1 m. bronstein multigrid multidimensional scaling multigrid multidimensional scaling michael m....

29
1 onstein Multigrid multidimensional scaling Multigrid Multidimensional Scaling Michael M. Bronstein Department of Computer Science Technion – Israel Institute of Technology

Post on 22-Dec-2015

248 views

Category:

Documents


0 download

TRANSCRIPT

1M. Bronstein Multigrid multidimensional scaling

Multigrid Multidimensional Scaling

Michael M. Bronstein

Department of Computer ScienceTechnion – Israel Institute of Technology

2M. Bronstein Multigrid multidimensional scaling

Agenda

Applications of MDS

Numerical optimization algorithms

Motivation for multiresolution MDS methods

Multigrid MDS

Experimental results

Conclusions

3M. Bronstein Multigrid multidimensional scaling

Dimensionality reduction

Visualization

Pattern recognition

Feature extraction

Data analysis

WRIST ROTATION

FIN

GE

R E

XT

EN

SIO

N

Low-dimensional representation of articulated hand images, showing intrinsic data dimensionality

Images: World Wide Web

4M. Bronstein Multigrid multidimensional scaling

Given a surface sampled at points , and the

geodesic distances on ;

Find a mapping (isometric embedding)

such that

Isometric embedding

5M. Bronstein Multigrid multidimensional scaling

GLOBE (HEMISPHERE) PLANAR MAP

Mapmaking

Given: geodesic distances between cities on the Earth

Find: the “best” (most distance-preserving) planar map of the cities

Optimal planar representation of the upper hemisphere of the Earth

6M. Bronstein Multigrid multidimensional scaling

Pattern recognition

A. Elad, R. Kimmel, Proc. CVPR 2001

ISOMETRIES OF A DEFORMABLE OBJECT

ISOMETRY-INVARIANT REPRESENTATIONS (“CANONICAL FORMS”)

Isometry-invariant representation of deformable objects using isometric embedding

7M. Bronstein Multigrid multidimensional scaling

Expression-invariant face recognition

ISOMETRIC EMBEDDING

FACIAL CONTOURCROPPING

FACESUBSAMPLING

CANONICAL FORM

Facial expressions ~ isometries of the facial surface

Obtain expression-invariant representation using isometric embedding

Compare the canonical forms

A. Bronstein, M. Bronstein, R. Kimmel, Proc. AVBPA 2003; IJCV 2005

Scheme of expression-invariant 3D face recognition based on isometric embedding

DISTANCESCOMPUTATION

8M. Bronstein Multigrid multidimensional scaling

Stress

Given a set of distances ;

and a configuration of points in -dimensional

Euclidean

space ;

Representation quality can be measured as the -distortion of the

distances (stress)

9M. Bronstein Multigrid multidimensional scaling

Multidimensional scaling

Stress in matrix form:

- matrix of geodesic distances (data);

- matrix of Euclidean coordinates (variable);

Multidimensional scaling (MDS) problem:

optimization variables

Optimum defined up to an isometry in

10M. Bronstein Multigrid multidimensional scaling

Minimization of the stress

Generic iterative optimization algorithm:

Start with an initial guess ;

At -st iteration, make a step of size in direction

such that

Repeat until a stopping condition is met, e.g.

11M. Bronstein Multigrid multidimensional scaling

Optimization algorithms

Gradient descent: , step size is constant orfound using line search

Newton: , step size is found using line search

Truncated Newton: direction obtained by inexact solution of

step size is chosen to guarantee descent

Quasi-Newton: direction obtained by estimating using the gradients ; step size is found using linesearch

12M. Bronstein Multigrid multidimensional scaling

Difficulties

Non-convex and nonlinear optimization problem (local convergence)

Hessian structured but dense

High computation complexity of and

Exact line search is prohibitive for large

13M. Bronstein Multigrid multidimensional scaling

SMACOF algorithm

SMACOF: steepest descent with constant step size

where

and

Can be also written as a multiplicative update

Complexity: per iteration

14M. Bronstein Multigrid multidimensional scaling

Multiresolution methods: motivation

Data smoothness and locality (a point can be interpolated from itsneighbors)

Complexity: - MDS problem is easier on coarser resolution

Local minima: multiple resolutions improve global convergence

15M. Bronstein Multigrid multidimensional scaling

Towards multigrid MDS

Convex nonlinear optimization is equivalent to a nonlinear equation

Multigrid spirit: solve problems of the form

at different resolution levels

- residual transferred from finer resolution levels

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, Copper Mountain Conf. Multigrid Methods, 2005

16M. Bronstein Multigrid multidimensional scaling

Modified stress

Problem: the function is unbounded

Modified stress:

The penalty term forces the center of mass of to zero

With modified stress, is bounded for every finite

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, Copper Mountain Conf. Multigrid Methods, 2005

17M. Bronstein Multigrid multidimensional scaling

Multigrid components

Hierarchy of grids

Restriction and prolongation operators to transfer data and

variables

from one resolution level to another

Hierarchy of optimization problems

Relaxation: steps of optimization algorithm

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, Copper Mountain Conf. Multigrid Methods, 2005

18M. Bronstein Multigrid multidimensional scaling

Coarsening schemes

In parameterization domain (suitable for parametric surfaces, e.g.acquired by 3D scanner)

Triangulation-based (suitable for general triangulated meshes)

Farthest point sampling (based on the distances matrix; suitable for arbitrary multidimensional data)

19M. Bronstein Multigrid multidimensional scaling

V-cycle

If (coarsest level), solve and return

Else

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, Copper Mountain Conf. Multigrid Methods, 2005

Relaxation

Compute

Apply MG on coarser resolution

Correction

Relaxation

20M. Bronstein Multigrid multidimensional scaling

Error smoothing

BEFORE RELAXATION AFTER RELAXATION

Error smoothing using SMACOF relaxation

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, NLAA, to appear

21M. Bronstein Multigrid multidimensional scaling

Numerical experiments

Embedding of the “Swiss roll” surface – comparison of MDS

algorithmsconvergence in a large scale problem

Computation of canonical forms for face recognition

Sensitivity to initialization and comparison on problems of different

size

Dimensionality reduction

22M. Bronstein Multigrid multidimensional scaling

Experiment I: Unrolling the Swiss roll

Embedding of the Swiss roll objects into R3 using MG-MDS. N=2145

INITIALIZATION ITERATION 1 ITERATION 2 ITERATION 3 ITERATION 4

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, NLAA, to appear

23M. Bronstein Multigrid multidimensional scaling

Experiment I: Convergence comparison

Convergence of different algorithms in the Swiss roll problem

COMPLEXITY (MFLOPs)

ST

RE

SS

EXECUTION TIME (sec.)

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, NLAA, to appear

24M. Bronstein Multigrid multidimensional scaling

Experiment II: Facial surface embedding

Computation of a facial canonical form using MG-MDS: as few as 3 iterations are sufficient to obtain a good expression-invariant representation. N=1997

INITIALIZATION ITERATION 1 ITERATION 2 ITERATION 3

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, NLAA, to appear

25M. Bronstein Multigrid multidimensional scaling

Performance of SMACOF and MG (V-cycle, 3 resolution levels) MDS algorithms using random initialization

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, Copper Mountain Conf. Multigrid Methods, 2005

Experiment III: Sensitivity to initialization

26M. Bronstein Multigrid multidimensional scaling

Boosting obtained by multigrid MDS (V-cycle, 3 resolution levels) compared to SMACOF. Initialization by the original points

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, Copper Mountain Conf. Multigrid Methods, 2005

Experiment III: Performance comparison

27M. Bronstein Multigrid multidimensional scaling

Experiment IV: Dimensionality reduction

Dimensionality reduction of 500-dimensional random data: as few as 3 iterations are sufficient to obtain distinguishable clusters.

INITIALIZATION ITERATION 1 ITERATION 2 ITERATION 3

Two sets of random binary i.i.d. 500-dimensional vectors

Set A:

Set B:

28M. Bronstein Multigrid multidimensional scaling

MG-MDS significantly outperforms traditional MDS algorithms(~order of magnitude)

The improvement is more pronounced for large N

MG-MDS appears to be less sensitive to initialization and has better global convergence

Conclusions

29M. Bronstein Multigrid multidimensional scaling

ReferencesM. M. Bronstein, A. M. Bronstein, R. Kimmel, I. Yavneh, "Multigrid multidimensional

scaling", NLAA, to appear in 2006

M. M. Bronstein, A. M. Bronstein, R. Kimmel, I. Yavneh, "A multigrid approach for multi-dimensional scaling", Proc. Copper Mountain Conf. Multigrid Methods, 2005.

A. M. Bronstein, M. M. Bronstein, and R. Kimmel. “Expression invariant face recognition:

faces as isometric surfaces”, in “Face Processing: Advanced Modeling and Methods”,Academic Press, 2005. in press.

A. M. Bronstein, M. M. Bronstein, R. Kimmel, "Three-dimensional face recognition", Intl. Journal of Computer Vision (IJCV), Vol. 64/1, pp. 5-30, August 2005.

A. M. Bronstein, M. M. Bronstein, R. Kimmel, "Expression-invariant 3D face recognition", Proc. AVBPA, Lecture Notes in Comp. Science No. 2688, Springer, pp. 62-69, 2003.