1 fea of towers for dome c jl dournaux / jph amans gepi, pôle instrumental - paris observatory...

14
1 FEA of Towers for Dome C JL Dournaux / JPh Amans GEPI, Pôle Instrumental - Paris Observatory [email protected]

Upload: martha-floyd

Post on 28-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

1

FEA of Towers for Dome C

JL Dournaux / JPh AmansGEPI, Pôle Instrumental - Paris [email protected]

2

FEA of Towers for Dome C

Means to increase tower’s stability Mechanical behaviour of steels at low

temperatures Description of the models used for

simulation Results on nominal solutions Purposed solutions to improve stability

of truss tower

3

How to increase tower’s stability (Hammerschlag et al., 2006)

Active methods consume power and can generate heat

Some passive methods are: Eigenfrequencies of towers > 10 Hz

Energy in the wind variations decreases quickly between 1 and 10 Hz

Only plane motions of the platform parallel to the ground (i.e. no rotations x or y) Astronomical objects are far away

But Changes in tower’s design have to keep the centre

of the tower free to lift the telescope

4

Aim of the study Preliminary FEA of 2 concept towers designed by JP

Amans (GEPI, Paris Observatory) Check the stability of these concept towers Improve performances of these 2 concept towers

Truss Tower “Amans” Tabouret Tower (ATT)

5

Mechanical Behaviour of Steels at low temperatures

E increases slowly when T decreases

Small differences in E values between summer (-30°C) and winter (-80°C) For a C steel: 207 / 210 GPa For a stainless steel: 168 / 174 GPa

Ductility decreases strongly when T decreases

5 Stainless Steel / 6 C Steel

(Thermeau, 2004)

6

Models Description Containers and platform are not modelled Boundary Conditions:

Tower’s feet are fixed Mass applied on the top of the tower: 100 t

No rotation between tubes (joints) No thermal gradients

7

Dynamic behaviour of truss tower

Mode Fréquence Rx Ry Description du mode

N° (Hz) Fraction Fraction  

1 5,16 / 5,20 47,7% 47,7% Flexion 1er ordre / <1 1 0>

2 5,16 / 5,20 47,7% 47,7% Flexion 1er ordre / <1 -1 0>

3 17,6 / 17,72 0,0% 0,0% Torsion / <0 0 1>

4 18,54 / 18,68 0,0% 0,0% Ouverture sommet

5 21,16 / 21,31 1,7% 1,7% Flexion 2e ordre / <1 -1 0>

6 21,16 / 21,31 1,7% 1,7% Flexion 2e ordre / <1 1 0>

7 21,57 / 21,73 0,0% 0,0% Traction Compression / < 0 0 1>

Tube 300x5, C steel Small differences of dynamic behaviour in summer

and in winter: frequencies variations < 0,1 Hz

8

Dynamic behaviour of truss tower

Tube 300x5, stainless steel Small differences of dynamic behaviour in summer

and in winter: frequencies variations < 0,1 Hz

Mode Fréquence Rx Ry Description du mode

N° (Hz) Fraction Fraction  

1 4,64 / 4,73 47,7% 47,7% Flexion 1er ordre / <1 1 0>

2 4,64 / 4,73 47,7% 47,7% Flexion 1er ordre / <1 -1 0>

3 15,85 / 16,13 0,0% 0,0% Torsion / <0 0 1>

4 16,70 / 16,99 0,0% 0,0% Ouverture sommet

5 19,05 / 19,39 1,7% 1,7% Flexion 2e ordre / <1 -1 0>

6 19,05 / 19,39 1,7% 1,7% Flexion 2e ordre / <1 1 0>

7 19,43 / 19,78 0,0% 0,0% Traction Compression / < 0 0 1>

9

Dynamic behaviour of truss tower The following results are for a

Carbon steel @ -80°C The 1st modes @ 5,2 Hz harm

because they create a strong rotation of platform

Change tower’s design to increase these frequencies and reduce the rotation they produce

10

Dynamic behaviour of truss tower Different kind of add-ons are tested The most efficient is obtained by reinforcing

the corners of the tower in all directions Reinforce only the 2 first floors allows to

increase the frequency @ 5.3 Hz. The rate of rotation is almost not affected

5

5,1

5,2

5,3

5,4

5,5

0 1 2 3 4 5

Nb d'étages renforcés

Fré

qu

en

ce (

Hz)

85%

90%

95%

100%

0 1 2 3 4 5

Nb d'étages renforcés

ΣR

1 (

%)

11

Dynamic behaviour of truss tower

Increase tube diameter of the 2 firsts floors allows to improve tower’s performancesDiamètre Epaisseur Section M (t) Modes 1+2  

mm mm cm²   Fréq moy (Hz) ΣRx (%) ΣRy (%)

300 5 23,4 19,8 5,31 93,4% 93,4%

508 3 23,9 19,9 5,42 93,1% 93,1%

508 5 39,7 22,2 6,31 90,9% 90,9%

1016 5 79,6 28,1 7,63 85,1% 85,1%

1016 8 127,2 34,0 8,31 79,8% 79,7%

5

6

7

8

9

0 50 100 150

Section des tubes des 2 premiers étages (cm²)

Fré

qu

en

ce (

Hz)

75%

80%

85%

90%

95%

100%

0 50 100 150

Section des tubes des 2 premiers étages (cm²)

ΣR

1 (

%)

12

Dynamic behaviour of Amans Tabouret(Stool) Tower

Tubes 1016x4 & 291x3 Modes 1/2 & 4/5 harm Eigenfrequencies are lower

than for truss tower but the platform is more stable

Mode Fréquence Tx Ty Tz Rx Ry Rz

N° (Hz) Fraction Fraction Fraction Fraction Fraction Fraction

1 3,80 0,8% 52,3% 0,0% 59,0% 0,9% 0,0%

2 3,80 52,3% 0,8% 0,0% 0,9% 59,0% 0,0%

3 6,41 0,0% 0,0% 0,0% 0,0% 0,0% 67,0%

4 6,51 25,7% 0,1% 0,0% 0,1% 16,4% 0,0%

5 6,51 0,1% 25,7% 0,0% 16,4% 0,1% 0,0%

6 9,38 0,0% 0,0% 0,0% 0,0% 0,0% 2,3%

13

Dynamic behaviour of ATT Tower’s performances seem to be less

sensitive to tube diameter than Truss Tower

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250

Section des tubes des 2 premiers étages (cm²)

Fré

qu

en

ce (

Hz)

Modes 1+2 Modes 4+5

Ǿ Ep. SectionM (t)

Modes 1+2  Modes 4+5 

mm mm cm² f moy ΣRx (%) ΣRy (%) f moy ΣRx ΣRy

1016 4 63,7 32,4 3,80 60,0% 60,0% 6,51 16,4% 16,4%

1016 8 127,2 62,6 3,68 61,3% 61,3% 6,30 14,0% 14,0%

1524 8 191,1 93,1 4,56 70,1% 70,1% 8,21 7,3% 7,3%

14

Conclusions Results:

Add appropriate add-ons and increase diameters of vertical tubes of first floors may allow to obtain 1st modes of truss tower beyond 10 Hz

Platform’s rotations are weaker for ATT but eigenfrequencies too

Next steps: Test other concept tower(s) Master student (Calculate transfer function to precisely

determine wind effects by FEM, implement methods for vibration control, define a prototype…) in collaboration with Pr André Preumont (ULB/INSA Lyon)