherthewindowshapeis.Meanwhile,thelargenumberofnodescausesheavyprocessingloads,anditisnecessaryforuserstoconsiderthewholesystem

    flowatthesametime.

    Figure3-5:Differencesinthenumberofnodes

    Thus, the simple test model is composed of only four parameters. In addition to this, the

    evaluationofconvergenceisexceedinglysimple,comparedtootherenvironmentalsimulation

    tools.Therefore, itistruethataccuratesimulationsandcomplexdesignarenotallowedinthe

    system.Figure3-6isanexampledemonstratingthegenerativeprocessofthetestmodelwith

    thevalueoftargetdaylightvalue.

    31

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    40/85

    Figure3-6:Generativeprocessofthetestmodelshowingdaylightlevelsatthereferencepoint

    32

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    41/85

    3.3.3 Results and System Developments

    Figure3-7:Naturaldaylightlevelsimulationbyanalysisgrid.

    Figure3-7isthedaylightanalysisoftheexamplegeneratedbythesimpletestmodel.Inthis

    case,thereferencepointisplacedinthecentreoftheroomataheightof600mmfromthefloor.

    The target daylight level is700 lux.As the figure shows, the system successfully generated

    severalcircularwindowsuntiltheterminalcriterionissatisfied.Ontheotherhand,inthismodel,

    only one reference point is available, and it is not accurate enough to control the internal

    environment.Infact,theexampleresultdemonstratesthatalthoughthedaylightlevelaroundthe

    referencepointisnearly700lux,theotherareasarenotunderspecificcontrol.Especially,the

    lux levels of half of the part in the room are above the target level. They might have an

    exceedinglyhighdaylightlevel,andmightnotbedesiredintermsofglare.

    Meanwhile,dueto thefactthatthetestmodeliscreatedsimplytoexperimentandinvestigate

    thegenerativeand responsiveprocessesofthesystemrelatedtonaturaldaylightlevel,other

    environmentalandpracticalparametersarenotoperated.Intermsofthefurtherdevelopmentof

    33

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    42/85

    thesystem,otherparametersarenecessary tosimulateandcontrolmorecomplexsituations.

    For example, temperature could be applied to one of the other terminal criteria. Moreover,

    energyconsumptionandgreenhousegasemissionsmightbenecessarytobeimplementedin

    futuremodels. It isalso important tonote that such target criteria requiremorecomplicated

    logical system because practical values including the physical properties of materials are

    fundamentalforenvironmentalsimulations.

    34

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    43/85

    3.4 Responsive Faade Design System

    Figure3-8:AnimageoftheRFDSgeneratingpixel-likefaade.

    3.4.1 System ImplementationAsmentionedintheprevioussectionofthischapter,theRFDSattempttogenerateoptimum

    windowarrangementsunderuser-definedenvironmentalconditionsbyimplementingagenetic

    algorithmwithinECOTECT.Figure3-9explainsthedetailedimplementationof thesystem.At

    thefirstpoint,usersarerequiredtoinputtwoimportantparametersforoptimisationprocesses,

    which are target daylight levels at each reference point, and the priority of each target.

    Afterwards,initialparametersforGAoperationsneedtobegivenbyusers.TheGAoftheRFDS

    isarelativelyconventionalGA,andthealgorithmisasexplainedintheprevioussection.Once

    thesystemobtainsall of required initial parameters from users,possible solutionsunder the

    givenconditionsaregenerated,andultimatelyproducedasa3Dmodelinthesceneatthefinal

    stage.IntheRFDS,theterminalcriterionisthenumberofgenerations.Thatistosay,oncethe

    programmehasperformedagivennumberofgenerations,programmeexecutionsarecancelled

    tooutputsolutions.Inadditiontothefinal3Dmodel,theRFDScanoutputthefittestsolutionina

    generation. Numerical results are also outputted as an Excel file format. The detailed

    explanationsofeachelementrelatedtothesystemareasfollows:

    35

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    44/85

    GenerateInitialGroup

    Crossover

    Mutation

    Evaluation

    Selection

    OutputtheResult

    Excel

    No

    GAmainloop

    End

    TerminalCriterion

    Start

    Yes

    Wmf

    Figure3-9:RFDSsystemflowchart.

    36

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    45/85

    a) Reference PointUsers are allowed to place reference

    points for measurement anywhere in a

    scene. There are no limitations to the

    numberofreferencepoints;however,itis

    important for users to consider that the

    morethereferencepointsareplaced,the

    more difficult it is for the system to find

    optimumsolutions.

    b) Target Daylight Level [lux]The fitness scores are calculated in

    termsoftargetdaylightlevelsdeterminedbyusers.IntheRFDS,targetlevelsare

    notlisted,andarecompletelyuser-definedvalues.Daylightlevelisdemonstratedinluxdueto

    thefactthat,atpresent,variousbenchmarksarepublishedrelatedtolightinglevels.Therefore,

    usersareabletoeasilydecidetargetlevelsateachreferencepoint.

    Figure3-10:Animageofarrangementofreferencepoints

    c) Priority Level of TargetPrioritylevelisoneoftheelementsinfluencingfitnessmeasurementsaswellastargetdaylight

    levels.Therearethreelevelsfromlowprioritytohighpriority,andusersarerequiredtogive

    suchlevelstoeachreferencepoint.Accordingtothis,thesystemgeneratespossiblesolutionsgivingmoreimportantreferencepointshigherpriority.

    d) Window Size and IntervalInthisimplementationoftheRFDS,windowsarearrangedinlinesasfigure3-8demonstrates,

    sothatoutputisapixel-likefaade.Usersareabletochangewindowsizeandintervalbetween

    windows.

    e) GA Operators and Initial InputsItisnecessaryforuserstoinputsomeparameterstoinitialisetheGSwithintheRFDS.Similarto

    otherGAs, population size, number ofgenerations, numberof elites, andmutation rate are

    requiredasinitialinputs.Asdemonstratedintheprevioussection,therearethreetypesofGA

    operators;selection,crossover,andmutation.IntheGAoftheRFDS,eliteselectionandroulette

    selection are combined.Uniform crossover isutilised in the RFDS,and occurs toall parent

    chromosomes.Uniformcrossoverisoneofthecrossoverstogeneratechildchromosomesby

    randomlymixinggenesofparentchromosomes.Meanwhile,mutationisoperatedaccordingtoa

    givenmutationrate.

    37

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    46/85

    f) Output formats of optimum solutions and simulated dataTheRFDSoutputssolutionsas3Dmodelsinascene;therefore,itispossibletoexportthemto

    CADand3Dvisualizationsoftware.Additionally,thefittestsolutionsineachgenerationarealso

    outputtedasawmffilewhichisavectorformatimage.Numericaldataincludingfitnessscoresin

    eachgeneration, simulateddaylight levelsateach referencepointandsoonareexported to

    Excel.Thesedata encourageusers toanalysenotonlyenvironmentalperformance,but also

    systemperformanceforfuturedevelopments.

    3.4.2 Coding Method Genotype and PhenotypeOne ofthemost importantelements inGAs isthecodingmethod.In theRFDS,codingand

    decoding isoperatedas figure3-11demonstrates.Before runningGA,the systemgenerates

    virtualgridsonwallsusingthewindowsizeandintervaldefinedbyusers.Allelesusedinthe

    systemarebinary;0and1.Therefore,achromosomemightbe01001010101101,andtheset

    ofbinary codesof achromosome isalsoa set ofbinarycodes ofeachfaade. Ifeachgrid

    explainedaboveisregardedasgenes,itispossibletoarrangewindowsonwalls.Inthepresent

    system,1meansawindowand0meansnotawindow.Duetosuchdefinitionofphenotype

    andgenotype,windowsarearrangedoneachfaadeasthefigureshows.

    It is alsonecessary toconsider the length of chromosomes before the system proceeds. A

    chromosome is simply a set of binary codes, and the coding method is also very simple;

    therefore, the smallerwindow size and interval require larger number of binary codes for a

    chromosomeresultinginanincreaseofcalculationloads.

    Figure3-11:Compositionofachromosomeandcodingmethod.

    38

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    47/85

    3.4.3 Fitness Function

    AnexperimentalmethodisappliedtothefitnessfunctionoftheRFDSintermsofdesignabilities

    ofthesysteminrelationtouserpreferences.Afitnessscoreissimplyatotalvalueofthefitness

    measurements ofeach referencepoint.Thesystemisanoptimisation tool considering target

    daylight levels; therefore, in thecase of theRFDS, thechromosomeofminimumdifferences

    fromtargetlevelsisthefittestinapopulation.Inotherwords,inthissystem,fitnessfunctions

    attempttoapproach0.Althoughthetotalofeachdifferencefromtargetlevelsateachreference

    point is clearly a possible fitness function, the concept ofweighting factor is utilised in the

    presentmodel.

    Asfigure3-12demonstrates,weightingfactorsarecalculatedbasedonprioritiesofeachtarget

    daylightlevel.Thehigherthepriorityis,thebiggertheincreaserateofweightingfactoris.Thefitnessfunctionofthesystemisthesumoftheweighteddifferences,whicharethecalculatedas

    thedifferencesmultipliedbyweightingfactor.Itmeansthatthehigherthepriorityis,thebigger

    thefitnessscoreislikelytobe.Accordingtothis,thesystemisexpectedtofindsolutionsgiving

    prioritiesthroughGAoperations.

    Figure3-12:ThefitnessfunctionoftheRFDSandfunction-basedweightingfactors.

    39

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    48/85

    3.5 Testing the Responsive Faade Design System3.5.1 Optimisation Processes under Simple Conditions

    Some experimental simulationswere completed byusing theRFDS to evaluate thepresent

    performance of the system, and investigate the advantages and disadvantages for future

    developments.Theimplementationsofthefirsttestmodelincludingtheroomandwindowsize

    areasfigure3-13shows.Inthismodel,fourreferencepointswithoutpriorityareplaced,and

    eachtargetdaylightlevelisasfollows:

    Referencepoint1:200[lux]priorityLow

    Referencepoint2:600[lux]priorityLow

    Referencepoint3:800[lux]priorityLow

    Referencepoint4:400[lux]priorityLow

    TheGAparameters are the populationsize= 20, number ofgenerations= 400, number of

    individualsforeliteselection=2,andthemutationrate=0.03.Additionally,thechromosome

    lengthundertheinitialisedwindowsizeis800accordingtothesystem.Allprioritieshavebeen

    settolowtoensurethattheweightingdoesnotbiasresults.

    Elevation

    h=700

    6,000

    6,000

    3,000

    200

    200

    100

    3,0001,500 1,500

    Plan Perspective

    Windowsize

    Figure3-13:Simpleexplanationsofatestimplementation.

    40

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    49/85

    Figure 3-14 and 3-15 demonstrate the generated optimum solution and the natural lighting

    analysis.Ifreferencepointsarecategorisedintotwogroupswhicharethedarker(points1and

    4)andthebrighter(points2and3)intermsofthetargetlightinglevels,thefiguresshowthatthe

    RFDSsuccessfullyapproximatedanoptimumsolutionundergivenconditions.Inotherwords,

    theleftareaoftheanalysisgridinfigure3-15isdarkerthanitsrightarea.Aslightinglevelsat

    points2and3areabout640luxand830lux,anditcanbestatedthattargetlightinglevelsare

    sufficientlyachieved. As figure3-16 also shows a relativelysuccessful achievement, lighting

    levelsatpoints2and3approachtheeachtargetasthesimulationproceeds.

    Lightinglevelsatreferencepoints1and4arenotsatisfactoryvalues.Thetargetlevelofpoint1

    is200luxandthatofpoint4is400lux,whileactuallightinglevelsare,duetotheresult,about

    380luxand570lux.Although figure3-17shows thatoverall fitnessscoresaredecreasedin

    eachgeneration,lightinglevelsatpoints1and4arestableafterthe150thgeneration.Therearetwopossiblereasonsforsuchsystemidleness.Firstly,windowsarearrangedonallfourwallsof

    thesimulatedmodel;therefore,it isdifficulttoachievelowlightinglevels.Secondly,reference

    pointsareplacedcloselyobstructingdifferencesoflightinglevels.

    41

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    50/85

    Lux

    Point-1Target:200

    379.064

    Point-2Target:600Actual :642.727

    Point-4Target:400Actual: 566.082

    Point-3Target:800Actual: 828.176

    Testedresultunder4referencepoints

    Lightinglevelanalysisgrid

    Figure3-14:Ageneratedsolutionandlightinganalysis.

    42

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    51/85

    ReferencePoint-1

    379.064[lux]

    ReferencePoint-2

    642.727[lux]

    ReferencePoint-3

    828.176

    ReferencePoint-4

    566.082

    Lux

    Figure3-15:Lightinganalysiswithfourreferencepoints.

    43

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    52/85

    Generation

    Figure3-16:Naturallightinglevelateachreferencepoint.

    Generation

    Figure3-17:Fitnessscoresofthefirstsimulatedmodel.

    44

  • 8/6/2019 09-03-31 Go Kawakita EESB Thesis 2008

    53/85

    Thefirstexperimentshowssomeinterestingaspectsofthesystem.Morecomplicatedconditions

    areappliedtothesamemodelusedforthefirstsimulationtoinvestigatefurtherbehavioursof

    the system. In the first simulation, four reference points are placed in the model, while the

    numberof referencepoints is increased toeight in thesecondsimulation,and each point is

    arrangedasfigure3-19shows.Thefollowingiseachtargetlevelatreferencepoints:

    Referencepoint1:200[lux]priorityLow Referencepoint5:400[lux]priorityLow

    Referencepoint2:600[lux]priorityLow Referencepoint6:800[lux]priorityLow

    Referencepoint3:800[lux]priorityLow Referencepoint7:600[lux]priorityLow

    Referencepoint4:400[lux]priorityLow Referencepoint8:200[lux]priorityLow

    Inthesecondsimulation,referencepointscanbecategorisedintotwogroupsinthesamewayasthefirstsimulationmodel.Points1,4,5,and8arethedarkergroupandpoints2,3,6,and7

    arethebrightergroup.Accordingtothis,itisexpectedthatthehalfzoneoftheroom,wherethe

    brightergroupisplaced,wouldgainmorenaturaldaylightthanthatofthedarkergroup.Asfaras

    valuesofeachpointareconcerned,thedarkergroupshouldachievelowerlightinglevelsthan

    thebrightergroup.However,figure3-20showsspatiallynocleardifferencesoflightinglevels

    contraryto thefirstsimulation.Althoughfitnessscoresareconstantlyimprovedas figure3-18

    demonstrates,daylightlevelsateachreferencepointdonotsuccessfullyapproacheachtarget

    levelaccordingtofigure3-21.

    Itisbecausereferencepointsareplacedtoodense