1 introduction to cmos technology c. fenouillet-beranger soi devices engineer, cea/leti &...

67
1 Introduction to CMOS Technology Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

Upload: mattie-cobler

Post on 30-Mar-2015

227 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

1

Introduction to CMOS TechnologyIntroduction to CMOS TechnologyIntroduction to CMOS TechnologyIntroduction to CMOS Technology

C. Fenouillet-Beranger

SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

Page 2: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

2C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

OutlineOutline MOSFET Basics

– Ideal MOSFET physics– Main parameters : threshold, leakage and speed– What MOSFET for what application ?– Scaling theory and good design rules of CMOS Devices

The Real World– Threshold voltage control limitations– Gate oxide leakage and capacitance scaling

Technological Solution ?– Gate alternative : High-K and Metal Gate– Channel engineering : Strained-Si– Alternative devices and substrates– Basic logic functions

Page 3: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

3C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

MOSFET BasicsMOSFET Basics

Page 4: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

4C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

CMOS technology applicationsCMOS technology applications

Page 5: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

5C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Different scales inside a chipDifferent scales inside a chip

2x2 cm²

10x10 mm²

4x4 µm²

500x500 nm²

Silicon channel

NiSiNiSi

Source Drain

Gate

Page 6: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

6C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Making a Switch with Metal, Oxide and SiliconMaking a Switch with Metal, Oxide and Silicon

Energy Barrier

x

Carrier reservoirSourceSource

DrainDrain

E

Energy Barrier

x

Carrier reservoirSourceSource

DrainDrain

MetalMetalOxideOxide

Si (p)Si (p)nn++ nn++

0

Vg

= S D

C

Silicon channel

NiSiNiSi

Source Drain

Gate

Silicon channel

NiSiNiSi

Source Drain

Gate

Vd

Page 7: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

7C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

What is an ideal MOS Transistor ?What is an ideal MOS Transistor ?

VS=0V VD>0V

VG=0V

S D

G+ + + + + +

- - - - - - - VS=0V VD>0V

VG>0V

S D

G

IDSCanal vide : courant nul Canal rempli : courant non nul

A BTMOS bloqué TMOS passant

OFF-STATE ON-STATE

A MOS capacitor is modulating the transport between two carrier reservoir

MOS capacitance : Field Effect MOSFETMOSFET

Page 8: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

8C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

n-type & p-type MOSFETsn-type & p-type MOSFETs

nMOSFETnMOSFETElectron conductionElectron conduction

pMOSFETpMOSFETHole conductionHole conduction

MetalMetalOxideOxide

0

Vg<0

pp++ pp++Si (n)Si (n)

Vd<0

MetalMetalOxideOxide

Si (p)Si (p)nn++ nn++

0

Vg>0

Vd>0

Page 9: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

9C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

SiSi

MOSFET morphologyMOSFET morphology

STI STI

W

Contact drainContact source

Contact grille

Zone Active de Si

DrainSource

Gate (Poly-Si)Gate (Poly-Si)

SourceSource DrainDrain

Métal

Oxyde

Semi-conducteur

Page 10: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

10C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Basic Physics of MOSFETBasic Physics of MOSFET

Vgate

Log(Idrain)Ideal switch

Threshold (Vth)

ON state Current

OFF state Current

MOSFET switch

OFF State Current (Thermal)

3 main parameters3 main parameters

1.1. Threshold VoltageThreshold Voltage2.2. Ion (=speed)Ion (=speed)3.3. Ioff (=stand-by power)Ioff (=stand-by power)

Page 11: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

11C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

MOSFET PhysicsMOSFET Physics

L

WS/CWD/C

source drain

grille

canal

BCN

P

d--- -- - N--- -- -

VG=0

VDVS

VB

LTox

« Off State»

N P N+ + + +--- ---

nMOSFET L

WS/CWD/C

source drain

gate

channel

BC

P

NVD

N -- --- - - - -

-- -

VG=VD

VDVS

VB

LTox

N P N--- - - ---

+ + + + +

Page 12: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

12C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Threshold Voltage (VThreshold Voltage (Vthth))

Fox

depFBth C

QVV 2

L

WS/CWD/C

source drain

gate

channel

BC

P

NVD

N -- --- - - - -

-- -

Gate Material

Oxide Thickness

Channel Doping

Page 13: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

13C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

On State Current (IOn State Current (Ionon))

Lgate

SourceSource DrainDrain

GateGatet

QI inv

DS

DSDS

thGoxeDS VV

VVL

WCµI

2

L

Eµv eL

VE DS

DSeVµ

Lt

2

WLV

VVCWLQQQ DSthGox

Dinv

Sinvinv

22

1

Vg-Vth Vg-Vth-VDS

Page 14: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

14C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Off – State Current (IOff – State Current (Ioffoff))

- - -- - -

VD>0

VG1<Vth

- - -- - -

VD>0

VG1<VG2<Vth

Ithermique Idiffusion Ithermique Idiffusion

kT

Vq

S

VII DSGT

thDS exp110lnexp

S

VII th

thoff )log()log(

Modulation of barrier heigth by Capacitive coupling1/S

Vth

Log Idrain

Vgate

+ dec Ioff

S should be as small as possible

Page 15: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

15C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

The Static Leakage ComponentsThe Static Leakage Components

i) Gate leakage (oxide thickness dependance)

iii) Junction leakage (doping dependance)

ii) Channel Leakage (Vth and S dependant)

Ioff = IS + IG + IB

Page 16: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

16C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Different Applications : Some typical numbersDifferent Applications : Some typical numbers

0.001

0.01

0.1

1

10

100

0 500 1000 1500

Ion (µA/µm)

Ioff

(n

A/µ

m)

High Performance

Digital Consumer

Wireless

Operation SpeedOperation Speed

Po

wer D

issipatio

nP

ow

er Dissip

ation

Computers

Mobile

Phones

Hifi – TV

Low Vth

High Vth

Page 17: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

17C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

CMOS ScalingCMOS Scaling

CMOS090

CMOS065

CMOS045

CMOS032

CMOS120

Page 18: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

18C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Gordon Moore, a co-founder of Intel said in 1965:“Component count per unit area doubles every two years”

- Last 40 years : technological advances achieved mainly by reducingtransistors size

- However current trend of miniaturization causes undesired effects degrading the electrical parameters and transistor performance

Scaling Theory: Moore’s law Scaling Theory: Moore’s law

In reality:• µ decreases • Tox levels-off• Off current increases as transistor size is reduced

Page 19: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

19C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Ideal MOSFET Basics summary Ideal MOSFET Basics summary

Source Drain

Gate Electrode

Source Drain

Gate Electrode

Source Drain

Gate Electrode

Source Drain

Gate Electrode On-State :On-State :MOS gate capacitance lowers channel barrier electrons(holes) flow from Source to Drain Ion currentCarrier transit time is Cgate*Vgate / Ion the higher Ion the faster the device

Off-State :Off-State :MOS gate capacitance potential = 0electrons(holes) flow from Source to Drain due to Thermionic current Ioff currentStatic Power dissipation is Pstat = VDS * Ioff

Threshold Voltage :Threshold Voltage :Determines the gate voltage transition Vth between Off-state and On-state regimesVth depends (at the 1st order) on the channel doping and gate electrode material

Log(IDS)

VGS

Low Vth

High VthLog(IDS)

VGS

Low Vth

High Vth

Page 20: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

20C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Part 2.Part 2.

The Real WorldThe Real World

Page 21: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

21C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

VVthth Control : Short Channel Effects Control : Short Channel Effects

Zone de charge d’espace ZCE

L

BC

SCE=Short Channel Effect

SCEDIBL

DIBL=Drain Induced Barrier Lowering

VDS

Vth

Log Idrain

Vgate

SCE

Vth1

DIBL

Vth2

Page 22: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

22C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

MOSFET Typical Lenghts and RatiosMOSFET Typical Lenghts and Ratios

Lgate,phys

draingate

Tdep

source

Lel

Xj

Tox

; ; 3

1

el

j3040

1

el

ox

L

T 3

1

el

dep

L

T

L

X 5

1

dd

th

V

V

jphysgateel XLL 8.0,

SBdB

Sidep V

qNT

2

Good design rules of MOSFET architecture :

Page 23: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

23C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

dsel

dep

el

ox

el

j

ox

Si VL

T

L

T

L

XDIBL

2

2

1

biel

dep

el

ox

el

j

ox

SiV

L

T

L

T

L

XSCE

2

2

1

0.8

0.8

dsatgoxeffdsat V(VLel

WelCI 21 -Vth)

T. Skotnicki et al. IEEE EDL, March’88 & IEDM’1994

Scaling rules (MASTAR Model)Scaling rules (MASTAR Model)

VTH(short Mosfet)=VTH(long)-SCE-DIBL

Page 24: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

24C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Why is it so difficult to get a « Good Scaling » ?Why is it so difficult to get a « Good Scaling » ?

Lgate,phys

draingate

Tdep

source

Lel

Xj

3

1el

j

L

X

3

1el

j

L

X

3040

1el

ox

L

T

3040

1el

ox

L

T

3

1el

dep

L

T

3

1el

dep

L

T

5

1dd

th

V

V

5

1dd

th

V

V

Oxide Scaling Junction Scaling

Subthreshold controlDoping increase

Page 25: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

25C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

TToxox/L/Lelel ratio : Gate Oxide Scaling ratio : Gate Oxide Scaling

Lgate,phys

drainPoly-Si

gate

Tdep

source

Lel

Xj

zz

zz

Tox

BC

BV

SiliciumSiliciumOxydeOxydePolyPoly--SiliciumSiliciumTox

BC

BV

SiliciumSiliciumOxydeOxydePolyPoly--SiliciumSiliciumTox

BC

BV

SiliciumSiliciumOxydeOxydePolyPoly--SiliciumSilicium

Page 26: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

26C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

The Gate-Poly Silicon DepletionThe Gate-Poly Silicon Depletion

poly

pSipolydep qN

T2

2

2

242

FFBG

ppp VV

kk

ox

pSip C

Nqk

2

Ref.: E. Josse et al., IEDM’99

N+ P+

Tdeppoly = 0.4nm 0.6nm

02468

101214161820

0 10 20 30 40CMOS relevant Tox , A

NMOS ( Npoly =1e20cm-3)

Tp (EOT)@1.8V1.3V1.0V0.7V0.5V0.35V0.25V

EO

T o

f p

oly

de

ple

tio

n , A

02468

101214161820

0 10 20 30 40CMOS relevant Tox , A

NMOS ( Npoly =1e20cm-3)

Tp (EOT)@1.8V1.3V1.0V0.7V0.5V0.35V0.25V

Tp (EOT)@1.8V1.3V1.0V0.7V0.5V0.35V0.25V

EO

T o

f p

oly

de

ple

tio

n , A

Vdd scaledwith Tox

Page 27: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

27C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Quantization Effects in Inversion LayerQuantization Effects in Inversion Layer

3/2

4

3

2

3

3/1

*2

2

n

qF

m

nE

C-Y. Hu et al., IEEE EDL, June 1996

q

E

eloxTD

thVD

thV0

_

32

~150mV

Page 28: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

28C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Impact on Good Design RuleImpact on Good Design Rule

einv

Tox

edepBC

BV

SiliciumOxydePoly-Silicium

n=0

n=1econf2

e

continuumeinv

Tox

edepBC

BV

SiliciumOxydePoly-Silicium

n=0

n=1econf2

e

continuum

qpoly

depoxea

ox TTTT

Tox,eff = Tox + 8A

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 50 100 150CMOS node

Tox

/L

Tox/ Lmask

Tox_el/ Lmask

Tox_el/ Lgate

Tox_el/ LelTox, Tox_el and Lmask, Lgate, Lelaccording to ITRS 2001

Good design Rule

Reality

Page 29: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

29C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

The problem of Gate LeakageThe problem of Gate Leakage

Poly-Si

Si

EfEvEf

Ec

Gate N+SiO2

Substrate Si P

Ec

Ev

Wpd

2A reduction in Tox ~ 1 dec increase in gate leakage

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

1.E+03

1.E+05

0 1 2 3Gate bias, V

Gat

e cu

rren

t, A

/cm

2

1nm

1.5nm

2nm

.5nm

3nm

3.5nm

SiO2

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

1.E+03

1.E+05

0 1 2 3Gate bias, V

Gat

e cu

rren

t, A

/cm

2

1nm

1.5nm

2nm

.5nm

3nm

3.5nm

SiO2

2

Page 30: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

30C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Impact of Gate Leakage on CircuitsImpact of Gate Leakage on Circuits

In Static Mode, two gate leakages: IgOff & IgOn : increase of Ioff

If Tox , Ig , Power

0

10

0

Ioffcanal

Igoff

1

00

0

IgOn

Page 31: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

31C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

VVthth/V/Vdddd Ratio Ratio

5

1dd

th

V

V

5

1dd

th

V

VIf Vdd drops, just decrease the Vth too keep a good Ion. But …

S degrades at smaller L !

VgsVth

Log(IDS )

Ioff

Page 32: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

32C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

What Did We Learn ?What Did We Learn ?

Controlling VControlling Vthth ( (IIoffoff))

Increasing DopingIncreasing Doping

Scaling JonctionsScaling Jonctions

Scaling ToxScaling Tox

DarkspaceDarkspace

PolydepletionPolydepletion

Junc. Leak.Junc. Leak.

Rs increaseRs increase IIonon (speed) reduction (speed) reduction

IIoffoff (power) increase (power) increase

Higher IHigher Ioffoff

Limited ScalingLimited Scaling IIonon reduction reduction

Gate leakageGate leakage

Reducing Vdd (power)Reducing Vdd (power) IIonon reduction reduction

Page 33: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

33C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Technological Boosters to recover a Technological Boosters to recover a Healthy ScalingHealthy Scaling

Page 34: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

34C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

What can we do to retrieve a Healthy Scaling ?What can we do to retrieve a Healthy Scaling ?

Silicon channel

NiSiNiSi

Source Drain

Gate

3040

1el

ox

L

T

3040

1el

ox

L

T

Oxide Scaling Junction Scaling

Subthreshold control Vs Overdrive

Doping increase

3

1el

dep

L

T

3

1el

dep

L

T

Less Gate LekageLess Gate LekageNo Poly DepletionNo Poly Depletion

DIBL-Free ArchitectureDIBL-Free Architecture

Low RSD for lower Xj Low RSD for lower Xj Better Contact ResistanceBetter Contact Resistance

Better Ion at the same Better Ion at the same overdriveoverdriveBetter Subthreshold Better Subthreshold SlopeSlope

5

1dd

th

V

V

5

1dd

th

V

V

3

1el

j

L

X

3

1el

j

L

X

Page 35: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

35C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Mobility EnhancementMobility Enhancement

Page 36: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

36C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

IIonon Enhancement by materials Enhancement by materials

DSDS

thGoxeDS VV

VVL

WCµI

2

Transistor ArchitectureMaterial Properties

Carrier velocity under electric field E in the linear regime: v = µ E

µEcritical

Efield

Velocity Velocity saturation regime

Page 37: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

37C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Mobility In SiliconMobility In Silicon

E

carrier, mass m*carrier, mass m*

Shockwave from lattice vibration, or impurities, or

gate oxide rugosity every seconds

Shockwave from lattice vibration, or impurities, or

gate oxide rugosity every seconds 1.1. Small m* : ligth Small m* : ligth

electrons or holeselectrons or holes

*

2

m

Ev c

2. High 2. High (less possible (less possible collision)collision)

*mqµ

Effective mass of carrierLinked to valence/conduction bands

Page 38: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

38C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Who are the guys responsible for IWho are the guys responsible for Ionon ? ?

Silicon Band Structure

ml

mt

(x)100

(y) 010

(z) 001

6 equivalent types of electrons are involved in conduction regime of nMOS

2 types of holes are involved in conduction regime of pMOS : heavy and light

Page 39: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

39C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

What happens in Strained-Si ?What happens in Strained-Si ?

*cm

q

i*c i

i

mm . ? Splitting Sub-band Carrier Redistribution

Band structuredeformation

Splitting less intervalleyphonon scattering

Page 40: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

40C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Redistribution in subbands and scattering reductionRedistribution in subbands and scattering reduction

-0.3

-0.2

-0.1

0.0

0.1

0.2

E(LH-HH)

Si/Si0.5

Ge0.5

Ene

rgy

(eV

)

LH

SO

[100] [110]

HH

Strained-SiStrained-Si

< 1 % in HH

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Si bulk

SO

LH

HH

[110][100]

Ene

rgy

(eV

)

Unstrained SiUnstrained Si

>80 % in HH

E

NFermi-Dirac

Page 41: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

41C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Is Stress the Only Way to Enhance Mobility ?Is Stress the Only Way to Enhance Mobility ?

Carrier effective mass can depend on cristal direction !– For Electron iso-energy are ellipsoidal average

dependance does not depend on Si direction for standard (100) substrate (not true in other direction)

– For Hole : extremely high anisotopy of mass !!

Heavy Mass

Light Mass

Holes with the same energyCristal Direction (3D)

Page 42: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

42C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Choosing the right Si-orientation for HolesChoosing the right Si-orientation for Holes

Heavy Mass along transportStandard <110> channel

Standard (100) wafer Standard (100) wafer

Light Mass along transportRotated <100> channel

45° Rotation

Page 43: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

43C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Optimum Cristal OrientationsOptimum Cristal Orientations

From M.Yang et al., IEDM 2004

nMOS pMOS

Inversion layer mobility depends on the surface orientations and current flow directions For holes, mobility is 2.5x higher on (110) surface compared to standard wafer with (100)

orientation For electrons, mobility is highest on (100) substrates

Page 44: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

44C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Hybrid integrationHybrid integration

[M. Yang et al.,

IEDM 2003]

To fully take advantage of the carrier mobility dependence on

surface orientation, fabrication of CMOS on hybrid substrates has

been demonstrated

The hybrid substrate is obtained using a layer transfer technique in

which the bonded wafer and the handle wafer have different crystal

orientation. An additional photo step is used to etch through the SOI

and BOX and expose the surface of the handle wafer to perform SEG

Issues : limited scalability of bulk devices and increased process

complexity

Page 45: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

45C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Mobility Enhancement TechniquesMobility Enhancement Techniques

Substrate-basedSubstrate-based

BULK SSOI

SixGe1-x Based

Bulk SSOI

Tensile bi-axial stress

nMOS+pMOS

Si

SiGe box

SiGe SD

Compressive

pMOS

SiGe SEG

Process-based Induced StessProcess-based Induced Stess

Liners

CESL SMT

nMOS

Tensile

nMOS

Tensile

pMOS

Compressive

Cristal Orientation

In-plane Out of plane

Mod.Orientation Si Channel

pMOS

Natural mobility boost

Rotated substrate

Cristal Orientation

STI

SACVD

TensileBi-axial

nMOS+pMOS

Page 46: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

46C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Strain and mobilityStrain and mobility

Low field mobilityLow field mobility ElectronsElectrons HolesHoles

Biaxial tensileBiaxial tensile ++ ++

Biaxial compressiveBiaxial compressive -- ++

Uniaxial tensile (along LUniaxial tensile (along Lgg)) ++ --

Uniaxial compressive (along LUniaxial compressive (along Lgg)) -- ++Uniaxial compressive

(along Lg)Biaxial tensile Uniaxial tensile

(along Lg)

[F. Payet, L2MP PhD, 2006]

Page 47: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

47C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Uniaxial Stress By Stressed-LinerUniaxial Stress By Stressed-Liner

1.E-08

1.E-07

1.E-06

250 450 650 850Ion (µA/µm)

Ioff

(A/µ

m)

Strained

Unstrained

Vdd=0.9V

+15.6%

2D mecanical Simulations

Impact on nMOSFETs performances

Tension

Strained MOSFET (Lg=30nm) by

CESL

CESL Tensile

(F.Bœuf et al., IEDM 2004 , SSDM 2004)

Page 48: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

48C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Hole Mobility enhancement using Rotated SubstratesHole Mobility enhancement using Rotated Substrates

45°

CurrentFlow

<110>

<100>

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

0.4 0.6 0.8 1

Ion [a.u.]

Ioff

Lo

g[A

/µm

]

<110>

<100>

+15%

Page 49: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

49C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Uniaxial Stress using SiGe S/DUniaxial Stress using SiGe S/D

Wafer #1 and #2

1.E-09

1.E-08

1.E-07

1.E-06

250 300 350 400 450 500 550 600 650 700Ion [µA/µm]

Ioff

[A/

µm

]

+20%

SiGe SD <110>Wafer #1 and #2

1.E-09

1.E-08

1.E-07

1.E-06

250 300 350 400 450 500 550 600 650 700Ion [µA/µm]

Ioff

[A/

µm

]

+20%

SiGe SD <110>

T.Korman

Courtesy, F.Payet

<110

> unst

rain

ed

+15%

Page 50: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

50C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Gate Capacitance Scaling : Gate Capacitance Scaling : High-K dielectricsHigh-K dielectrics 

Page 51: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

51C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Figthing against Gate LeakageFigthing against Gate Leakage

EfEvEf

Ec

Gate N+SiO2

Substrate Si P

Ec

Ev

Wpd

Reducing Tunneling…Increasing Tox !But without reduction of Cox !Increasing permitivity

HIGH K materials

ox

oxox T

εC

Leakage issue

Polydepletion issueReplacing Poly-Si by Metal

Page 52: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

52C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 201152

ContextContext

Down to 90nm gate length, N+ and P+ polysilicon gate was used for CMOS integration compatible with oxide or oxynitride gate dielectric.

Due to aggressive scaling of the gate dielectric, the gate leakage is becoming unacceptably high (>Ioff), requiring the use of high-k dielectric

Due to the incompatibility of polysilicon gate with high-k dielectric (Fermi pinning, large Vt, mobility degradation) and the need to boost performance (elimination of polydepletion, boron penetration,…), metal gate electrodes will likely be needed

For bulk technology, two metals with WFs close to the bandgap edges are needed (high channel doping required to control SCE).

For FDSOI or double gate devices, WFs within 250meV from midgap are preferred, requiring more complex integration

Two integration approaches are considered: gate first and gate last.

Figthing against Gate LeakageFigthing against Gate Leakage

Page 53: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

53C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 201153

High-k dielectricHigh-k dielectric

C. Fenouillet et al IEDM 2007

0,00001

0,0001

0,001

0,01

0,1

1

10

100

17 19 21 23 25 27

CET (A)

J g ON (

A/C

m²)

MG/HfO2

2 Dec

FD SOI nMOS, Vg = 1.1V

2 DecPoly-Si/SiON1 Dec

MG/Hf SiON

MG/SiON

MASTAR Exp data.

High-K At an equivalent CET of SiON dielectric, the gate leakage current is reduced by more than 2 decades

For EOTs below 20Å, gate leakage current

becomes higher than off-state leakage current.

High-k dielectric

High-k (HfO2, ZrO2, Hf-based or Zr-based,

LaO2, Al2O3,… ALCVD or MOCVD deposition

Pre-deposition clean and post deposition

anneals affect the quality of high-k

Large Vt: Fermi pinning at the poly-Si/

Metal oxide interface but occurs also metal gate electrodes

Compatibility of polysilicon gate with high-k is unlikely !

Page 54: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

54C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 201154

High-k Dielectric : IssuesHigh-k Dielectric : Issues Mobility degradation

- Many publications have reported mobility degradation using high-k dielectrics.

- Possible cause is coupling of soft optical phonons in high-k with inversion channel charge carrier

Vt instabilities and reliability and noise issues

Large k and large dielectric thickness result in fringing field (FIBL) and loss of control of the channel by the gate

B. Tavel et al, PhD Thesis 2002

Page 55: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

55C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Gate Capacitance Scaling : Gate Capacitance Scaling : Metal GatesMetal Gates 

Page 56: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

56C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Choosing The « Good Metal »Choosing The « Good Metal »

Mid-gap Gate

Ec

Ev

nMOS Gatepoly-Si N+ Metal Gate « N+like »

1.1

2V

pMOS Gatepoly-Si P+

Metal Gate « P+like »

Fox

depFBth C

QVV 2

Page 57: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

57C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 201157

The use of metal gate suppress:– the polysilicon depletion : a reduced CET of 3-5Å for performance

improvement– and suppress the boron penetration problem

Two approaches have been proposed: gate first or gate last

– Gate first approach requires to take care of FE contamination tool, metal etching and to the high temperature anneal

– Gate last approach (replacement gate): dummy gate removal and replacement, gate dielectric integrity has to be kept

But for some applications CMOS requires 2 different metal gates in order to separate WFs for NMOS and PMOS devices (Dual metal gate integration)

Metal gate integrationMetal gate integration

Page 58: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

58C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Why is Metal Workfunction so important ? Why is Metal Workfunction so important ?

Vg

Log Id

Id

Vg

Vth,nVth,p

Ion,n

Ion,p

VddVdd

Regular Poly-gate n+/p+

Vg

Id

Vg

Vth,nVth,p

Ion,nIon,p

VddVdd

Mid-gap Metal Gate

+0.5V+0.5V

Vg

Log Id

Id

Vg

Vth,nVth,p

Ion,nIon,p

VddVdd

Dual n+/p+ Metal Gate

Log Id

+25%Polydepreduction

Page 59: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

59C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 201159

Why midgap metal gate ? Why high-k ?

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

Midgap electrode with undoped channel : symmetrical Vth for NMOS and PMOS for high Vth applications

With Band edge gate electrodes (as poly-Si), FDSOI requires very high channel doping > 8e18 at/cm3 for HVT -> Variability degradation

Metal gate interest for FDSOIMetal gate interest for FDSOI

Page 60: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

60C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Device ArchitectureDevice Architecture

Page 61: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

61C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Bulk PD SOI

Scalability ? Scalability as BULK

Scalability much improved if GP

FD SOI

Scalability may be better or worse (GP,BOX)

FD SON

GP

Scalability very much improved

DG (Delta, FinFET, SON, Vertical,TriGate, Omega, etc., etc.

el

dep

el

ox

el

j

L

T

L

T

L

X

EI

2

2

1

1

el

dep

el

ox

el

j

L

T

L

T

L

Xx

EI

2

2

1

1

el

boxsi

el

ox

el

si

L

TT

L

T

L

T

EI

2

21

1

el

boxsi

el

ox

el

si

L

TT

L

T

L

T

EI

2

21

1

el

si

el

ox

el

si

L

T

L

T

L

T

EI

2/

4/1

5.0

2

2

XjTdep

dsd VEIDEISCE ox

si

ox

si 0.8IBL 64.0

REF.:T. Skotnicki, invited paper

ESSDERC 2000, pp. 19-33, edit. Frontier Group

Device ArchitectureDevice Architecture

Page 62: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

62C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Layout and basic functionsLayout and basic functions

Page 63: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

63C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Logic ApplicationsLogic Applications

Complex Function (MP4 Decoder,

µProc,Motion

Detector, TVDH …)

Layout

Layout

inverter

NAND

SRAM

Basic Functions

Layout

Silicon

Page 64: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

64C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Layout of the transistorLayout of the transistor

isolationSi=ActiveSi=Active

GateGate

SourceSource DrainDrain

Gate

Source DrainMetal 1Metal 1 Metal 1Metal 1

Metal 1Metal 1

ContactContactContactContact

ContactContact

MetalMetal

OxideOxide

Si (p)Si (p)nn++ nn++

0

Vg>0

Vd>0

Page 65: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

65C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Design rulesDesign rules

Design Rule Manual (DRM)– Document that gives the

design rules for a technology node

– Gives the minium dimensions for each level

– Give the minium distance between two levels

The design rules give the maximum density achievable for a technology node

Si=ActiveSi=Active

Lpoly

W

Diam. contact

Poly-active

Poly-contact

Active-contact

Page 66: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

66C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

Circuit cross-sectionCircuit cross-section

InterconnectInterconnect

TransistorsTransistors

Page 67: 1 Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

67C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011C.Fenouillet-Beranger; Techno des CI – PHELMA 2A 2011

FEOL & BEOLFEOL & BEOL

Metal 1Metal 1

Metal 2Metal 2

Metal 3Metal 3

Metal 4Metal 4

Metal 5Metal 5

Metal 6Metal 6

MOSFETsMOSFETsFEOL=Front End of LineFEOL=Front End of Line

BEOL = Back End Of LineBEOL = Back End Of Line