1 artificial intelligence adina magda florea. 2 lecture no. 6 prolog language rule-based systems...
Embed Size (px)
TRANSCRIPT

1
Artificial IntelligenceArtificial Intelligence
Adina Magda Florea

2
Lecture No. 6
Prolog Language
Rule-based Systems Knowledge representation using rules RBS structure Inference cycle of a RBS Control strategy
2

3
1. Prolog R. Kowalski, A. Colmerauer - '70
Prolog control structure A goal S is true in a Prolog program (can be
satisfied or is a logical consequence of the program) iff:
1. There is a clause C in the program;
2. There is an instance I of the clause C such that: 2.1. the head of I is the asme with the head of S;
2.2 all the goals in I’s body has true (can be satisfied)
3

4
Prolog
4
Execuþie
sistem Prolog
conjuncþiide scopuri
program Prolog
indicator SUCCES/INSUCCES
instanþele variabilelor din scopuri

5
Prolog% parinte(IndividX, IndividY)% stramos(IndividX, IndividZ)parinte(vali, gelu).parinte(ada, gelu).parinte(ada, mia).parinte(gelu, lina).parinte(gelu, misu).parinte(misu, roco).
str1(X, Z) :- parinte(X, Z).str1(X, Z) :- parinte(X, Y), str1(Y, Z).
5
vali ada
gelu mia
lina mişu
roco

6
Prolog% Change the order of the rules:
str2(X, Z) :- parinte(X, Y), str2(Y, Z).
str2(X, Z) :- parinte(X, Z).
% Change the order of goals:
str3(X, Z) :- parinte(X, Z).
str3(X, Z) :- str3(X, Y), parinte(Y, Z).
% Change both the order of rules and the order of goals:
str4(X, Z) :- str4(X, Y), parinte(Y, Z).
str4(X, Z) :- parinte(X,Z).
6

7
Prolog
?- str1(ada, misu).
yes
?- str2(ada, misu).
yes
?- str3(ada, misu).
yes
7
str1(ada, misu)
parinte(ada, misu)
INSUCCES
parinte(ada, Y), str1(Y, misu)
parinte(ada, gelu)
Y=gelu
SUCCES
str1(gelu, misu)
parinte(gelu, misu)
SUCCES
str3(ada, misu)
parinte(ada, misu)
INSUCCES
str3(ada, Y), parinte(Y, misu)
parinte(ada, Y')
Y=Y'
SUCCES
parinte(gelu, misu)
SUCCES
parinte(ada, gelu)
Y'=gelu

8
Prolog?- str4(ada, misu).
?- str3(mia, roco).
8
str4(ada, misu)
str4(ada, Y), parinte(Y, misu)
str4(ada, Y'), parinte(Y', Y)
str4(ada, Y"), parinte(Y", Y)
arbore infinit...
str3(mia, roco)
parinte(mia, roco)
INSUCCES
str3(mia, Y), parinte(Y, roco)
parinte(mia, Y)
INSUCCES
str3(mia, Y'), parinte(Y', Y)
parinte(mia, Y')
INSUCCES
str3(mia, Y"), parinte(Y", Y')
parinte(mia, Y")
INSUCCES
...arbore infinit

9
2. Knowledge representation using rules Declarative representation / procedural representation
R1: if the patient has fever
and the type of the organism is gram-pozitiv
and the patient has a stiff neck
then the identity of the organism is streptococcus
R2: if the car does not start
and the lights do not turn on
then the battery is faulty
sau there is no contact of the battery
R3: if the temperature > 95o C
then open the protection valve9

10
Reprezenthasa prin reguli - cont
( p)( o)(Temperatura (p,mare) Tip(o,gram - pozitiv) GitUscat(p))
Identitate (o,streptococ)
( m)( b)(NuPorneste(m) NuAprinde(m,far))
(Stare(b,consumata) Borne(b, fara_ contact))

3. Structura SBR
MEMORIEDE LUCRU
Fapte dinamice
BAZA DE CUNOSTINTE Reguli Fapte
Date de activare
MOTOR DEINFERENTA
Selectie reguliReguli selectate
Actiuni(Concluzii)
Date
Reprezentare
Control
Intrari
(date de caz)
Iesiri
(Raspunsuri)si fapte

12
4. Inference cycle of an RBS
Match Selection Execution

13
Inference cycle of an RBS - cont
Algorithm: Functioning of an RBS
1. WM Case data
2. repeat
2.1. Identify WM and KB and create the conflict set (CS)
2.2. Select a rule from the CS to apply
2.3. Apply selected rule
until there are no more applicable rules or
WM satisfies goal or
a predefined effort has been exhausted
end.

14
5. Control strategy
Selection criteria from the CS Direction of rule application
14

15
5.1 Selection criteria from the CS
Select the first applicable rule Select a rule from the CS
Preferences based on rule identitySpecificity
- the set of premises of R1 includes the set of premises of R2;
- the set of conditions of R1 are similar to that of R2, but the premises of R1 refer to constants while the premises of R2 refer to variables.
Time of last use Preferences based on matched objects
15

16
Selection criteria from the CS - cont
Use of meta-rules
if a rule has conditions A and B and
the rule refers {does not refer} X
{ not at all/
only in the LHS/
only in the RHS }
then the rule will be certainly useful
{ probably useful/
probably useless/
certainly useless }
Application of all rules in the CS 16

17
5.2 Direction of rule application
17
INLANTUIRE INAINTE
daca atuncidaca atunci
INLANTUIRE INAPOI
daca atuncidaca atunci
daca atunci
A B B C
A (data)
C (concluzie)
determina C B C A B
( A C, implicit)Este A adevarata? (data)
Forward chaining Backward chaining

Continut initial al memoriei de lucru: A,EStare scop: D
A,E A,E,B A,E,B,C A,E,B,C,D
(a)
R3 R1 R2
A,E
A,E,B
A,E,B,C
A,E,B,C,D
A,E,C
A,E,C,D
R4
R2
R3
R1
R2
(b)
(a) Forward chaining
18

R3
Continut initial al memoriei de lucru: A,EStare scop: D
D? C? A?, B? A?, E?
(a)
R3R1R2
D
C
A B E
R1 R4
R2
A? A? E?
E?
(b)
A
C
(b) Backward chaining
19

Algorithm: Find a value using forward chaining (a)FindValueD(A)1. if A has value
then return SUCCESS2. Build CS3. return Find(A, CS)end.Find(A, CS)1. if CS = {}
then return FAIL2. Choose a rule RCS according to a selection criterion (criteria) 3. for each premise Ij of R execute
3.1. Find the truth of Ij4. if all Ij , j=1,N are satisfied
then4.1. if A has value
then return SUCCESS4.2. Add the fact(s) refered in the RHS of R to WM
5. CS CS - R6. return Find(A, CS)end.
20

Algoritm: Find a value using backward chaining (b) Detvalue(A)1. Build the set if rules which refer A in RHS, CS2. if CS = {}
then2.1. Ask the user the value of A2.2. if the user answers A then stare this value in WM else return FAIL
3. else3.1. Choose a rule according to a selection criterion (criteria)3.2. for each premise Ij, j=1,N, in LHS of R execute3.2.1. Be Aj refered by the premise Ij3.2.2. if Aj has valuethen evaluate the truth of Ij3.2.3. elsei. if Detvalue(Aj) = SUCCESSthen evaluate the truth of Ijii. else consider Ij unsatisfied
21

3.3. if all premises Ij, j=1,N are satisfied
then store the value A obtained from the RHS of R in WM
4. if A has value (in WM)
then return SUCCESS
5. else
5.1 CS CS – R
5.2 repeat from 2
end.
1'. if A is primary data
then
1'.1. Ask the user the value of A
1'.2. if the user knows the value of A
then - store this value in WM
- return SUCCESS
1’.3. else return FAIL
22

Example of RBS with forward chaining (a)
R11: if Etapa is Verifica-Decor
and exists o statuie
and does not exist soclu
then Add soclu la Obiecte-Neimpachetate …..
R17: if Etapa is Verifica-Decor
then finish Etapa Verifica-Decor
and start Etapa Obiecte-Mari
23
Nume Greutate Dimensiune Fragil Impachetat
Etapa :Cutie 1 :Obiecte Neimpachetate :
Statuie mediu mare nu nuTablou usor medie nu nuVaza usor mica da nuSoclu greu mare nu nu
Verifica - Decor
Statuie,Tablou,Vaza ,Soclu{ }

Example of RBS with forward chaining - contR21: if Etapa is Obiecte-Mari
and exists un obiect mare de ambalatand exists un obiect greu de ambalatand exists o cutie cu mai putin de trei obiecte marithen pune obiectul greu in cutie
R22: if Etapa is Obiecte-Mariand exists un obiect mare de ambalatand exists o cutie cu mai putin de trei obiecte mari …..then pune obiectul mare in cutie
R28: if Etapa is Obiecte-Mariand exists un obiect mare de pusthen foloseste o cutie noua
R29: if Etapa is Obiecte-Marithen finish Etapa Obiecte-Mariand start Etapa Obiecte-Medii
24
Etapa :Cutie 1 :Obiecte Neimpachetate :
Obiecte - MediiSoclu,StatuieTablou,Vaza

Example of RBS with backward chaining (b)R1: if X has par
then X is mamalR2: if X feeds puii with milk
then X is mamalR3: if X is mamal
and X has pointed teethand X has falcithen X is carnivor
R4: if X is carnivorand X is brownand X has petethen X is cheetah
R5: if X is carnivorand X is brownand X has stripsthen X is tiger
25
What is X?