1 National Radio Astronomy Observatory NRAO Operations Review ~ February 29 – March 1, 2008 Current and Future Science with NRAO Instruments Chris Carilli

Download 1 National Radio Astronomy Observatory NRAO Operations Review ~ February 29 – March 1, 2008 Current and Future Science with NRAO Instruments Chris Carilli

Post on 06-Jan-2018

213 views

Category:

Documents

1 download

Embed Size (px)

DESCRIPTION

3 Highest redshift SDSS QSO L bol = 1e14 L o Black hole: ~3 x 10 9 M o ( Willot etal. ) Gunn Peterson trough = near edge of reionization (Fan etal.) Pushing into reionization: QSO at z=6.4 (t univ = 0.87Gyr)

TRANSCRIPT

<ul><li><p>Current and Future Science with NRAO InstrumentsChris CarilliNational Radio Astronomy ObservatoryNRAO Operations Review ~ February 29 March 1, 2008Four exemplary science programs that demonstrate the synergy between NRAO instruments, and their key roles in modern, multiwavelength astrophysics. First galaxies: gas, dust, star formation into cosmic reionizationCosmic geometry: Megamasers and a 3% measure of HoProtoplanetary disks: imaging planet formationAt the extremes of physics: strong field GR, TeV sources explained!</p></li><li><p>Dark AgesCosmic Reionization Major science driver for all future large area telescopes Last phase of cosmic evolution to be tested Bench-mark in cosmic structure formation indicating the first luminous sources</p><p>Radio studies of the first galaxies: gas, dust, star formation, into cosmic reionization</p></li><li><p> Highest redshift SDSS QSO Lbol = 1e14 Lo Black hole: ~3 x 109 Mo (Willot etal.) Gunn Peterson trough = near edge of reionization (Fan etal.)</p><p>Pushing into reionization: QSO 1148+52 at z=6.4 (tuniv = 0.87Gyr)</p></li><li><p> Dust mass ~ 7e8 Mo Gas mass ~ 2e10 Mo CO size ~ 6 kpc</p><p>Note: low order molecular lines redshift to cm bandsmm/cm: Gas, Dust, Star Form, in host galaxy of J1148+52511 ~ 6kpcCO3-2 VLA z=6.42 30% of z&gt;6 SDSS QSO hosts are HyLIRGs Dust formation? AGB Winds take &gt; 1.4e9yr &gt; age Universe </p><p>=&gt; dust formation associated with high mass star formation?LFIR = 1.2e13 LoMAMBO/IRAM 30m</p></li><li><p> FIR excess -- follows Radio-FIR correlation: SFR ~ 3000 Mo/yr CO excitation ~ starburst nucleus: Tkin ~ 100K, nH2 ~ 1e5 cm^-3 </p><p> Radio-FIR correlation50KElvis QSO SEDContinuum SED and CO excitation: ISM physics at z=6.42NGC253MW</p></li><li><p>[CII] 158um at z=6.4: dominant ISM gas coolant [CII] PdBI Walter et al. z&gt;4 =&gt; FS lines redshift to mm band L[CII] = 4x109 Lo (L[NII] &lt; 0.1 L[CII])[CII] similar extension as molecular gas ~ 6kpc =&gt; distributed star formation SFR ~ 6.5e-6 L[CII] ~ 3000 Mo/yr</p><p>1</p><p>[CII] + CO 3-2[CII][NII]IRAM 30m</p></li><li><p>Building a giant elliptical galaxy + SMBH at tuniv &lt; 1Gyr Multi-scale simulation isolating most massive halo in 3 Gpc^3 (co-mov) Stellar mass ~ 1e12 Mo forms in series (7) of major, gas rich mergers from z~14, with SFR ~ 1e3 - 1e4 Mo/yr SMBH of ~ 2e9 Mo forms via Eddington-limited accretion + mergers Evolves into giant elliptical galaxy in massive cluster (3e15 Mo) by z=0</p><p>10.58.16.5Li, Hernquist, Roberston.. z=10 Rapid enrichment of metals, dust, molecules Rare, extreme mass objects: ~ 100 SDSS z~6 QSOs on entire sky Integration times of hours to days to detect HyLIGRs</p></li><li><p>(sub)mm: high order molecular lines. fine structure lines -- ISM physics, dynamics</p><p>cm telescopes: low order molecular transitions -- total gas mass, dense gas tracersPushing to first normal galaxies: spectral linesFS lines will be workhorse lines in the study of the first galaxies with ALMA. Study of molecular gas in first galaxies will be done primarily with cm telescopes</p><p>SMAALMA will detect dust, molecular and FS lines in ~ 1 hr in normal galaxies (SFR ~ 10 Mo/yr = LBGs, LAEs) at z ~ 6, and derive z directly from mm lines., GBT</p></li><li><p>cm: Star formation, AGN(sub)mm Dust, cool gasNear-IR: Stars, ionized gas, AGNArp 220 vs zPushing to normal galaxies: continuum A Panchromatic view of galaxy formationSMA</p></li><li><p>II. Cosmic geometry: Ho to few % with water maser disks.Why do we need an accurate measure of Ho? To make full use of 1% measures of cosmological parameters via Planck-CMB studies requires 1% measure of Ho -- covariance!with Ho constraint</p></li><li><p>Measuring Distances to H2O MegamasersTwo methods to determine distance:</p><p>Acceleration method</p><p> D = Vr2 / a</p><p>Proper motion method</p><p> D = Vr / (d/dt)</p><p>NGC 4258</p><p>2Vr</p><p> 2D = r/a = Vr2/r</p><p> D = Vr2/aVrHerrnstein et al. (1999)D = 7.2 0.5 Mpc Recalibrate Cepheid distance scale Problem: NGC 4258 is too close </p></li><li><p>The Project (Braatz et al.) Identify maser disk galaxies with GBT into Hubble flow ~ 50 currentlyObtain high-fidelity images of the sub-pc disks with the High Sensitivity Array (VLBA+GBT+Eff+eVLA) ~ 10% are usefulMeasure internal accelerations with GBT monitoringModel maser disk dynamics and determine distance to host galaxy</p><p>Goal: 3% measure of HoGBT</p></li><li><p>UGC 3789: A Maser Disk in the Hubble Flow</p><p>Discovery: Braatz &amp; Gugliucci (2008)VLBI imaging: Reid et al. (in prep)Distance/modeling: Braatz et al. (in prep)Acceleration modelingD ~ 51 MpcHo = 64(+/-7)Already at HST Key project accuracy with 1 source!</p></li><li><p>HST SMA 350 GHz detection of proplyds in Orion Derive dust mass (&gt;0.01Mo), temperature </p><p>III. Protoplanetary disks and planet formationWilliams et al. </p></li><li><p>TW Hya Disk: VLA observations of planet formationCalvet et al. 2002mid-IR gapcm slope pebblesPre-solar nebula analog 50pc distance star mass = 0.8Mo Age = 5 -- 10 Myr mid IR deficit =&gt; disk gap caused by large planet formation at ~ 4AU?</p></li><li><p>TW Hya Disk: VLA observations of planet formationHughes, Wilner +VLA imaging on AU-scales: consistent with disk gap model cm probes grains sizes between ISM dust and planetesimals (~1cm)</p><p>Dec= -34</p></li><li><p>ALMA 850 GHz, 20mas res.Wolfe + Birth of planets: The ALMA/EVLA revolutionRadius = 5AU = 0.1 at 50pcMass ratio = 0.5MJup /1.0 Msun Wilner ALMA: AU-scale imaging of dust, gas, unhindered by opacity, nor confused by the central star EVLA: AU-scale imaging of large dust grain emission JWST: image dust shadow on scales 10s mas Herschel: dust spectroscopy </p></li><li><p>TW Hya -- Molecular gasSMA: Gas mass, rotationALMA: dynamics at sub-AU, sub-km/s resolutionSMAALMA simulationWilner</p></li><li><p>Credit: Bill Saxton, NRAOIV. At the extremes of physics Extreme gravity: using pulsars to detect nHz gravity waves TeV sources: explained by VLBI! </p></li><li><p>Gravitational Wave Detection using a pulsar timing array with NANOGrav (Demorest +)</p><p>D. BackerPredicted timing residualsPredicted timing residuals Need ~20-40 MSPs with ~100 ns timing RMS bi-weekly, multi-freq obs for 5-10 years Timing precision depends on</p><p> - sensitivity (G/Tsys) (i.e. GBT and Arecibo) - optimal instrumentation (GUPPI -- wideband pulsar BE)</p></li><li><p>Credit: D. Manchester, G. HobbsNanoGrav </p></li><li><p>LS I +61 303: Solving the TeV mysteryDiscovered 1976 @ 100 MeV; variable 5 GHz emission.High mass binary: 12 M Be * , 13M NS or BH. Eccentric orbit e=0.7, period 26.5 days. X-rays peak @ periastron, radio 0.5 cycle later. TeV detected by Magic MODELS: Accretion powered relativistic jet (microQuasar?) Compact pulsar wind nebula&gt; 400 GeVXrayRadioAlbert+ 2006Harrison + 2000</p></li><li><p>VLBA Images vs. Orbital Phase(orbit exaggerated)VLBA movie shows 'cometary' morphology =&gt; a Pulsar Wind Nebula shaped by the Be star envi-ronment, not a relativistic jet. Dhawan + VLBA resolution ~ 2AUBe</p></li><li><p>Gamma-Rays from AGN JetsGLAST launch scheduled for May 2008VLBA jet imaging on pc-scales during flares required to understand gamma ray productionPrelaunch survey: VIPS project to image 1100 objects (Taylor et al.)Planned: 43 GHz + GLAST monitoring of gamma ray blazars</p><p>Marscher et al.</p></li><li><p>NRAO in the modern contextGolden age of astrophysics: NRAO telescopes play a fundamental role in topical areas of modern astrophysics Precision cosmology: setting the baseline (Planck ++) Galaxy evolution and first (new) light: gas, dust, star formation (JWST, TMT) Birth of stars and planets: dust and gas on AU scales (JWST, Herschel) Testing basic physics: GR, fundamental constants, (LIGO, LISA) Resolving high energy phenomena: a ray source primer (GLAST, CONX)</p><p>Capabilities into next decade keep NRAO on the cutting edge ALMA -- biggest single step ever in ground based astronomy EVLA -- the premier cm telescope on the planet, and a major step to the SKA GBT -- just hitting its stride, with pending FPA revolution VLBA -- Mankinds highest resolution instrument</p></li><li><p>END</p></li><li><p>Current large programs: VLA, VLBA, GBT</p><p>AUI Operations ReviewFebruary 29 March 1, 2008</p><p> Radio interferometric planet search -- VLBA, VLA, GBT Coordinated radio and infrared survey for high mass star formation -- VLA Definitive test of star formation theory -- GBT Legacy survey of prebiotic molecules toward Sgr B2 and TMC-1 -- GBT Detecting nHz gravitational radiation using pulsar timing array -- GBT Star Formation History and ISM Feedback in Nearby Galaxies -- VLA LITTLE THINGS survey: HI in dwarf galaxies -- VLA Megamaser cosmology project -- GBT, VLBA, VLA Probing blazars through multi-waveband variability of flux, polarization, and structure -- VLBA MOJAVE/GLAST program: mas imaging of gamma ray sources -- VLBA VLA low frequency sky survey -- VLA Deep 1.4 GHz observations of extended CDFS -- VLA</p></li><li><p>GR tests: Timing of the Double Pulsar J0737-3039GBT provides the best timing precision for this system 6 post-Keplerian orbital terms give neutron star masses strong-field tests of GR to 0.05% accuracyMeasure relativistic spin precession:Obs = 5.11+/- 0.4 deg/yrGR = 5.07 deg/yrKramer et al., 2006, Science, 314, 97</p></li></ul>

Recommended

View more >