1 day 3. interfacial energies in high temperature systems george kaptay kaptay / day 3 / 1 a 4-day...

57
1 Day 3. Interfacial energies in high temperature systems George Kaptay Kaptay / Day 3 / 1 A 4-day short course See J94

Upload: benedict-lynch

Post on 29-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

1

Day 3.

Interfacial energies in high temperature systems

George Kaptay

Kaptay / Day 3 / 1

A 4-day short course

See J94

2

Interfacial energies Interfacial forces

Interfacial phenomena

Complex phenomena

Modeling algorithmKaptay / Day 3 / 2

3

Types of phases and interfaces to be modeledgasW(s)

Al(l)NaCl(l)

MgO(s)Si(s)

AlN(s) TiC(s)

Kaptay / Day 3 / 3

4

Modeling interfacial energies

BA

BABA

G

/

//

BBA

ABABA GGG ///

The excess interfacial Gibbs energy:

BABABA STHG ///

A B

Kaptay / Day 3 / 4

5

The excess interfacial enthalpy for the liquid/gas interface

olAA

olA

bA

iAbAgBlA UU

z

zzH

/

TRHU oAv

olA

For liquid metals (structures surface – see Day 1 / 18): (11-9)/11 = 0.182

Where the cohesion energy of the liquid metal (classic):

Kaptay / Day 3 / 5 See J48

6

The excess interfacial entropy for the liquid/gas interface

b

igsA V

VRS ln/

bb

gsA Ru

uRS

lnln

2/1

2

2

/

From the LEED measurements [Somorjai et al]:

molKJSS gBsAgBlA /14//

Kaptay / Day 3 / 6 See J48

7

The molar surface area of the liquid/gas interface

3/13/2

Avm NVf ff

fb

i

3

4

2 3 1/3/

b

Avm f

NrV 3

3

4 i

Av

f

Nr 2

For the {111} plane of the fcc crystal: fi = 0.906.

For fcc crystals fb = 0.740 → f = 1.09.

When an fcc crystal is melted, ΔmV = 1.06, → f = 1.06.

Kaptay / Day 3 / 7 See J48

8

Surface tension of pure liquid metals

3/13/2/06,1

)15,5(182,0

Avo

A

oAvo

glANV

TH

0

1

2

3

0 1 2 3elm, J/m2

kis

, J/m

2

Kaptay / Day 3 / 8

Experimental points

Calculated values

See J48

9

Surface tension of liquid metals / new age (1)

oicAgBlA HH ,/ (11-9)/11 =

0.182

)( ,,,,,o

imo

ipo

mico

ic TTCHH 0,,, o

Tic icrH

)( ,,,,,o

imo

icro

ipo

mic TTCH

2,2,1,,o

imo

imo

mic TRqTRqH

To correlate the calculated values:

Kaptay / Day 3 / 9

10

0

40000

80000

120000

160000

0 1000 2000 3000 4000

R.Tom,i J/mol

-Ho

c,i,m

J

/mo

l

Cs

Rb

K

Na

Li

Hg

q1 = 25.4 ± 1.2, q2 = 0.

2,2,1,,o

imo

imo

mic TRqTRqH

Kaptay / Day 3 / 10 From vaporization enthalpy

From critical points

11

Surface tension of liquid metals / new age (2)

i

b

f

ff

3/13/2

4

3

For the {111} plane of the fcc crystal: fi = 0.906.

For fcc crystals fb = 0.740 → f = 1.09.

For melted fcc crystals fb,fcc = 0.74/(1.12) = 0.66 → f =1.01

For melted bcc crystals fb,bcc = 0.68/(1.096) = 0.62 → f=0.97

For melted hcp crystals fb,hcp = 0.74/(1.086) = 0.68 → f=1.03

Average for melted fcc, bcc and hcp crystals: f = 1.00 ± 0.02

Kaptay / Day 3 / 11

12

Surface tension of liquid metals / new age (3)

ogiord

ogivib

ogi SSS ///

molKJSS oim

ogiord /26/

molKJS ogivib /15/

31/// ogiord

ogivib

ogi SSS

)( ,,,,,o

imo

ipo

mico

ic TTCHH

Kaptay / Day 3 / 12

13

Surface tension of liquid metals / new age (4)

3/13/2

,

,,,,

)02.000.1(

)31()02.0182.0(

Avomi

oim

omico

miNV

TH

3/13/2

,

,, )1038(

Avomi

oimo

miNV

T

Kaptay / Day 3 / 13

2,2,1,,o

imo

imo

mic TRqTRqH

q1 = 25.4 ± 1.2, q2 = 0.

14

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

i,m, calc, J/m2

i,m

, exp

, J/m

2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

i,m, calc, J/m2

i,m, e

xp

, J/m

2

NaK

Cs

CaSr

PbTl

Al

Ag

Au Cu

ZrHf

Pt

CoNi

V

Re

IrW

Ga

Hg

Bi

SnIn

Sb

Ge

Fe

Ta

q1 = 26.3 and q2 = -2.62.10-4 molK/J

Kaptay / Day 3 / 14

15

T-coefficient of surface tension / new age (5)

3/13/2

,

3/2

,

/,,

2

,2,1

1 Avo

imoi

omi

ogi

oim

oip

oim

oimo

iNTTVf

TSTTCTRqTRq

)( ,,

,o

imTo

io

mioi TT

o

mioi

Avomi

omipTo

iNV

C,3/13/2

,

,,,

3

2)31()026.0182.0(

Kaptay / Day 3 / 15

16

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5T

i,m, calc, mJ/Km2

T

i,m, e

xp, m

J/K

m2

Na

Ag

Tl

Al

Sr

Ca

Pb

Cs

K

0

0.05

0.1

0.15

0.2

0.25

0 0.03 0.06 0.09 0.12 0.15T

i,m, calc, mJ/Km2

Ti,m

, ex

p, m

J/K

m2

Au Cu

Co

Ni

Hg

Sb

Ge

Ga

InSn

Bi

Kaptay / Day 3 / 16

17

Kaptay / Day 3 / 17

The classic model for surface tension was improved by changing 2 things at the same time:

i. the cohesion energy is made T-dependent through heat capacity (known for 130 years)

ii. a new, ordering term is taken into account in the excess surface entropy (known for 30 years)

General lesson: Models exist on almost everything. Majority of them can be improved. If you change only one thing in the model, usually you spoil it. You must be brave enough to change at least two (sometimes three), different things in the model to get it work again – in a better way.

18

Surface structure of MX type molten salts

AvXMo

MX NrrV 3)(2 AvXMoMX Nrr 2)(2 26.12 3/1 MXf

1.010

910

MX molKJSS gBlMgBlMX /23//

Kaptay / Day 3 / 18

- +

+ -

+ -

- +

- +

+ -

+ -

- +

Bulk liquid of MX associates

Vapour

See P75

19

Surface tension of MX molten salts

3/13/2/26,1

)28,3(10,0

Avo

MX

oMXvo

gMXNV

TH

0

100

200

300

400

- 100 200 300 400elm, mJ/m2

kis

, mJ/

m2

NaCl

CsCl

Kaptay / Day 3 / 19

Experimental points

Calculated values

20

Surface tension of molten monoxides (MO)

3/13/2/26,1

)28,3(10,0

Avo

MX

oMXvo

gMXNV

TH

MO TK

vH

kJ/mol

Vl

cm3/mol

MO/g,

mJ/m2

model

MO/g, J/m2

measured

FeO 1.650 413.2 15.8 532 70 550 50

MgO 2523 574.9 16.5 695 100 700 100

CaO 1823 578.3 21.1 623 90 650 100

SrO 1823 477 27.8 425 60 -

BaO 1823 336.4 34.1 239 30 250 50

Kaptay / Day 3 / 20

21

oTmglA

oTmgsA ,/,/ 15.1

Surface energy of solid metals

0

1

2

3

0 1 2 3lg, J/m2

sg, J

/m2

fcc

bcc

Kaptay / Day 3 / 21

22

oMs

oMCf

oMs

oMC

oMo

gsMo

gsMC H

HH

V

V

2

7173/2

//

Surface energy of solid metallic mono-carbides

M Vo

M

cm3/mol Vo

MC

cm3/mol sH

oM

kJ/mol fH

oMC

kJ/mol sM/g J/m2

MC/g J/m2

Ti 10,55 12,15 469,9 -184,1 1,88 2,50 Zr 14,01 15,34 608,8 -202,5 2,02 2,39 Hf 13,41 15,03 619,2 -208,4 2,12 2,45 V 8,34 11,49 514,2 -101,9 2,15 2,26

Nb 10,84 13,42 725,9 -140,6 2,51 2,38 Ta 10,87 13,40 782 -144,0 2,87 2,45 W 9,53 12,42 849,4 -40 3,11 2,47

Kaptay / Day 3 / 22

23

Surface energy of solid ionic mono-oxides

3/13/2/26,1

)28,3()01,008,0(

Avo

sMO

oMOso

gsMONV

TH

MX sH, kJ/mol

Vs, cm3/mol

T, K MO/g, J/m2

MO/g, J/m2

exp

NaCl 231 27,0 0 0,20 0,02 0,212

MgO 656 11,0 0 1,00 0,12 1,04

CaO 677 16,6 298 0,78 0,10 0,82

SrO 578 21,9 0 0,56 0,07 -

BaO 425 26,7 1373 0,30 0,05 0,29

FeO 523 12,3 0 0,74 0,09 0,732

Kaptay / Day 3 / 23

24

Excess interfacial enthalpy of sA/lA interface

Amo

A

oAm

cr

lAsA

T

T

V

H

r ,

/ 12

The Kelvin equation for the critical radius of nucleation:

The molar volume can be modeled as: b

AvA

oA f

NrV 3

3

4

AmAvo

A

oAm

lAsAcr

A

b T

T

NV

H

r

r

f ,3/13/2/3/1

1224.3

At T 0 K, the solid nucleus will be stable from an atom, i.e. rcr rA:

oAm

blAsA H

fH

224.3

3/1

/

Kaptay / Day 3 / 24 See J67

25

Excess interfacial entropy of sA/lA interface

From side of the solid there is not too much change in freedom:

Liquid atoms will loose part of their freedom at the s/l interface.

The entropy of melting:

0/ sAlBsAS

strmconfmvolmm SSSS

The excess interfacial entropy: )(5,0 ,,/ confBmvolBmlB

lBsA SSS

3/13/2

,,

3/1

/986,0

06,12224,3

Avo

lA

confAmvolAmoAm

b

olAsA

NV

SST

Hf

Kaptay / Day 3 / 25

26

Interfacial energy sA/lA

3/13/2

,,

3/1

/986,0

06,12224,3

Avo

lA

confAmvolAmoAm

b

olAsA

NV

SST

Hf

0

100

200

300

400

0 100 200 300 400

theor, mJ/m2

ex

p, m

J/m

2

Kaptay / Day 3 / 26

27

Summary of interfacial energies of pure metals (example: Fe)

0

0,5

1

1,5

2

2,5

3

0 500 1000 1500 2000 2500T, K

, J

/m2

sg

sl

lg

Tm

Kaptay / Day 3 / 27

28

Interfacial energy sA/lB

There is an extra excess enthalpy term, connected with the interaction of A and B atoms across the interface:

)(2

1)(2

)()(

)()( /////

BBAAABiAbA

BBbBABiBABBiBAAbAABiABAAiA

bB

iBlBsA

bA

iAlBsA

lBlBsA

sAlBsAlBsA

UUUzz

UzUzUzUzUzUz

HHHHHHH

From the theory of regular solutions:

)(

2

1BBAAABbABA UUUz

Finally, the new excess enthalpy term: BAAlBsAH 2/

Kaptay / Day 3 / 28

29

3/23/13/1

,,

3/1,

/

06,122

224,3

Avo

lBo

sA

confBmvolBmlBlAoAm

Ab

lBsANVV

SST

Hf

Interfacial energy sA/lB

0

500

1000

1500

0 500 1000 1500elm, mJ/m2

kis

, mJ/

m2

Zn/Sn (473 K), Ag/Pb (608 K), Cu/Pb (1193 és 1093 K), Fe/Cu (1373 K), Nb/Cu (1773 K), W/Cu (1773 K), Mo/Sn (1873 K), W/Sn (2273 K),

Fe/Pb (1373 and 1193 K) and Fe/Ag (1373 K)

Kaptay / Day 3 / 29

30

Interfacial energy between two immiscible liquids26.1

//

/ 12

cglBglA

lBlAlBlAlBlA T

TTS

0

40

80

120

160

0 300 600 900 1200 1500T

lA

/lB, m

J/m

2

Ga-Pb

Al-Bi

Ga-Pb: D.Chatain, L.Martin-Garin, N.Eustathopoulos: J. chim.phys., 79 (1982) 569Al-Bi: I.Kaban, W.Hoyer, M.Merkwitz: Z.Metallkunde, 94 (2003) p.831

Kaptay / Day 3 / 30

31

Covalent ceramic / liquid metal interface

The London dispersion forces connect the atoms across the interface:

62 r

AU aa

iB

iBiB II

IIA

2

3

CB

CB

CB

CBC

AB

AB

AB

ABA

lBsAC

lBsAC II

II

rrx

II

II

rrxW

66/ )()(

1

4

3

B WSi/B WN/B WSiN4/B WSiN4/B model

mJ/m2 model mJ/m2

model mJ/m2

exp mJ/m2

Cu 22,6 60,5 83,1 81,4 Ga 16,4 38,7 55,0 56,8 Sn 9,9 20,3 30,2 36,5 Pb 5,6 10,0 15,6 24,8 Bi 5,2 8,8 14,0 23,2

Kaptay / Day 3 / 31

32

Ionic ceramic / liquid metal interface (1)

The ion A induced dipole (in atom B) interaction with each other:

4BAo

B22

)(π4 rrε

ezU A

AB

The adhesion energy:

6

,

4BAo

22,

/ )(6

41

)(π463

2

BA

ACgBA

B

AvgBBAC rrrrε

ezNW

4BAo

22,

/ )(π463

2

rrε

ezNW A

B

AvgBBA

The corrected adhesion for dipole induced dipole interaction::

Kaptay / Day 3 / 32 See J66

33

Ionic ceramic / liquid metal interface (2)

The corrected adhesion energy for ion the ionic moment of ion C:

6

,

4BA

2,2

,5

/ )(3

21

)(1054,1

BA

ACgBA

B

gBACBAC rrrr

zkW

0

0,25

0,5

0,75

1

0 2 4 6 8IC/IA

k

Points from for the liquid Cu / MgO, ZrO2, Al2O3, SiO2 systems

Kaptay / Day 3 / 33

34

Wettability of solid Fe by molten chlorides

6

,

4BA

2,2

,5

/ )(3

21

)(1054,1

BA

ACgBA

B

gBACBAC rrrr

zkW

AC/B rC

nm

IC/IA k WAC/B

mJ/m2

AC/g

mJ/m2

B/AC/g

fok

MgCl2/Fe 0,074 4,89 0,39 66,4 138 121

CaCl2/Fe 0,104 3,48 0,44 85,0 147 115

BaCl2/Fe 0,138 2,62 0,48 101,9 169 114

NaCl/Fe 0,098 1,85 0,52 118,8 114 88

KCl/Fe 0,133 1,36 0,55 133,2 99 70Calculated data are confirmed experimentally by Vetiukov et al.

Kaptay / Day 3 / 34

35

Interfacial energy in liquid metal / molten salt systems

6

,

4BA

2,2

,5

/ )(3

21

)(1054,1

BA

ACgBA

B

gBACBAC rrrr

zkW

T.Utigard, J.M.Toguri, T.Nakamura, Metall.Trans. B., 17B (1986) 339

NaF/Bi (1373 K), NaCl/Bi (1373 K), NaF/Pb (1273 K), NaCl/Pb (1173 K), NaF/Ag (1273 K), NaCl/Ag (1273 K), NaF/Cu (1373 K) and NaCl/Cu (1373 K)

0

500

1000

1500

0 500 1000 1500AC/B, mJ/m

2, elm

AC

/B, m

J/m

2 , kis

Kaptay / Day 3 / 35

36

The surface excess (by definition):

BBoBB xx * B

oB

1

n

iii dd

1

The Gibbs equation:

ioii aTR ln ii adTRd ln

+Gibbs-Duhem (for binaries):

Ba

BBoA adTR

0

ln

Kaptay / Day 3 / 36

Concentration dependence of (Gibbs, 1878)

37

Langmuir (1918)

The equilibrium between bulk and surface phases:

A* + B = A + B*

RT

GK

oadsexp

BB

AB

ax

axK

*)1(

*

For the infinitely diluted solution of B in A: aA = 1, aB= B xB

B

BB xb

xbx

1

* BKb

Kaptay / Day 3 / 37

38

Belton (1976)

B

BB xb

xbx

1

* BBoBB xx *

B

oB

1

1

1 BB

BB xb

bx

Ba

BBoA adTR

0

lnIntegration at infinitely diluted solution of B: dlnaB = dxB/xB.

BBB

oA xxb

TR

)1ln(

Kaptay / Day 3 / 38

39

[??]

)1ln( BaoB

oA aK

TR

TRK

oB

oB

oA

oA

a

exp

RT

GK

oads

a exp

At infinitely diluted solution of B: xB << 1 (and if b >>1)

A* + B = A + B*

Kaptay / Day 3 / 39

Gibbs – Langmuir – Belton (1878 – 1976)

40

Theoretical Concentration dependence of Fe-O/g

)2841ln(2911960)1823( OCK

800

1200

1600

2000

0 0,05 0,1

CO , t%

Fe-O

/g, m

J/m

2 '

Kaptay / Day 3 / 40

41

Theoretical concentration dependence of Fe-S/g

)5231ln(1911960)1823( SCK

500

1000

1500

2000

0 0,5 1 1,5

CS, wt%

Fe-S

, mJ/

m2

Kaptay / Day 3 / 41

42

Additive extension to ternary Fe-O-S system

0

500

1000

1500

2000

-500 0 500 1000 1500 2000

additiv, mJ/m2

kis

, mJ

/m2

)5231ln(191)2841ln(2911960/ SOgSOFe aa

Kaptay / Day 3 / 42

Experimental points

Calculated values

43

Taking into account the competition between O and S atoms for surface sites

CCaBBaoC

CCa

oB

BBa

CCaBBa

oACBA aKaK

aKaK

aKaK

TR

,,,,

,,

1ln

0

500

1000

1500

2000

0 500 1000 1500 2000

elm, mJ/m2

kis

, mJ/

m2

Kaptay / Day 3 / 43

Calculated values

Experimental points

44

On the Butler equation (1932)

gBgAgBA ///

Compared to the Gibbs equation:

i. it is easier to teach and to apply, but still

ii. at equal assumptions it provides the same results.

B

BoB

ogB

A

AoA

ogAgBA a

aTR

a

aTR *ln

*ln ///

The surface activity coefficient as function of surface composition is to be modelled

Kaptay / Day 3 / 44

45

Modeling surface excess Gibbs energy

The model is based on the ratio of broken bonds ():

EiAAA GxTRaTR *ln*ln

EA

EiA GG )1(

For liquid metals: Hoar, Melford, 1957:

Monma, Suto, 1961: = 0.16 -0.20,

Speiser, Poirier, Yeum, 1987 – 1989: = 0.25,

Tanaka, Iida, Hara, Hack, 1994 – 2000: = 0.17,

For molten salts: Tanaka et al.: = 0.06, later -0.1 (!!??)

Kaptay / Day 3 / 45

46

The Butler equation, applied to associated liquids

Experimental points: V.N.Eremenko, V.I.Nizhenko, N.I.Levi, B.B.Bogatirenko: Ukr. Him. Zh., 1962, vol.28, No.4, pp.500-505

BA

oAaBbfBBAA

AaBb ba

Hba

Al-Ni

Kaptay / Day 3 / 46

47

A = 1 J/m2, B = 0.5 J/m2, VA = 1 10-5 m3/mol, VB = 2 10-5 m3/mol, = 20 kJ/mol. Then: Tc = 1202.79 K. At T = 875.86 K, bulk separation at xB = 0.1 and xB = 0.9

gBgA //

Kaptay / Day 3 / 47

Surface phase separation in monotectic alloys (a)

0,96

0,97

0,98

0,99

1

0 0,2 0,4 0,6 0,8 1xB*

A,

B, J

/m2

BA

Fig.1.a: XB = 0.00068

solution

Partial surface tensions as function of surface content

See J99

48

Kaptay / Day 3 / 48

Surface phase separation in monotectic alloys (b)

0,96

0,97

0,98

0,99

1

0 0,2 0,4 0,6 0,8 1xB*

A,

B, J

/m2

BA

Fig.1.b: XB = 0.00072

solution

Partial surface tensions as function of surface content

See J99

49

Kaptay / Day 3 / 49

Surface phase separation in monotectic alloys (c)

0,96

0,97

0,98

0,99

1

0 0,2 0,4 0,6 0,8 1xB*

A,

B, J

/m2

BA

Fig.1.c: XB = 0.000755

2 solutions

Partial surface tensions as function of surface content

See J99

50

Kaptay / Day 3 / 50

Surface phase separation in monotectic alloys (d)

0,96

0,97

0,98

0,99

1

0 0,2 0,4 0,6 0,8 1xB*

A,

B, J

/m2

B

A

Fig.1.d: XB = 0.00080

solution

Partial surface tensions as function of surface content

See J99

51

Kaptay / Day 3 / 51

Surface phase separation in monotectic alloys (e)

0,96

0,97

0,98

0,99

1

0 0,2 0,4 0,6 0,8 1xB*

A,

B, J

/m2

B

A

Fig.1.e: XB = 0.00085

solution

Partial surface tensions as function of surface content

See J99

52

Kaptay / Day 3 / 52

Surface phase separation in monotectic alloys (f)

-4

-3

-2

-1

0

-6 -5 -4 -3 -2 -1 0

logxB

log

xB*

Surface composition as function of bulk composition

See J99

53

Kaptay / Day 3 / 53

Surface phase separation in monotectic alloys (g)

Surface tension as function of bulk composition

0

0.2

0.4

0.6

0.8

1

1.2

-6 -5 -4 -3 -2 -1 0

logxB

, J

/m2

See J99

54

Kaptay / Day 3 / 54

Surface phase separation in monotectic alloys (h)

A phase diagram with a surface phase separation line

0

200

400

600

800

1000

1200

1400

-6 -5 -4 -3 -2 -1 0

logxB

T, K

1 bulk liquid

2 bulk liquids

1 bulk liquid+ nanolayer

SPT line

*crT

crT

Fig.2.c

See J99

55

Kaptay / Day 3 / 55

Surface phase separation in monotectic alloys (i)

T-coefficient of surface tension as function of bulk composition

-2

0

2

4

6

8

-4 -3.5 -3 -2.5 -2 -1.5 -1

logxB

d

/dT

10

4 , J/m

2 K

T=800 K

T=986 K

T=1200 K

See J99

56

Two shapes of welding poolsTwo shapes of welding pools

0dT

d0

dT

d

0

200

400

600

800

1000

1200

1400

-6 -5 -4 -3 -2 -1 0

logxB

T, K

1 bulk liquid

2 bulk liquids

1 bulk liquid+ nanolayer

SPT line

*crT

crT

Kaptay / Day 3 / 56

57

Thank you for your attention