1-s2.0-0094114x87900516-main.pdf

Upload: waseem-abbas-attari

Post on 05-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 1-s2.0-0094114X87900516-main.pdf

    1/6

    Mech. Mac Theory

    Vol. 22, No . 6 , pp. 563--568, 1987 0094-114X/87 3.0 0+ 0.00

    Pr in t ed i n Gr ea t Br i t a in Pe r gam on Jour na l s L td

    K I N E M A T I C S Y N T H E S I S A N D A N A L Y S I S O F T H E R A C K

    A N D P I N I O N M E C H A N I S M F O R P L A N A R P A T H

    G E N E R A T I O N A N D F U N C T I O N G E N E R A T I O N F O R

    S I X P R E C I S I O N C O N D I T I O N S "

    PETER DUSCH L

    Technology Service Center, Eastern Michigan University, Ypsilanti, M I 48197, U.S.A.

    STEVEN KRAM ER

    Department of Mechanical Engineering, University of Toledo, Toledo, OH 43606, U.S.A.

    Received

    19

    June

    1986)

    Ab stract- -T he rack and pinion mechanism is synthesized for generat ing both three prescribed path points

    with input coo rdinat ion and three po si t ions of function generat ion. This mechanism has a number o f

    advantages over the four bar f inkage. F irs t , since the ra ck is a lways tangent to the pinion , the transmiss ion

    angle is always the same (optimum) value of 90 ° minus the pressure angle of the pinion. Second, with

    both translat ion and rotat ion of the rack occurr ing, mult iple outputs are available . Other advantages

    include the generat ion of monotonic functions for a wide var iety of motion and nonmononotomic

    functions for the full range o f mo tion as well as nonlin ear amplified motions. In this work, the m echanism

    is made to satis fy a num ber o f pract ical des ign requirements such as a completely rotatab le input crank

    and others . The method of solut ion developed in this work ut i l izes the complex number method of

    mechanism synthesis and the solut ion is program med on a VAX 11/785 comp uter and is being mad e

    availa ble to interested readers.

    I N T R O D U T I O N

    T h e r a c k a n d g e a r m e c h a n i s m ( F i g . 1 ) h a s b e e n

    s t u d i e d b y a n u m b e r o f r e s e a rc h e r s o v e r t h e

    y e a r s [ I -6 ] . T h i s w o r k e x t e n d s t h e w o r k d o n e b y t h e

    s e c o n d a u t h o r o n t h e s o l u t i o n o f t h e t h r e e p o i n t

    f u n c t i o n g e n e ra t io n [ 3 ] a n d f o u r p o i n t p a t h g e n e r a t i o n

    w i t h p r e s c r i b e d i n p u t t i m i n g [ 5 ] t o c o m b i n e p a t h

    g e n e r a t i o n a n d f u n c t i o n g e n e r a t i o n i n t h e s a m e m e c h -

    a n i s m t o a c h i e v e m u l t i p l e o u t p u t s .

    T h e r a c k a n d g e a r m e c h a n i s m ( F i g . 2 ) i s c o m p o s e d

    o f a n i n p u t c r a n k , Z 2 , w h o s e r o t a t i o n , ~ j , i s s p e c i f i e d

    b y t h e m e c h a n i s m d e s i g n e r. T h e r a c k , Z ( , i s in

    n o n s l i p c o n t a c t w i t h t h e p i n i o n s u c h t h a t i t r o t a t e s ~ j

    a n d t r a n s l a t e s . T h e o f f se t , Z s , i s r i g i d l y c o n n e c t e d t o

    Z ( a n d a l l o w s f o r g e n e r a l i t y b u t i n s o m e c a s e s m a y

    b e o m i t t e d . T h e p i n i o n , w h o s e r a d i u s v e c t o r i s Z s ,

    r o t a t e s a s t h e r a c k r o t a t e s a n d t r a n s la t e s . T h e v e c t o r

    Z ~ d e f i n e s t h e t r a c e r p o i n t o f t h e p a t h g e n e r a t i n g

    m e c h a n i s m a n d i s r i g i d l y a t t a c h e d t o t h e r a c k . T h e

    f i x e d l i n k , Z j , c o n n e c t s t h e t w o f i x e d p i v o t s .

    T h i s s p e c i a l i z ed m e c h a n i s m i s s i m i l a r t o t h e p r i s -

    m a t i c m e c h a n i sm [ 7 , 8] i n t h a t t h e v e c t o r s Z s , Z ( a n d

    Z 5 a l l r o t a t e w i t h t h e s a m e a n g l e , s i n c e Z ( i s a l w a y s

    p e r p e n d i c u l a r t o Z s . T h e r a c k a n d p i n i o n m e c h a n i s m ,

    h o w e v e r , p r o d u c e s a n a d d i t i o n a l o u t p u t , ~ , w h i c h i s

    t h e r o t a t i o n o f t h e p i n i o n . T h e r a c k a n d p i n i o n

    m e c h a n i s m h a s i n d u s t r i a l a p p l i c a t i o n s i n t h e p a c k -

    t This paper is based on wo rk per formed at The Univers i ty

    of T oledo, Ohio.

    a g i n g i n d u s t r y a s w e l l a s t o y s a n d o t h e r l e i s u r e

    e q u i p m e n t . T h e i n v e r s i o n o f t h e m e c h a n i s m , w h e r e

    t h e p i n i o n i s t h e d r i v e r , c a n b e u s e d i n m e c h a n i c a l

    a i r c r a f t c o n t r o l d e v i c e s , h o s p i t a l a n d l a b o r a t o r y

    e q u i p m e n t , r a c k a n d p i n i o n a u t o m o t i v e s t e e r i n g

    l i n k a g e s [ l l ] a n d s e v e r al t a s k s o n m a n u f a c t u r i n g

    a s s e m b l y l i n e s .

    M E T H O D O F SO L U T I O N

    T h e v e c t o r r e p r e s e n t a t i o n o f th e r a c k a n d p i n i o n

    m e c h a n i s m a l o n g w i t h c o o r d i n a t e a x e s a r e s h o w n i n

    F i g . 2 i n t h e i n i t i a l d e s i g n p o s i t io n . T h e i n p u t c r a n k

    r o t a t i o n s , ~ b j, a n d t h e p o s i t i o n v e c t o r s , 1 ~ , a r e k n o w n

    b e c a u s e o f t h e p a t h g e n e r a t i o n s p e c i fi c a ti o n , w h e r e

    j - - 1 , 2 a n d 3 . T h e m a g n i t u d e s o f a l l l i n k s a r e

    u n k n o w n b u t t h e o r i e n t a t i o n s o f Z 3 a n d Z s r e l a t iv e

    t o Z ( a r e k n o w n . S i n c e Z 3 i s r i g i d l y c o n n e c t e d t o Z ,

    a t a r i g h t a n g l e a n d Z s i s p e r p e n d i c u l a r t o Z 4 d u e t o

    t h e r a c k s t a n g e n c y t o t h e p i n i o n , t h e f o l l o w i n g

    r e l a t i o n s h i p s a r e t r u e [ 3 ] :

    Z 3 = Z4hse~n/2) = Z 4h3i (1)

    a n d

    Z s - - Z 4 h se 1 (- ~/2) ~ - Z 4 h 5 ( - i ) , ( 2 )

    w h e r e t h e v a r i a b l e s h a n d h 5 ( s c a l a r u n k n o w n s a t t h i s

    p o i n t ) a r e

    h 3 ~ - I g s l

    I z I

    (3)

    563

  • 8/16/2019 1-s2.0-0094114X87900516-main.pdf

    2/6

    564

    PETER DUSCH Land STEVENKRAMER

    Fig. 1. The rack and gear mechanism

    a n d

    IZ sI

    h5 = [ 4----/ (4 )

    A l t h o u g h h 3 a n d h 5 a r e r a t i o s o f m a g n i t u d e s , e i th e r

    m a y b e n e g a t i v e t o i n d i c a t e a d i r e c t i o n o p p o s i t e t o

    tha t a ssum ed in equa t ions (1 ) and (2 ) . Phys i ca l l y

    s p e a k in g , t h e o f fs e t n e e d n o t b e p e r p e n d i c u l a r t o Z 4

    bu t k inem a t i ca l l y speak ing t he re wi l l a lways be a

    p e r p e n d i c u l a r v e c t o r , Z 3 , w h i c h c a n b e d r a w n . S i n ce

    Z 3 and Z 6 a re r i g id ly conn ec t ed , t he fo l l owing

    de f in i t i on i s adop ted fo r s im pl i c i t y :

    Z36 = Z3 + Z6. (5)

    S i n c e t h e m a g n i t u d e o f l i n k Z 4 d o e s n o t r e m a i n

    cons t an t , a s t r e t ch r a t i o i s de f ined a s t he r a t i o o f t he

    m a g n i t u d e o f Z 4 i n i ts j t h p o s i t i o n t o i ts i n i ti al

    m a g n i t u d e s o t h a t

    IZ4jl (6)

    K j= 141

    F o r p a t h g e n e r a t i o n , t h e l o o p c l o s u r e e q u a t i o n c a n

    be wr i t t en f rom Fig . 2 fo r t he i n i t i a l pos i t i on a s :

    Z 0 + Z 2 + Z ~ = R I . 7 )

    Y

    Fig. 2. The vector representation of the rack and gear

    mechanism in its initial design position.

    A d d i t i o n a l l o o p c l o s u r e e q u a t i o n s c a n b e w r i t t e n f o r

    a n y ( j t h ) p o s i t i o n w h i c h r e p r e s e n t s t h e g e n e r a l

    d i s p l a c e d p a t h p o s i t i o n . T h e y a r e

    Z0 + Z~e~j + Z~ e ~j = Rj. (8)

    sub t rac t i ng t he i n i t i a l pos i t i on f rom the gene ra l pos-

    i t i on y i e lds t he fo l l owing l oop c losu re equa t ion :

    Z2(eic~j -- 1) + Z~(e/~j -- 1)

    = ( R I - R I ) f or j = 2 , 3 . (9)

    F o r f u n c t i o n g e n e r a t i o n , a n e q u a t i o n c a n b e w r i t t e n

    f rom Fig . 2 fo r t he i n i t i a l pos i t i on a s

    Z2 + Z3 + Z4 + Z5 = Zt . (10)

    A d d i t i o n a l f u n c t i o n g e n e r a t i o n e q u a t i o n s c a n b e

    w r i t t e n f o r a n y ( j t h ) p o s i t i o n w h i c h r e p r e s e n t s t h e

    g e n e r a l p o s i t i o n . T h e y a r e

    Z 2 e i * j +

    Z3eeej +

    k j Z 4 e e e j

    + Z s e e j = Z l f or j = 2 , 3 . (11)

    Sub t rac t i ng t he i n i t i a l pos i t i on f rom the gene ra l

    p o s i t i o n a n d u s i n g e q u a t i o n s ( 1 ) a n d ( 2 ) y i e l d

    Z2(e~ j - 1) + Z4[(h3 -

    h s ) i e ° j -

    1)

    + e ~ j k j - l ] = O

    f o r j = 2 , 3 . (1 2)

    Re fe r r i ng t o F ig . 3 , t he r e l a t i onsh ip be tween t he

    p i n i o n a n d r a c k r o t a t i o n s c a n b e e x p r e s s ed u s i n g t h e

    pr inc ip l e o f supe rpo s i t i on a s Re f . [3]

    k - 1

    ~b = 7 + - - (13)

    h5

    E q u a t i o n ( 1 3 ) c a n b e w r i t te n i n t h e g e n e ra l f o r m f o r

    s u b s e q u e n t p o s i t i o n s a s

    ~ j = y j + ( k j + l ) f or j = 2 , 3 . (14)

    h5

    A t ab l e[ 1 0 ] c a n b e c o n s t r u c t e d t o d e s c r ib e w h y t h e

    n u m b e r o f p a t h a n d f u n c t i o n a l p o s i t i o n s f o r th i s

    m e c h a n i s m c a n b e o b t a i n e d . T a b l e 1 i s s u c h a t a b l e

    w h e r e t h e l e tt e rs p a n d f i n c o l u m n 1 r e f er t o

    p a t h a n d f u n c t i o n r e s p ec t iv e l y, a t t h a t p o s i t i o n n u m -

  • 8/16/2019 1-s2.0-0094114X87900516-main.pdf

    3/6

    Kin em at i c sy nthes is an d an a l y s is o f t h e r ack an d p in io n mech an i sm 5 65

    I I ~ q

    @ -- @

    t~5 : Y

    Fig . 3 . The gear ro tat ion ¢ , i s found by super imposing the effects o f the rack 's ro tat ion an d t ranslat ion .

    Tab l e 1 . D e t e rmin a t i o n o f th e m ax imu m n u m b er o f p o ssi b le p o s it i o ns o f

    t h e mech an i sm

    Nu m b er o f S cal ar S ca l a r F ree

    posi t ions unkn ow ns equa t ions cho ices

    p , f

    12 ( Z o , Z I , Z 2 , Z 3 , Z 4 , Z s , Z ~ ) 4 8

    2p 13 (same as abov e + Y2) 6 7

    2 f 14 (same as

    a b o v e

    + k2) 9 5

    3p 15 (same as abov e + ~'3) 11 4

    3 f 16 (same as above + k3) 14 2

    b e r. T h e n u m b e r o f s c a la r u n k n o w n s a n d s c a la r

    e q u a t i o n s a s a f u n c t i o n o f t he n u m b e r o f p r e s c r ib e d

    p a t h a n d f u n c t i o n p o s i t i o n s a r e s h o w n t o b e s o lv a b l e

    a t t h r e e p r e s c r i b e d p a t h p o s i t i o n s a n d t h r e e f u n c t i o n

    p o s i t i o n s w i t h t w o a r b i t r a r y c h o i c e s . I t i s i m p o r t a n t

    t o n o t e t h a t Z 3 a n d Z s a r e e a c h c o n s i d e r e d a s o n e

    a d d i t i o n a l sc a l a r u n k n o w n b e c a u s e o f e q u a t i o n s

    ( 1 ) - ( 4 ) . S o i n r o w 1 , t h e s e v a r ia b l e s c o u l d h a v e b e e n

    r e p l a c e d w i t h h 3 a n d h s .

    T h e s o l u t i o n o f t h e m e c h a n i s m i s f o u n d b y f i r s t

    t r a n s f o r m i n g e q u a t i o n ( 9) i n t o m a t r i x n o t a t i o n f o r

    j = 2 an d 3 as fo l l o ws :

    [ ( e ' O 2 - 1 ) ( e 2 - 1 ) 1 1 - 1

    I - R . -

    ( e * 3 - l ) ( e O 3 - I J L Z ~ j = L R - R J ( 1 5 )

    S i n c e t h e f r e c c h o i c e s a r c c h o s e n t o b e ~ 2 a n d ~ 3 , l i n k

    v e c t o r s Z 2 a n d Z 3 ~ a r c t h e n e a s i l y d e t e r m i n e d t o b e

    Z 2 = [ ( R 2 - R i ) ( e O 3 - 1 )

    - - ( R 3 - R I ) ( e O 2 - I ) ] /

    [ e ~ * 2 - l ) e o 3 - I )

    - e ~ * 3 - I ) C 2 - I ) ]

    a n d 1 6 )

    Z s 6 = [ ( e ~ 2 l ) ( R s - R I )

    - ( e * 3 - I ) ( R ~ - R 0 ] /

    [ ( e ' # 2 - 1 ) ( e 3 - 1)

    - ( ei #3 - 1 ) (e~2 - 1 ) ].

    F o r t h e f u n c t i o n g e n e r a t io n p a r t o f t h e m e c h a n i s m ,

    e q u a t i o n ( 1 4 ) i s s o l v e d f o r

    kj:

    k / = ~ j - - T j ) h s + l , f o r j 2 , 3 , ( 17 )

    a n d t h i s r e s u l t i s t h e n s u b s t i t u t e d i n t o e q u a t i o n ( 1 2 )

    t o y i e l d

    Z4 {(C :2 - 1 ) (h3 -

    hs)i +

    [C:2(~b2 - )'2)h5

    + 1 ] - 1} - Z ~ ( e ' * 2 - 1 ) ( 1 8)

    a n d

    Z4 {(C :3 - l)(h 3 - h5)i + [e/~3(~//3 - )'3)h5

    + l] - l } = - Z 2 c ~ 3 - I ). 1 9 )

    D i v i d i n g e q u a t i o n 1 8 ) b y e q u a t i o n 1 9 ) w i l l e l i m -

    i n a t e Z 4 a n d Z 2 f r o m t h e a b o v e e q u a t i o n s a n d y i el d s

    h 3 [ A ( C : 2 i - i ) - B ( i e ~ : 3 - i )]

    +h 5 {A[e#2(~b2 - ) '2 ) - c#2 i + i ]

    - - B [C :3 (~b3 - )73) C :3 i + i]}

    = B ( e 3 - 1 ) - A ( e ~ 2 - 1 ) ,

    w h e r e

    A = ( c i * 3 -

    I ) a n d B = c i* 2 I ) . 2 0 )

    T h e s a m e r e s u l t s h o u l d a l s o h a v e b e e n o b t a i n e d i f

    e q u a t i o n s 1 8 ) a n d 1 9 ) w e r e w r i t t e n i n m a t r i x

    n o t a t i o n w h e r e t h e d e t e r m i n a n t w o u l d b e s e t e q u a l t o

    z e r o [ 1 0 ]. B y d e f i n i n g

    T = A ( e ~ 2 i - i ) - B ( e ~ 3 i - i ) ( 2 1 )

    S = A [e~:2 ~b2 - ) '2) - e~ 2i + i]

    - B[et t 3 (~3 - ) '3 ) - e~3i + i ] (22)

    Q = B(e # 3 - 1 ) - A (e# 2 - 1 ) = - iT (2 3 )

    a n d s u b s t i t u t i n g i n to e q u a t i o n ( 2 0 ) t h e f o l l o w i n g

    s i m p l if i e d r e l a t i o n s h i p c a n b e w r i t te n :

    h

    T + h5 S = Q . (24)

    S i nc e T , S a n d Q a r e c o m p l e x f u n c t io n s o f k n o w n

    q u a n t i t i e s , h 3 a n d h5 c a n b e f o u n d b y s e p a r a t i o n o f

    v a r i a b l e s a n d s o l v i n g t h e f o l l o w i n g t w o s c a l a r e q u a -

    t i o n s :

    Txh3 + Sxh5 = Q x

    a n d

    r y h 3 -] - S y h 5 = Q y 2 5 )

  • 8/16/2019 1-s2.0-0094114X87900516-main.pdf

    4/6

    566 PETER DUSCHL an d ST~WN K~M F.R

    w h e r e t h e s u b s c r i p t s x a n d y r e f e r t o t h e r e a l a n d

    i m a g i n a r y p a r t s , r e s p ec t iv e l y . T h e s o l u t i o n o f h 3 a n d

    h s is

    h a = Q . S y - Q y S ~ ) / T ~ S y - r y S x )

    a n d

    h 5 =

    Q y T x - Q ~ T y ) / T ~ S y - T y S x ) .

    (26)

    L i n k v e c t o r Z 4 c a n b e f o u n d f r o m e q u a t i o n ( 18 )

    - Z , e i ~ 2 - 1 )

    Z4 = [(e~2 - 1)(h 3 - h s ) i + (e#2((~2 - y2)h5 + 1 ) - 1)]

    (27)

    T h e r e m a i n d e r o f t h e l i n k v e ct o r s c a n b e f o u n d b y

    equa t ions ( 1) , ( 2 ) , ( 5 ) and ( 10) w her e

    Z o = R i - Z ~ - Z 2 . 2 8 )

    D E S I G N R E S T R I C T I O N S

    O n c e t h e m e c h a n i s m h a s b e e n d e t e r m i n e d , i t i s

    c h e c k e d f o r a d h e r e n c e t o p r a c t i c a l d e s i g n r e s tr i c t i o n s .

    T h e s e r e s t r i c ti o n s i n c l u d e e l i m i n a t i o n o f e x t r a n e o u s

    r o o t s a n d c e r t a i n g e o m e t r i e s w h i c h m a k e t h e m e c h -

    a n i s m u n u s a b l e .

    F i r s t , a ll m e c h a n i s m s t h a t y i e l d a t l e a s t o n e n e g a -

    t i v e v a l u e f o r t h e s t r e t c h r a t i o a r e i n v a l i d s i n c e a

    n e g a t i v e k j s ig n i f ie s a r e v e r s e d i r e c t i o n o f t h e r a c k

    w h i c h i s p h y s i c a l l y i m p o s s i b l e . S e c o n d , t o i n s u r e t h e

    i n p u t c r a n k c a n r o t a t e f u l l y

    1221 + IZs I < 1211. (29)

    T h i r d , t o i n s u r e t h a t t h e r a c k r e m a i n s i n c o n t a c t

    I z 2 I z 3

    Z I

    Fig. 5. Rack interfering with gear when h3h ~ < O.

    A N A L Y S I S

    A n a l y z i n g t h e r a c k a n d p i n i o n m e c h a n i s m r e q m r e s

    t h e d e t e r m i n a t i o n o f t h e s t re t c h r a t i o , k a n d r a c k

    r o t a t i o n , y , f o r a n y a n d a l l m e c h a n i s m p o s i t io n s .

    R e w r i t i n g e q u a t i o n ( 1 1 ) r e s u l t s i n t h e f o l l o w i n g

    e q u a t i o n :

    z

    Z 1 - Z ~ e ' * J - Z W * J = e - ' ( 3 2 )

    w h e r e n o s u b s c r i p t s a r e u s e d f o r t h e v a r i a b l e s k , tp

    a n d y t o i n d i c a t e g e n e r a l i t y . I f t h e t e r m s i n p a r e n t h e -

    s e s a r e d e n o t e d b y C a n d D , t h e n s e p a r a t i n g e q u a t i o n

    ( 32 ) i n t o r e a l a n d i m a g i n a r y p a r t s , s q u a r i n g b o t h

    s i d e s o f t h e e q u a t i o n a n d a d d i n g y i e l d

    C ~ q - k D x ) 2 q - C y q - k D y )2 = 1. (33)

    T h e s u b s c r i p t x r e fe r s t o t h e r e a l p a r t a n d t h e

    s u b s c r i p t y r e f e rs t o t h e i m a g i n a r y p a r t o f t h e c o m -

    p l e x n u m b e r s . S e p a r a t i n g a n d c o m b i n i n g l i k e t e r m s

    i n e q u a t i o n ( 3 3) y i e ld a q u a d r a t i c e q u a t i o n w h i c h ,

    w h e n s o l v e d f o r k , y i e l d s

    k =

    - Cx Dx + C yD y) + x/ 4 C x D . + C yD y) 2 - 4 D 2 + Dy) C.2 2 + Cy2 _ l

    (34)

    w i t h t h e p i n i o n f o r t h e w o r s t p o s s i b l e c a s e , t h e

    f o l l o w i n g m u s t b e t r u e :

    IZ2l - t- IZ3l < IZsl + IZ ll i f h3h5 > 0. (30)

    F o u r t h , t o i n s u r e t h a t t h e c r a n k d o e s n o t o v e r l a p t h e

    p i n i o n , t h e f o l l o w i n g r e l a t i o n s h i p m u s t h o l d :

    I Z2 1 l Z 3 1 l Z s I < I Z a l i f h 3 h 5 < 0.

    3 1 )

    F i g u r e s 4 a n d 5 i l l u s t r a t e t h e s e c o n d i t i o n s .

    I f t h e a b o v e r e s t r i c ti o n s a r e m e t , t h e n c o m p l e t e

    r o t a t i o n o f t h e i n p u t c r a n k i s i n s u r e d a n d b r a n c h i n g

    c a n n o t o c c u r s i n c e h5 w i l l n o t c h a n g e s i g n .

    Fig. 4. Rack leaving contact with gear when h3h 5 > 0 .

    I t c a n b e s h o w n t h a t v e c t o r s C a n d D w i l l a l w a y s

    b e n o r m a l t o e a c h o t h e r , h e n c e t h e i r d o t p r o d u c t w i l l

    v a n i s h . T h i s m e a n s t h e t w o r o o t s o f k w i l l d i f f e r o n l y

    i n s i g n a n d t h e a b o v e e q u a t i o n r e d u c e s t o

    / 1 I C l :

    k = _ 2 IDI2 . (35)

    S i n c e a n e g a t i v e v a l u e f o r k i s p h y s i c a l l y i m p o s -

    s i b l e , t h e p o s i t i v e r o o t o f k i s u s e d f o r a n a l y s i s . T h e

    r a c k r o t a t i o n c a n b e r e a d i l y d e t e r m i n e d f o r a n y

    m e c h a n i s m p o s i t i o n f r o m e q u a t i o n ( 3 2 ) .

    A l t h o u g h v e c t o r Z s r o t a t e s y b e c a u se i t is t a n g e n t

    t o t h e r a c k , t h e p i n i o n w i l l r o t a t e a d i f fe r e n t a m o u n t

    d u e t o t h e r a c k ' s t r a n s l a t i o n w i t h r e s p e c t t o t h e

    p i n i o n . T h e e q u a t i o n d e t e r m i n i n g t h e p i n i o n r o t a t i o n

    c a n b e e x p l a i n e d b y s u p e r p o s i t i o n a s s h o w n i n

    Fig. 3 and is[3] :

    k - I

    = y + - - (3 6 )

    h5

    F i n a l l y , th e p o s i t i o n v e c t o r R c a n b e e s t a b l i s h e d f o r

    a n y a n d a l l m e c h a n i s m p o s i t i o n s fr o m e q u a t i o n ( 8) .

  • 8/16/2019 1-s2.0-0094114X87900516-main.pdf

    5/6

    K i n e m a t i c s y n t h e s is a n d a n a ly s i s o f t h e r a c k a n d p i n i o n m e c h a n i s m

    • R3

    \

    \ \ y

    R

    F i g . 6 . S y n t h e s i z e d m e c h a n i s m .

    N U M E R I C A L E X A M P L E

    . R a

    567

    T o t e s t t h e m e t h o d o f s o l u t i o n d e v e l o p e d i n t h i s

    p a p e r , t h e f o l l o w i n g e x a m p l e w a s u s e d . T h e t h r e e

    p a t h p r e c i s i o n p o s i t i o n s w e r e ( 3 . 0, 7 . 0 ), ( 7 .0 , 0 . 0) a n d

    ( 4 .0 , 6 .0 ) . T h e c o r r e s p o n d i n g i n p u t c r a n k r o t a t i o n s

    w e r e 0 , 8 0 a n d 1 7 0 ° , r e s p e c t i v e l y . T h e f u n c t i o n t o b e

    g e n e r a t e d w a s ~ = 4 0 s i n ~ w h e r e b o t h ~ a n d ~b a r e

    i n d e g r e e s a n d t h e p r e c i s i o n p o i n t s a r e a l s o a t ~b = 0 ,

    8 0 a n d 1 7 0 ° . R e s p a c i n g o f t h e p r e c i s i o n p o i n t s c a n b e

    a c c o m p l i s h e d u s i n g s t a n d a r d t c c h n i q u es [ 4 , 1 0] b u t f o r

    s i m p l i ci t y t h e fi rs t f u n c t i o n a n d p a t h p r e c i s i o n p o i n t s

    a r e a t t h e i n i t i a l p o s i t i o n i n t h i s e x a m p l e .

    T h e m e t h o d o f s o l u t io n d e s c r i b e d i n t h i s p a p e r w a s

    p r o g r a m m e d o n a V A X 1 1 /7 8 5 c o m p u t e r . S i n c e 3'2

    a n d 3'3 w e r e a r b i t r a r y c h o i c e s m a n y s o l u t i o n s w e r e

    g e n e r a t e d . D u e t o t h e d e s i g n c o n s t r a i n t s a m u c h

    l i m i te d n u m b e r o f s o l u t i o n s w e re e v e n t u a l l y f o u n d .

    O n e s u c h m e c h a n i s m s o l u t i o n f o u n d w h e r e 3 '2 = 2 0 °

    a n d 3'3 = 3 0 ° w a s

    Z 0 = ( - 8 .4 8 5 , 0 . 4 4 2 ) )

    Z I = ( - 9 . 7 9 1 , 3 . 9 2 5)

    t

    Z 2 = ( 0 .0 4 1 , - 3 . 3 9 0 )

    Z 3 = - 7 . 1 6 1 , - 5 . 0 9 0 ) ( 3 7 )

    Z 4 = ( - 6 . 7 5 4 , 9 . 5 0 2 )

    Z 5 = ( 4 . 0 8 3 , 2 . 9 0 2 )

    Z 6 = ( 1 8 .6 0 5 , 1 .0 3 8 ) .

    T h e m e c h a n i s m i s s h o w n i n F ig . 6 a n d t h e a n a ly s i s

    o f th i s m e c h a n i s m i s s h o w n i n T a b l e 2 . T h e a c c u r a c y

    o f t h e f u n c t i o n g e n e r a t i o n c a n b e s e e n i n F ig . 7 w h e r e

    t h e i d e a l c u r v e is s o l id a n d t h e g e n e r a t e d c u r v e i s

    d a s h e d . T h e m a x i m u m s t r u c tu r a l e r ro r i n th e r a n g e

    o f 0 - 1 8 0 ° w a s f o u n d t o b e 1 .6 ° .

    T a b l e 2 . A n a l y s i s o f s y n t h e s iz e d m e c h a n i s m

    ~b ~ ~b K

    0 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 0

    10.00 2.44 7.76 1.040

    20.00 4.96 14.87 1.074

    30.00 7.53 21.23 1.103

    40.00 10.11 26.75 1.125

    50.00 12.67 31.38 1.140

    60.00 15.19 35.05 1.149

    70.00 17.65 37.74 1.151

    80.00 20.00 39.39 1.145

    90.00 22.23 40.00 1.133

    100.00 24.29 39.55 1. 114

    110.00 26.15 38.03 1.089

    120.00 27.77 35.44 1.058

    130.00 29.08 31.79 1.020

    140.00 30.04 27.09 0.978

    150.00 30.57 21.37 0.931

    160.00 30.59 14.64 0.880

    170.00 30.00 6.94 0.827

    180.00 28.70 -- 1 .64 0.772

    180.00 26.60 - 11.02 0.718

    200.00 23.62 - 21.02 0.665

    210 .00 19 .76 -3 1 . 32 0 .617

    220 .00 15 .10 -4 1 . 48 0 .576

    230.00 9.92 - 50.84 0.544

    240.00 4.63 - 58.59 0.526

    2 5 0 .0 0 - 0 .2 6 - - 6 3 .9 9 0 .5 2 2

    2 6 0.00 - 4 . 3 1 - - 6 6 .5 2 0 .5 3 4

    2 7 0.00 - - 7 .2 8 - 6 6 .1 1 0 .5 5 9

    2 8 0.00 - - 9 .1 3 - 6 3 . 0 6 0 .5 9 6

    2 9 0 .0 0 - 9 .9 6 - - 5 7 .8 6 0 .6 4 1

    300.00 - 9 .94 -- 51.07 0.692

    310 .00 - -9 .24 - -43 .20 0 .745

    320.00 -- 8 .03 -- 34.66 0.800

    3 3 0.00 - 6 .4 0 - - 2 5 .8 3 0 .8 5 4

    340 .00 -4 .4 8 - 16 .96 0 .906

    350.00 - 2 .32 -- 8 .29 0.955

    360.00 0.00 0.00 1.000

    P a t h v e c t o r

    R e a l I m a g i n a r y

    3.000 - 7.000

    3 . 7 5 0 - 6 . 4 5 0

    4.465 - 5 .776

    5 .1 2 2 - 4 .9 9 1

    5 . 7 0 3 - 4 . 1 0 9

    6 . 1 9 2 - 3 . 1 4 9

    6 . 5 7 7 - 2 . 1 2 9

    6.848 - 1.071

    7.00O 0.000

    7.031 1.061

    6.944 2.085

    6.745 3.046

    6.444 3.918

    6 .056 4 .674

    5.597 5.287

    5.088 5.730

    4.549 5.977

    4.000 6.000

    3.458 5.774

    2.933 5.274

    2.426 4.486

    1.925 3.411

    1.409 2.081

    0.863 0.569

    0.293 - 1.014

    - 0 . 2 5 9 - 2 . 5 4 2

    - 0 . 7 2 4 - 3 . 9 1 1

    - 1.037 - 5.069

    - 1 . 1 6 0 , 6 . 0 0 3

    - 1.085 - 6 .726

    - 0 . 8 2 7 - 7 . 2 5 5

    - 0 . 4 1 1 - 7 . 6 0 6

    0 . 1 3 4 - 7 . 7 9 1

    0 . 7 7 6 - 7 . 8 1 8

    i . 4 8 7 - 7 . 6 9 1

    2 . 2 3 7 - 7 . 4 1 6

    3.000 - 7.000

  • 8/16/2019 1-s2.0-0094114X87900516-main.pdf

    6/6

    568 PETER DUSCHL and STEvrN KRAMER

    4 0

    0 -

    o= 3

    e

    I I I I I t I I ~

    20 40 60 80 100 120 140 160 180

    Cronk rotot ion q5 deg)

    F i g . 7 . G e a r r o t a t i o n v s c r a n k r o t a t i o n .

    CONCLUSION

    The rack and pinion mechanism is a versatile

    mechanism because it has two ma jor advantages over

    the four bar mechanism. The first is that the trans-

    mission angle is always at the same value o f 90 °

    minus the pressure angle of the rack. Second, both

    path and function generation are simultaneously

    attained. In this paper the pinion rotation, which

    represents this functional output, is the sum of the

    rack rotatio n and the length of arc swept-out by the

    pinion divided by its radius. The synthesis of this

    single degree-of-frecdom rack and pinion mechanism

    for multiple output (path and function generation)

    makes it very valuable in machine and mechanism

    design.

    R E F E R E N E S

    1. G. K. Kinzel and S. Chen, A general procedure for the

    kinematic analysis of planar mechanisms with higher

    pairs, A S M E M e c h . C o n f . Paper No. 84-DET-140

    (1984).

    2. D. Wilt and G. N. Sandor, Synthesis of a geared

    four-link mechanism. J . Mech . 4, 291-302 (1969).

    3. D. Gibson and S. Kramer, Kinematic des ign and

    analysis of the Rack-and-ear mechanism for function

    generation. Mech. Mach. Theory 19, (3) 369-375 (1984).

    4. K. E. Hofmeister and S. N. Kramer, Kinematic syn-

    thesis, Analysis, and optimization by precision point

    respacing of the rack-and-gear function generating

    mechanism. A S M E M e c h C on f. Paper 84-DET-134

    (1984).

    5. M. Claudio and S. Kramer, Synthesis and analysis of

    the rack and gear mechanism for four point path

    generation with prescribed input timing. A S M E J .

    Mech. Transmiss . Automat. Design 108, (1) 10-14

    (1986).

    6. I. Meyer zur Capellen, Der einfache Zahnstangen-

    Kurbeltrieb un Das entsprechende Bandgetriebe. Z.

    Mach. Fert. Jahrg

    2, 67-74 (1956).

    7. J. E. Shigley and J. J. Uicker, Jr. Theory of Machines

    and Mechanisms. McGraw-Hill, New York (1980).

    8. Y. C. Tsai and A. H. Soni, Design of an inverted

    slider-crank mechanism. 6th Applied Mechanisms Conf.

    Denver. Paper No. 33 (1979).

    9. G. N. Sandor, A general complex-number method of

    plane kinematic synthesis with applications. Ph.D. Dis-

    sertation, Columbia Univ., University Microfilms,

    LCN59-2596 (1959).

    10. G. N. Sandor and A. G. Erdman, Advanced Mechanism

    Design: Analysis and Synthesis Vol. 2, pp. 180-184.

    Prentice-Hall, Engelwood Cliffs (1984).

    11. C. E. Zarak and M. A. Townsend, Optimal design of

    rack-and-pinion steer ing linkages, A S M E J . M e c h .

    Transmiss . Automat. Design.

    105(2), 220-226 (1983).

    K I N E M A T I S C H E S Y N T H E S E U N D A N A L Y S E DE S

    Z A H N S T A N G E N - K U R B E L G E T R I E B E S A L S F U H R U N G S -

    U N D U B E R T R A G U N G S G E T R I E B E F U R 6 G E N A U I G K E I T S L A G E N

    Km zfamlg--E ine Komplexe-Zahlen-Methode wird angewandt fur den kinematischen Entwurf und zur

    Analyse des funktionsgenerierenden Zalmstangen kurbeigetriebes mit Beziehung auf drei genau

    voneinander getrenente Positionen. Das Zahnstrangen kurbeigctriebe ist ein nutzlicher ebener Mech-

    anismus, der angewendet werden kann, urn viel¢ Funktionendes Viergliexi-SystemsZu generieren und der

    zahlreiche zusatzliche Anwendungsmoglichkeiten hat. Wegen der zusatzlichen Komplikation des Za-

    hnstangen kurbeigetriebes konnen sowohl monotone als auch nichtmonotone Funktionen, sowie nich-

    tlineare, verstarkte Bewegungen erzeugt werden. Ein Hauptvorteil des getriebes besteht darin, dass der

    Ubertragungswinkel immer bei seinem optimalen Wert verbleibt da die Zahnstange immer tangential zum

    Zahnrad Liegt. Der Entwurf und die Analyse wurden fur den computer VAX 11/785 programmiert und

    steben interessierten Lesern zur Verfugung.