1. basics 2. dynamic light scattering (dls) 3. fluorescence … · 2008-06-19 · dynamic light...

12
Correlation Spectroscopy in Polymer Physics Methodenseminar im Wahlpflichtfach 3 1. Basics diffusion and brownian motion correlations functions 2. Dynamic light scattering (DLS) DLS on cellulose solutions 3. Fluorescence correlation spectroscopy (FCS) hybridization dynamics of RNA/DNA Literature: B. J. Berne, R. Pecora, “Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics”, Dover Publications C. Zander, J. Enderlein, R. A. Keller (Eds.), “Single-Molecule Detection in Solution - Methods and Applications”, VCH-Wiley 1. Basics 1.1 Macroscopic diffusion 1 2 1. remove wall 2. particles (gas) expand to the right x Fick‘s first law: particles passing through the plane per area diffusion coefficient gradient of number density no net flow when particles are evenly distributed! D ~ average “speed” of particles, determined by thermal motion in a gas: mean free path between collisions avg. velocity (Maxwell) in a liquid: Stokes-Einstein law drag/friction coefficient solvent viscosity hydrodynamic radius (size determination!)

Upload: others

Post on 06-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

Correlation Spectroscopy in Polymer PhysicsMethodenseminar im Wahlpflichtfach 3

1. Basics• diffusion and brownian motion• correlations functions

2. Dynamic light scattering (DLS)• DLS on cellulose solutions

3. Fluorescence correlation spectroscopy (FCS)• hybridization dynamics of RNA/DNA

Literature:• B. J. Berne, R. Pecora, “Dynamic Light Scattering: With Applications

to Chemistry, Biology, and Physics”, Dover Publications • C. Zander, J. Enderlein, R. A. Keller (Eds.), “Single-Molecule

Detection in Solution - Methods and Applications”, VCH-Wiley

1. Basics

1.1 Macroscopic diffusion

1

2

1. remove wall2. particles (gas) expand to the right

x

• Fick‘s first law:

particles passingthrough the plane

per area

diffusioncoefficient

gradient of number density

no net flow when particlesare evenly distributed!

D ~ average “speed” of particles, determined by thermal motion

in a gas:

mean free path between collisions

avg. velocity

(Maxwell)

in a liquid: Stokes-Einstein law

drag/friction coefficient

solvent viscosity

hydrodynamic radius (size determination!)

Page 2: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

1. Basics 1.1 Macroscopic diffusion

• relation between flux and concentration/density changeΔx

A

x x+ΔxΔV

volume V = A Δxdensity

between t and t + Δt:

gain by flux through A at x

loss by flux through A at x+Δx

change of particle number in ΔV

≡ derivative! let (density change),

continuity equation

1. Basics 1.1 Macroscopic diffusion

• combine Fick‘s first law and continuity equation:

Fick’s second law, diffusion equation

- second-order differential equation!- solution with appropriate initial and boundary conditions

- is a function of space and time- replace by c(x,t) in a solution (= concentration)

• point source, 1D solution:

initial condition:boundary conditions:

t=0

σx

t1

t2

Page 3: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

1. Basics

1.2 Brownian motion

• describe the random motion of individual particles(“self motion” or “self diffusion”)

• first observed by Brown on cell organellae

r

simple 1D derivation for end distance:

1. Basics 1.2 Brownian motion

+l +l +l−l

random step, uniform length per time Δt:

x

statistics (many walks)

average

distance traveled:

0 (uncorrelated random numbers!)

compare with Einstein-Smoluchowski equation (full statistical/kinetical description of single-particle motion):

but:

Page 4: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

1. Basics

1.3 Correlation functions

χ: general property, e.g., density, intensitya: variable, e.g., r (space), t (time), …

• define autocorrelation function (ACF) of χ(a):

product-average, evaluated at constant differencea = c−b

• in a system, where χ(a) varies randomly, Cχ(a) is often a simple, analytical function that describes the basic statistical propertiese.g. for - instantaneous positions of molecules in liquids

- random location or velocity of Brownian particles

• Cχ(a) is often directly measured, e.g., in scattering experiments, NMR, or…

1. Basics 1.3 Correlation functions

• example: random hopping (Markov process)

χ

a1

b or c

<χ>

a

Cχ(a)

<χ>2

τ

auto-correlate

Cχ(a)χ

<χ>

b or c a<χ>2

τ

very often: Cχχχχ(a) ~ e−−−−a/ττττ

ττττ: decay constant, correlation time

a2>a1

so you can correlate the differences from the average!

long times: different signas likely as equal sign

⇒ cancellation!

white noise (“most random” variation of ν):

Page 5: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

2. Dynamic light scattering (DLS)

2.1 The light scattering experiment

2. Dynamic light scattering (DLS)

2.2 Rayleigh scattering

• interaction of an incoming (vertically polarized) wave

with a molecule (or a fragment) with polarizability α

⇒ induced dipole moment x

z

y

α

φz

φy

φx=θ

• oscillating dipole emits a scattered spherical waveaccording to the Maxwell eqs. (accelerated charge!):

⇒ intensity ratio (scattered vs. incoming), use

(!! blue sky, red sunset…)

• modifications when scattering center moves:⇒ internal dynamics (vibrations etc.): polarizability changes, α = f(t), Raman effect!⇒ molecule moves: Doppler shift/broadening (δωD ~ ω<vz>/c for absorption lines)

Page 6: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

2. Dynamic light scattering (DLS)

2.3 Interference and scattering vector

1

2

θ/2

θ

b

a

θ/2

· ·

• note: for constructive interference, Δφ = n 2π

scattering length =efficiencyin solution: depends on

refractive index mismatch!( n=f(α) )

• phase shift Δφ depends on path length difference δ=a−b (simple trigonometry, |k|=2π/λ0):

includes the definition of the scattering vector (quantifies momentum transfer)

• interference = superposition

for many particles, independent of origin (e.g., r1=0)

2. Dynamic light scattering (DLS)

2.4 Basic phenomenon and spectroscopic approach• Doppler effect of diffusing scattering centers, ri(t):

• line width from FT{idet(t)}: δω ~ q2Dc

Dc: collective diffusion coefficient (particles relative to each other)= Dself for c → 0

time-dependent scattered intensity (damped)!

~q2Dc

ω

Brillouin doublet (phonon modes)or Raman lines

• energy change δω ~ q2Dc related to Doppler broadening:~ 10 meV in a liquid a room temperature

• typical vis. photon energy: 1.7−3 eV

⇒ very small effect!, measurable only with • narrow-banded lasers• Fabry-Perot interferometers

(~ since 1960)

Page 7: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

2. Dynamic light scattering (DLS)

2.5 Time correlation• idea: direct observation of intensity fluctuations,

possible for small scattering volume (⇔ static LS: large volume, fluctuations are averaged!)

Ci(t)idet

<idet>

t t<idet>2

1/2q2Dc

auto-correlate

(autocorrelation done in real time on a fast

computer card, Δt~100ns)

• DLS terminology:

intensity ACF

Siegert relation

ACF of the scattered

electric field

Γ: “first cumulant”

for single species: simple exponential!

2. DLS 2.5 Time correlation

• in practice for polymers (large molecules, many scattering centers):

Γ = q2Dapp

apparent diffusion coefficent, depends on

• intramolecular interferences, intramolecular motions ⇒ size effect, q dependence • hydrodynamic interactions between particles ⇒ concentration (c) dependence

series expansion in c and q:

⇒ do extrapolation for c → 0, q → 0

Page 8: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

cellulose (cotton) =

in solution:random coil

in bulk: semicrystallinepolymer- hardly soluble- chain length?

Rh ~ molecular weight

2. DLS

K. Saalwächter, W. Burchard, et al., Macromolecules 33 (2000), 4094

CdNN N

N

CdNN N

N

Cd NNN

N

Cuoxam: “Schweizers reagent”, copper sulfate - ammonia solution

solvent aggregates!

Cd-tren: new high-tech coordinating solvent

bigger coil!

2.6 DLS on cellulose solutions

2. DLS 2.6 DLS on Cellulose solutions

“dynamic Zimm plots“to remove c (concentration) and q (angle) dependencies:

K. Saalwächter, W. Burchard, et al., Macromolecules 33 (2000), 4094

Page 9: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

3. Fluorescence correlation spectroscopy

3.1 Basic concepts

Ei

EjEk

internal conversion (fast, radiationless)

hν’

weakly allowed transition(lifetime ~10−9 s)

termenergy

• fluorescence: red-shift of absorbed light

~0.5 μm

• confocal detection/imagingLaser

dichroic mirror

single-photondetection

pinhole or fibre aperture

objectivetube lens

~3 μm

focal/detection volume

3. Fluorescence correlation spectroscopy

Emissions filter

Dichroic mirror

excitation wavelength

mirrortransmission

3.2 Apparatus

Page 10: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

3. Fluorescence correlation spectroscopy

3.3 Intensity fluctuations and normalized autocorrelation function

5.6 5.8 6.0 6.2 6.40

50

100

150

200

250

300

inte

nsity

[cou

nts

per

ms]

time [s]

5.3 5.5 5.7 5.9 6.10

100

200

300

400

500

600

inte

nsity

[cou

nts

per

ms]

<i>

<i>

highconcentration

lowconcentration

focal volume~2 fL (2E-15)

1 molecule/2fL≈ 1 nmol/l

extremely high sensitivity!!⇒ also “single-molecule” spectroscopy (note: one molecule, but many photon cycles)

t (ms)

1E-4 0.01 1 100 1E+40.0

4.0

8.0

10.0

12.0

14.0

time [ms]

1/<N>

t (ms)

1E-4 0.01 1 100 1E+40.0

0.4

0.8

1.2

1.6

2.0

auto-correlate

Ci(t

)/<

i>2

[nor

mal

ized

]C

i(t)/

<i>

2 [n

orm

aliz

ed]

1/<N>

Ci(t)/<i>2 → 1

<N> ~ number of molecules

in focus

3. FCS 3.3 Autocorrelation function

• remove offset: normalized autocorrelation function

inverse number of particles in the focus

• theory assuming Brownian motion (free diffusion) and Gaussian detection volume

wz

wxy

1/e2-widths of detection volume

lateral diffusion time

average particle number in focus

• including triplet dynamics (triplet fraction fT, triplet lifetime τT) particles in triplet state are invisible

for a certain time τT

Page 11: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

3. FCS 3.3 Autocorrelation function

• RNA: mediates between genetic code (DNA) and protein synthesis• virus replication (e.g., AIDS) is based on certain RNAs• replication (binding of reverse transcriptase) can be hindered by hybridization

(=binding and blocking) with „anti-sense“-DNA • understanding of hybridization dynamics (accompanied by unfolding of RNA)

⇒ powerful drugs on the basis of DNA!

asDNA

RNA

rev. transcr.

3. FCS 3.4 Hybridization dynamics of RNA with DNA probes

P. Schwille et al., Biochemistry35 (1996), 10182

Page 12: 1. Basics 2. Dynamic light scattering (DLS) 3. Fluorescence … · 2008-06-19 · Dynamic light scattering (DLS) 2.4 Basic phenomenon and spectroscopic approach • Doppler effect

2-component fit:

⇒ details on binding kinetics!

P. Schwille et al., Biochemistry35 (1996), 10182

3. FCS 3.4 Hybridization dynamics of RNA with DNA probes

known: τ1 (free DNA) < τ2 (hybr. DNA), determined: rel. population Y1,2 = N1,2/(N1+N2)