1 pda2007 fluid managment abu-alfa

Upload: ruby-zerefla-namahal

Post on 05-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    1/65

    Fluid Management in

    Peritoneal Dialysis

    Ali K. Abu-Alfa, MD, FASN

    Associate Professor of MedicineDirector, Peritoneal Dialysis Program

    Associate Director for outpatient Dialysis

    Director of Clinical Trials

    Yale School of Medicine

    New Haven, Connecticuthttp://kidney.yale.edu

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    2/65

    Educational Objectives

    Review physiology of ultrafiltration and impact of membranetransport characteristics.

    Discuss fluid balance in PD with focus on clinical needs, goalsand effect on outcomes.

    Identify areas of interventions for optimization of fluid removal.

    Identify patients at risk for fluid retention.

    Review role of alternative osmotic agents: Icodextrin.

    Review ISPD guidelines and clinical algorithms for fluid

    management in PD.

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    3/65

    Physiology of Ultrafiltration

    Trans-capillary fluid movement:

    Osmotic gradient (first and foremost).

    Hydrostatic pressure (much less so).

    Membrane function / surface area.

    Lymphatic re-absorption.

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    4/65

    Physiology of Ultrafiltration:Structure of the Peritoneal Membrane

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    5/65

    Physiology of Ultrafiltration:Water, Glucose and Sodium Movements

    Intercellular: 50%

    Aquaporin mediated: 50%

    CapillaryH2O

    Peritoneal Space Glucose

    Intercellular: >90%

    Glucose transporter mediated:minimal

    Na

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    6/65

    Physiology of Ultrafiltration:Sodium Sieving with 3.86% Dextrose Dialysate

    LaMilia et al, Nephrol Dial Transplant (2004) 19: 1849-1855

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    7/65

    Physiology of Ultrafiltration:Effect of Sodium Sieving on Na Removal

    Rodriguez-Carmona, PDI 2003 (22): 705-713.

    0

    50

    100

    150

    200

    250

    Na removal

    CAPDAPD

    Icodextrin

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    8/65

    Physiology of Ultrafiltration:Crystalloid versus colloid osmosis

    LaMilia et al, Nephrol Dial Transplant (2004) 19: 1849-1855

    Blood in Peritoneal Capillaries

    Dialysate filled Peritoneal Cavity

    Endothelium

    Mesothelium

    ureacreatinine

    glucose

    macromolecules

    crystalloidosmosis

    colloidosmosis

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    9/65

    Physiology of Ultrafiltration:Crystalloid Osmosis

    Daugirdas et al: Handbook of Dialysis, Third Edition, p 299, 2000

    Normal serum osmolarity = 270 mOsm/L1

    Dextrose Dialysate mOsm/L

    1.36% 345

    2.27% 395

    3.86% 484

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    10/65

    -600

    -400

    -200

    0

    200

    400

    600800

    -30 0 30 60 90 120 150 180 210 240

    Time (min)

    Cumulativetr

    ansport(mL)

    Absorption Transcapillary UF Net UF

    Mactier RA, et al. J Clin Invest. 1987;80:1311-1316.

    Physiology of Ultrafiltration:Net Ultrafiltration

    UF: Ultrafiltration

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    11/65

    D/P: Dialysate / Plasma

    L: Low Transporter

    LA: Low Average Transporter

    HA: High Average Transporter

    H: High Transporter

    Physiology of Ultrafiltration:Glucose Kinetics by Transport Status

    0.2

    0.3

    0.40.5

    0.6

    0.7

    0.8

    0.9

    1

    0 1 2 3 4

    Hours

    D/D0

    Glucose L

    LA

    HA

    H

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    12/65

    Data on file, courtesy of Baxter Healthcare Corporation.Data on file, courtesy of Baxter Healthcare Corporation.

    Physiology of Ultrafiltration:Glucose Kinetics by Transport Status

    -4-2

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 2 4 8 12

    Dwell time (hr)

    T

    ranscap

    illary

    UF(mL/min)

    200

    250

    300

    350

    400

    450

    500

    O

    smo

    lari

    ty(mosm

    /kg

    H2O)

    Transcapillary UF Osmolarity

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    13/65

    Physiology of Ultrafiltration:Net Ultrafiltration: 1.36% Dextrose Dialysate

    -800

    -600

    -400

    -200

    0

    200

    400

    0 2 4 6 8 10 12 14 16Time (hr)

    Low Low-Avg High-Avg High

    CAPD

    Overnight APDDaytime

    NegativeUF

    Hours

    NetUF(ml)

    Mujais S, Vonesh E. Kidney Int. 2002;62(suppl 81):S17-S22.

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    14/65

    CAPDOvernight

    APD

    Daytime

    NegativeUF

    Mujais S, Vonesh E. Kidney Int. 2002;62(suppl 81):S17-S22.

    -600

    -400

    -200

    0200

    400

    600

    800

    0 2 4 6 8 10 12 14 16

    Time (hr)

    NetUF

    (mL)

    Low Low-Av Hi h-Av Hi h

    Physiology of Ultrafiltration:Net Ultrafiltration: 2.26% Dextrose Dialysate

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    15/65

    CAPDOvernight

    APD

    Daytime

    Mujais S, Vonesh E. Kidney Int. 2002;62(suppl 81):S17-S22.

    -600

    -200

    200

    600

    1000

    1400

    1800

    0 2 4 6 8 10 12 14 16

    Time (hr)

    Ne

    tUF(m

    L)

    Low Low-Avg High-Avg High

    Physiology of Ultrafiltration:Net Ultrafiltration: 3.86% Dextrose Dialysate

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    16/65

    Moberly J, Mujais S, et al. Kidney Int. suppl 81, Oct 2002

    Physiology of Ultrafiltration:Glucose absorption: Caloric Cost

    0

    10

    20

    30

    40

    50

    60

    7080

    90

    Low Low Ave. High Ave. High

    Peritoneal Transport Type

    Glucoseab

    sorbed

    (g/8hrs) 1.36%

    2.27%

    3.86%

    Widening differential

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    17/65

    Davies et al. J Am Soc Nephrol. 2001;12:1046-51

    Physiology of Ultrafiltration:Changes in Transport Profile

    30000

    40000

    5000060000

    70000

    Year 1 Year 2 Year 3 Year 4 Year 5

    Group 1

    Group 2

    0.5

    0.55

    0.60.65

    0.7

    0.75

    0.8

    Start Year 1 Year 2 Year 3 Year 4 Year 5

    Group 1

    Group 2

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    18/65

    Role of Fluid Management in PD

    Maintaining adequate fluid balance is an important

    function of renal replacement therapy.

    Achieving optimal fluid balance is a component of PD

    adequacy.

    Optimal fluid management plays a key role in patientoutcomes.

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    19/65

    Importance of Fluid Management

    Reduction in Symptomatic Fluid Retention.

    Blood pressure control: Preservation of Residual Renal Function.

    Prevention or mitigation of Cardiovascular Disease

    (IHD, LVH, CHF, CVA, PVD).

    Reducing accelerated atherosclerosis process.

    Prevention of symptoms simulating uremia.

    Reduction in mortality.

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    20/65

    Symptomatic Fluid Retention (SFR)

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    21/65

    Symptomatic Fluid Retention

    71 Episodes of SFR were identified in 66 PD patients.

    High rates of non-compliance with dietary salt and fluidrestrictions as well as PD prescription were noted in the

    SFR group when compared to a control group (149 pts).

    Edema (100%), pulmonary congestion (80%) and

    hypertension (83%) were the most commonmanifestations of SFR.

    Tzamaloukas et al, JASN (6): 198-206, 1995.

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    22/65

    Prevalence of Hypertension in PD patients

    Frankenfield DL, et al. Kidney Int. 1999;55:1998-2010.Cocchi R, et al. Nephrol Dial Transplant1999;14:1536-1540.

    0

    5

    1 0

    1 5

    2 0

    2 5

    3 0

    3 5

    4 0

    Nor m al H ig h -N o rma l

    St ag e 1 St ag e 2 St ag e 3

    JNC6 BP Cat eg or y

    %

    of

    Patients

    I t a l y

    USA

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    23/65

    Fluid Removal and Sodium Restriction:Impact on Blood Pressure control

    Gunal et al, AJKD (37): 588-193, 2001

    47 hypertensive CAPD patients

    Na Restriction (1.6 g/day for 4 weeks)

    20 normotensive 27 hypertensive

    Na Restriction and UF (3.86% use)3

    normotensive

    with enalapril

    17 normotensive

    4normotensive

    with enalapril

    7 hypertensive

    3 hypertensive

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    24/65

    Fluid Removal:An Independent Predictor of Survival

    Ates et al. Kidney Int. 2001, (60):767-776.

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    25/65

    Fluid Removal:Impact on Survival

    Ates et al. Kidney Int. 2001, (60):767-776.

    Fluid Removal (mL/24 hr/1.73 m2)

    Group I: 2035

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    26/65

    Sodium Removal:Impact on Survival

    Ates et al. Kidney Int. 2001, (60):767-776.

    Sodium Removal (mmol/24 hr/1.73 m2)

    Group I: 232

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    27/65

    Fluid Removal: UltrafiltrationA Predictor of Survival

    Brown, et al. J Am Soc Nephrol. 2003;14:2948-2957.

    Month

    24181260

    Proportion

    Surviving

    1.0

    0.90.8

    0.7

    0.6

    0.50.4

    0.3

    0.2

    0.10.0

    > 750 mL

    < 750 mL

    P= 0.005

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    28/65

    Fluid Removal: UltrafiltrationA Independent Predictor of Survival

    Jansen, et al.Jansen, et al. Kidney Int.Kidney Int. 2005;68:11992005;68:1199--1205.1205.

    1

    2.29

    3.09

    1.7

    3.41

    0

    1

    2

    3

    4

    =2.20Ultrafiltration (L/day)

    Relative

    RiskofDeath P = 0.04 for trend

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    29/65

    Fluid Removal: Urine VolumeA Predictor of Survival

    Re-analysis of data from CANUSA study:

    Effects of peritoneal and renal clearances on survival in601 patients

    Addition of 24-hour urine volume as a time-dependent

    covariate showed a marked association with therelative risk (RR) of death.

    Each 250-mL increase in daily urine volume associated

    with a 36% decrease in the RR of death (RR, 0.64;

    95% CI, 0.51 to 0.80).

    Bargman, et al. J Am Soc Nephrol. 2001;12:2158-2162.

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    30/65

    Fluid Removal:Areas of Intervention

    Dietary Evaluation.

    Residual renal function: Use of diuretics.

    Use of ACEI and ARB to preserve RRF.

    Compliance: Quality of life issues.

    Characterization of edema : Leaks and hernias.

    Catheter function and outflow obstruction.

    Peritoneal UF profile: Optimizing Prescription.

    Mujais, et al. Perit. Dial Int. 2000;20(suppl 4):S5-S21.

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    31/65

    Fluid Removal:Role of Diuretics

    Medcalf J et al. Kidney Int. 2001;59:1128-1133.

    61 CAPD patients new to dialysis randomized to furosemide 250

    mg/day or control

    Change in urine volume: +6.47 vs 23.3 mL/month (P= 0.047)

    No effect on rate of decline of urinary solute clearances

    Urine Volume (mL/24 hr)

    7338401040Control

    (n = 30)

    107011961020Furosemide 250mg/day

    (n = 31)

    Month 12Month 6Baseline

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    32/65

    Preservation of Renal Function:Role of ACE Inhibitors

    Li et al, Ann Intern Med. 2003;139:105-112.

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    33/65

    Preservation of Renal Function:Role of ARBs

    Suzuki et al, Am J Kidney Dis43:1056-1064, 2004

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    34/65

    Fluid Management in PD:Negative UF with Lower Glucose Solutions

    Wolfson, et al. Kidney Int. 2002;62(suppl 81):S46-S52

    Woodrow, et al. Nephrol Dial Transplant. 1999;14:1530-1535Finkelstein, et al. J Am Soc Nephrol. 2005;16:546-554.

    0

    5

    10

    15

    20

    25

    30

    35

    1.36%

    Dextrose

    2.27%

    Dextrose

    3.86%

    Dextrose

    Per

    cen

    to

    fPa

    tients

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    2.27%

    Dextrose

    3.86%

    Dextrose

    (All

    Patients)

    3.86%

    Dextrose

    (HA/H)

    PercentofPatients

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    35/65

    Symptomatic Fluid Retention:Increased Risk in Patients with Higher Transport

    0

    10

    20

    30

    40

    50

    Symptomatic Control

    Percen

    tofPatients

    Low

    Low-average

    High-average

    High

    Tzamaloukas et al, JASN (6): 198-206, 1995.

    Fl id M i PD N i UF

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    36/65

    Fluid Management in PD: Negative UFA Problem in HA/H Transport Patients

    WolfsonWolfson, et al., et al. Am J Kidney DisAm J Kidney Dis. 2002;40:1055. 2002;40:1055--10651065Data on file, Baxter Healthcare Corporation. (courtesy)Data on file, Baxter Healthcare Corporation. (courtesy)

    13.4

    5.6

    20.0 20.0

    0

    5

    10

    15

    20

    25

    30

    All Patients L/LA HA H

    Perce

    ntofPatients

    WithN

    egativeNetU

    F

    L: Low Transporter

    LA: Low Average Transporter

    HA: High Average TransporterH: High Transporter

    PET Di t ib ti i N th A i

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    37/65

    PET Distribution in North America:Prevalence of HA/H Transport Patients

    15%

    37%

    33%

    15%

    Low Low - Avg High- Avg High

    Mujais S, et al. Kidney Int. Volume 62: s81, S17-S22, 2002

    L: Low Transporter

    LA: Low Average Transporter

    HA: High Average TransporterH: High Transporter

    D/P creatinine; N=1220.

    Li it ti f D t f th L D ll

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    38/65

    Limitations of Dextrose for the Long Dwell

    Increased risk of fluid absorption and diminished

    or negative ultrafiltration

    1-2

    Reduced small solute clearance in high and high-

    average transporters1-2

    Possible adverse systemic metabolic effects from

    increased glucose absorption1,3

    Possible impact on peritoneal membrane functionof hypertonic glucose exposure3

    1. Twardowski ZJ. Clinical Dialysis. 3rd ed. Appleton & Lange; 1995:322-342.

    2. Mujais S, et al. Perit Dial Int. 2000;20:S5-S21.3. Mistry CD, Gokal R. Perit Dial Int. 1996;16:S104-S108.

    Physiology of Ultrafiltration:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    39/65

    Physiology of Ultrafiltration:Colloid Osmosis

    Macromolecules with high reflection coefficients.

    Isotonic with plasma.

    Induces water transport across small intercellular pores.

    Enhances UF with increased vascular surface area.

    Maintains colloid osmotic pressure gradient for the

    duration of the long dwell due to slow rate of absorptionvia the lymphatic system.

    Avoids sodium sieving.

    Physiologic example: albumin.

    Availability for use in PD solutions: Icodextrin.

    Colloid Osmosis:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    40/65

    Colloid Osmosis:Source and Structure of Icodextrin

    Corn Starch

    Malto-Dextrin

    Icodextrin

    Enzymatichydrolysis

    Membranefractionation

    (14) chain

    (16) branch

    Colloid Osmosis:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    41/65

    Colloid Osmosis:Pharmacokinetics of Icodextrin

    Absorption:

    Convective transport via lymphatic pathways

    40% (60 g) absorbed during 12-hour dwell

    Metabolism:

    Metabolized by amylase to maltose

    Predominantly in plasma; minimal peritoneal

    Excreted by renal and dialytic clearance

    Plasma levels:

    Reach steady-state within 1 week of initiation Are stable during long-term therapy

    Return to baseline within 7 days of discontinuation

    Colloid Osmosis:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    42/65

    Colloid Osmosis:Metabolism of Icodextrin

    IcodextrinIcodextrin

    OligosaccharidesOligosaccharides

    (maltose)(maltose)

    amylaseamylase

    IntravascularIntravascularCompartmentCompartment

    IntracellularIntracellularCompartmentCompartment

    MaltoseMaltose

    GlucoseGlucose

    maltasemaltase

    IcodextrinIcodextrin

    PeritonealPeritonealcavitycavity

    Lymph

    atic

    Pathways

    Metabolism of icodextrin to glucose occursMetabolism of icodextrin to glucose occurs

    predominantly after absorption from the peritonealpredominantly after absorption from the peritoneal

    cavity via lymphatic pathwayscavity via lymphatic pathways

    Physiology of Ultrafiltration:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    43/65

    Physiology of Ultrafiltration:Mechanism of Action of Icodextrin

    High reflection coefficient (size) of icodextrin underlies

    colloid effects and sustains UF during long dwells

    Peritoneal CavityPeritoneal Cavity InterstitiumInterstitium

    Equal OsmolarityEqual Osmolarity

    Fluid FlowFluid Flow

    II

    II

    II

    II

    II

    II

    II

    Physiology of Ultrafiltration:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    44/65

    Physiology of Ultrafiltration:UItrafiltration with 7.5% Icodextrin Solution

    KredietKrediet RT. Table 5:RT. Table 5: Textbook of Peritoneal DialysisTextbook of Peritoneal Dialysis. 2. 2ndnd ed.ed. KluwerKluwerAcademic Publishers; 2000:135Academic Publishers; 2000:135--172.172.

    Dex 105

    Ico 12

    Crystalloid

    (mmHg)

    Dex 486

    Ico 285

    305Osmolality

    (mosm/kg H2O)

    Dex 21

    Ico 45

    Dex 0.1

    Ico 66

    21Colloid

    (mmHg)

    9817Hydrostatic

    (mmHg)

    PressureGradient

    DialysatePressure

    CapillaryPressure

    Colloid Osmosis with Icodextrin:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    45/65

    Colloid Osmosis with Icodextrin:Maintenance of Osmotic Gradient:

    0

    20

    40

    60

    80

    100

    0 2 4 6 8 10 12 14

    Dwell time (hr)

    Percent

    Remainingin

    Perito

    nealCavity

    Dextrose Icodextrin

    UItrafiltration with 7.5% Icodextrin Solution:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    46/65

    UItrafiltration with 7.5% Icodextrin Solution:Sustained UF Irrespective of Transport Status

    -600

    -200

    200

    600

    1000

    0 2 4 6 8 10 12 14 16

    Time (hr)

    NetU

    F

    (m

    Low Low-Avg High-Avg High

    CAPD (night)CAPD (night)

    APD (day)APD (day)

    UF with 7.5% Icodextrin Solution:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    47/65

    U t 5% code t So ut oComparison with 2.27% and 3.86% Solutions

    -600

    -400

    -200

    0

    200

    400

    600

    800

    1000

    0 2 4 6 8 10 12 14 16

    Time (hr)

    NetUF(mL)

    2.27% Dextrose 3.86% Dextrose 7.5% Icodextrin

    Mujais S, Vonesh E. Kidney Int. 2002;62(suppl 81):S17-S22Data on file, Baxter Healthcare Corporation. (courtesy)

    CAPD (night)

    APD (day)

    Use of 7.5% Icodextrin for CAPD 8-16 hours Dwell :

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    48/65

    Comparison with 2.27% Dextrose Solution

    Wolfson, et al. Am J Kidney Dis. 2002;40:1055-1065

    328.7 332.9380

    261.9

    578.1605.8

    0

    100

    200

    300

    400

    500

    600

    700

    Baseline Week 2 Week 4

    LongDwell

    NetUF(mL

    2.27% Dextrose Icodextrin

    Use of 7.5% Icodextrin for CAPD 8-16 hours Dwell:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    49/65

    Comparison with 2.27% Dextrose Solution

    Wolfson, et al. Am J Kidney Dis. 2002;40:1055-1065

    19

    1513

    20

    20

    0

    5

    10

    15

    20

    25

    Baseline Week 2 Week 4

    2.27% Dextrose Icodextrin

    PercentofPatientsWith

    NegativeNetUF

    (2.27% Dextrose)

    Use of 7.5% Icodextrin for APD Long Dwell 12-16 hrs:

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    50/65

    Plum, et al.Am J Kidney Dis. 2002;39:862-871

    -135 -165-175

    206

    -300

    -200

    -100

    0

    100

    200

    300

    Baseline Week 12

    LongDwe

    llN

    etUF(mL

    )

    2.5% Dextrose Icodextrin

    gComparison with 2.27% Dextrose Solution

    **PP

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    51/65

    Comparison with 2.27% Dextrose Solution

    7468 67 71

    59

    75

    156 6

    56

    0

    1020

    304050

    6070

    8090

    100

    Baseline Week 1 Week 6 Week 12 Follow-up

    2.5% Dextrose Icodextrin

    ***

    **PP

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    52/65

    Comparison with 1.36% Dextrose Solution

    Wolfson, et al. Kidney Int. 2002;62(suppl 81):S46-S52

    27.130

    2528.9

    33.3

    0 0 00

    10

    20

    30

    40

    50

    Baseline Week 3 Week 12 Week 20

    1.36% Dextrose Icodextrin

    *

    ** PP

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    53/65

    Comparison with 3.86% Dextrose Solution

    High Transport Trial: Net UF

    Finkelstein, Abu-Alfa et al. J Am Soc Nephrol2005;16:546-554

    *P*P< 0.001 vs 3.86% dextrose (adjusted for baseline values).< 0.001 vs 3.86% dextrose (adjusted for baseline values).

    0

    100

    200

    300

    400

    500

    600

    Baseline Week 1 Week 2

    Long

    Dwel

    lNe

    tUF(mL)

    **

    IcodextrinIcodextrin

    (n=47)(n=47)

    3.86% Dextrose3.86% Dextrose

    (n=45)(n=45)

    Use of 7.5% Icodextrin for APD Long Dwell:C i ith 3 86% D t S l ti

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    54/65

    Comparison with 3.86% Dextrose Solution

    High Transport Trial: % Patients with Negative UF

    Finkelstein, Abu-Alfa et al. J Am Soc Nephrol2005;16:546-554

    37.837.2 33.3

    42.5

    2.20

    0

    5

    10

    15

    20

    25

    30

    3540

    45

    Baseline Week 1 Week 2

    3.86% Dextrose

    Icodextrin

    *P*P< 0.0001 vs 3.86% dextrose.< 0.0001 vs 3.86% dextrose.

    **P

    ercento

    fPatientsWith

    Nega

    tiveNetUF

    Use of 7.5% Icodextrin:Carbohydrate Absorption in HA/H Transport

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    55/65

    Carbohydrate Absorption in HA/H Transport

    Mujais and Lin. Perit Dial Int. 2006;26(suppl 1):S4.

    *P

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    56/65

    Effects on Plasma Glucose and Insulin Levels

    GokalGokal, et al., et al. Kidney IntKidney Int. 2002;62(suppl 81):S62. 2002;62(suppl 81):S62--S71.S71.

    0

    20

    40

    60

    80

    100

    0 2 4 8 12 16

    Time (hr)

    PlasmaInsulin(U/mL

    )

    0

    2

    4

    6

    8

    10P

    lasmaGlucos

    e(mmol/L)

    Insulin Glucose

    Use of 7.5% Icodextrin:Icodextrin Skin Adverse Events

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    57/65

    Icodextrin Skin Adverse Events

    Wolfson, et al. Kidney Int. 2002;62(suppl 81):S46-S52

    *Some patients experienced more than one skin adverse event.*Some patients experienced more than one skin adverse event.

    Exfoliative dermatitis

    Skin disorder

    Pruritus

    Rash

    0.3%1.8%

    5.2%2.2%

    6.6%5.5%

    4.6%10.1%

    Dextrose*

    (n = 347)

    Icodextrin*

    (n = 493)

    Usually occurred soon after icodextrin initiation (median:

    3 weeks).

    If rash occurs, icodextrin should be discontinued.

    Use of 7.5% Icodextrin:Effect on Serum Sodium

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    58/65

    Predominantly due to dilutional effect of icodextrin

    metabolites (osmotic effect).

    Similar to hyponatremia related to hyperglycemia or

    mannitol-like solutes in blood.

    Not due to pseudohyponatremia.

    Effect on Serum Sodium

    Use of 7.5% Icodextrin:Glucose Monitor Interaction

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    59/65

    Maltose and/or icodextrin metabolites may interfere with

    blood glucose determinations.1,2

    Glucose monitors using dehydrogenase

    pyrroloquinolinequinone (GDH PQQ) result in falsely

    elevated glucose measurements in patients using

    icodextrin.1

    No interference noted with any other glucose assay

    systems (eg, glucose oxidase, hexokinase).

    GDH PQQ-based methods should not be used duringicodextrin therapy.

    Glucose Monitor Interaction

    11

    WensWens, et al., et al. Perit Dial IntPerit Dial Int. 1998;18:603. 1998;18:603--609.609.22 DratwaDratwa, et al., et al. Perit Dial Int.Perit Dial Int. 1998;18(suppl 2):S85.1998;18(suppl 2):S85.

    Use of 7.5% Icodextrin:Interaction with Amylase Assay

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    60/65

    Patients using icodextrin may experience a decline in

    serum amylase activity.1

    Decline likely related to interference of icodextrin

    metabolites with the enzymatic-based amylase assay.2

    Serum amylase assay should be used in patients on

    icodextrin with full awareness of this interference.1

    Serum lipase activity does not appear to be affected by

    the presence of icodextrin and therefore may be an

    adequate method to diagnose pancreatitis.

    Interaction with Amylase Assay

    1 Gokal, et al. Kidney Int. 2002;62(suppl 81):S62-S71.2 Schonicke, et al. J Am Soc Nephrol. 1999;10:229A.

    Optimal Fluid Management:ISPD Guidelines

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    61/65

    ISPD Guidelines

    Routine standardized monitoring and awareness of PETstatus

    Dietary counseling of appropriate salt and water intake. Protection of Residual Renal Function (RRF).

    Loop diuretics if RRF present.

    Patient education for enhanced compliance.

    Minimizing use of hypertonic glucose and monitoring forsuboptimal UF response as a warning sign for possibleultra-filtration failure.

    Preservation of peritoneal membrane function. Hyperglycemia control.

    Mujais, et al. Perit Dial Int. 2000;20(suppl 4):S5-S21Lo Wai-Kei et al: Perit Dial Int. 2006; 26: 520522

    Therapeutic Goals: Rationale

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    62/65

    Hypertension in ESRD is predominantly volume-

    dependent (salt sensitive).

    Correction of volume expansion in most ESRD

    patients leads to normalization of BP with limited

    anti-hypertensive medications.

    An edema-free state is a minimal requirement for

    normovolemia, but does not ensure presence of

    normovolemia

    Therapeutic Goals:An Algorithm

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    63/65

    An Algorithm

    Interventions

    No

    Monitor

    Yes

    NormotensionMinimize Drugs

    Exception: Reno/

    cardioprotective

    Yes No

    Edema Free

    Exception: cardiomyopathy

    Autonomic insufficiency

    Abu-Alfa et al, Kidney Int (62), Suppl 81 (2002)

    Interventions

    Optimizing Prescription:Short and Long Dwells

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    64/65

    g

    Abu-Alfa et al, Kidney Int (62), Suppl 81 (2002)

    Increase

    cycle number

    Modify

    tonicity

    Increase

    cycler time

    Consider

    fill volume

    APD

    Modify

    tonicity

    Increase

    exchanges

    Consider

    fill volume

    CAPD

    Optimize

    short dwell UF

    Modifydwell time

    Modify

    tonicity

    Alternateosmotic agent

    Negative

    net UF

    Minimize3.86%

    Positive

    net UF

    Evaluate

    Long dwell UF

    Summary

  • 8/2/2019 1 PDA2007 Fluid Managment Abu-Alfa

    65/65

    Monitoring and managing fluid balance is important in PDpatients.

    Attaining an edema-free state and normotension shouldbe the main therapeutic goals while minimizing need forhypertonic solutions.

    Individualizing and separating the short and long dwellsdialysis prescriptions will enhance ultra-filtration andoverall fluid management.

    Use of icodextrin helps enhance fluid removal whilereducing the need for hypertonic glucose solutions.