1-s2.0-s0023643815303893-main

Upload: andreea-marin

Post on 05-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 1-s2.0-S0023643815303893-main

    1/7

    Effect of salt and moisture content reduction on physical andmicrobiological properties of salted, pressed and freeze dried turkeymeat

    Meral Y ıldırım Yalçın, Mahmut Şeker*

    Food Technology Section, Department of Chemical Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey

    a r t i c l e i n f o

     Article history:

    Received 24 July 2015Received in revised form26 November 2015Accepted 14 December 2015Available online 17 December 2015

    Keywords:

    Turkey breast meatSaltingPressingFreeze drying

    a b s t r a c t

    The effect of salt content, pressing and moisture content on textural, micro structural and color char-acteristics, adsorption isotherms and microbiological count of turkey breast meat were studied. Therewere no statistically signicant differences (P 0.05) between samples including high salt-moisture andlow salt-moisture for color (lightness, redness and yellowness) and textural properties of hardness,cohesiveness, springiness and chewiness parameters and they were determined as 59.10e65.76, 0.30e0.28, 1.27e1.19 and 22.44e22.21, respectively. Total mesophilic aerobic counts,  Micrococcus/Staphylo-coccus counts and yeast/mold counts of samples including low salt and moisture were detected as 3.23, 0,2.98 (log cfu/g) and they were lower than the same counts of samples including high salt and moisturewhich were found as 6.66, 6.69, 5.95 (log cfu/g) after 70 days of storage. The reduction of salt content didnot increase the growth of these microorganisms if we also decrease the moisture content of turkey meatby freeze drying process. Increase of hardness of turkey meat by drying is not found related to shrinkagesaccording to comparison of air and freeze drying. Reduction of moisture content to 40% reduced freezedying time to 7 h from 27 h of complete drying in freeze dryer.

    © 2015 Published by Elsevier Ltd.

    1. Introduction

    The consumer demands for poultry products have increased inrecent years because of being an economical protein sources con-taining less fat than red meat. Producers modied the red meatprocesses to poultry or other meats and created new products likepoultry ham, bacon, hot dogs and dry-fermented sausages (Barbut,2002; Kargozari et al., 2014). Traditional Turkish meat productPastrami (Pastrami) is also a cured, pressed and partially dried meatproduct that can be produced by poultry meat. Salt is used tocontrol microbial growth as if spice is used (Guler  & Seker, 2009).There is an interest to reduce salt content of processed meatproducts to minimize effect of salt on hypertension and cardio-vascular diseases (Askin & Kilic, 2009). On the other hand, reducingsalt content enhance microbial growth during long drying period inconventional air drying (Uguz, Soyer, & Dalmiş , 2011). The effects of low salt concentration on microbial growth during long dryingperiod can be compensated by alternative drying methods and

    reducing the moisture content of product.Pastrami has traditionally been made by drying meat at

    15e20   C in several days (G€ok, Obuz,   &  Akkaya, 2008). Freeze-drying is a low temperature dehydration process that preservesthe taste, color, appearance, texture, and dimensions while pre-venting oxidation and extending the shelf life of foods but it is aslow and consequently an expensive process. Therefore the use of this process is restricted to high value products (Babic, Cantalejo,  &Arroqui, 2009; George   &  Datta, 2002; Lopez-Quiroga, Antelo,   &Alonso, 2012). Previously, we studied the optimal control of freezedrying of pharmaceutical products (Sadikoglu, Ozdemir,  &  Seker,2003). Freeze-drying can also be applied to expensive dried meatproducts like pastrami. Complete drying of meat with freezedrier isconsidered for production of soup and sauce base material (Babicet al., 2009). Partial drying of meat with freeze drier decreasesproduction cost compared to complete drying and it may increasethe application   eld but it has not been searched before. Weexamined tness of freeze drying model of turkey breast meat withexperimental results (Cumhur, Ş eker,  &  Sadıkoglu, 2015).

    Microbial growth can be decreased by salting and reducingmoisture content of meat product but these treatments also affect*   Corresponding author.

    E-mail address:  [email protected] (M. Şeker).

    Contents lists available at ScienceDirect

    LWT - Food Science and Technology

    j o u r n a l h o m e p a g e :   w w w . e l s e v i e r . co m / l o c a t e / l w t

    http://dx.doi.org/10.1016/j.lwt.2015.12.032

    0023-6438/©

     2015 Published by Elsevier Ltd.

    LWT - Food Science and Technology 68 (2016) 153e159

    mailto:[email protected]://www.sciencedirect.com/science/journal/00236438http://www.elsevier.com/locate/lwthttp://dx.doi.org/10.1016/j.lwt.2015.12.032http://dx.doi.org/10.1016/j.lwt.2015.12.032http://dx.doi.org/10.1016/j.lwt.2015.12.032http://dx.doi.org/10.1016/j.lwt.2015.12.032http://dx.doi.org/10.1016/j.lwt.2015.12.032http://dx.doi.org/10.1016/j.lwt.2015.12.032http://www.elsevier.com/locate/lwthttp://www.sciencedirect.com/science/journal/00236438http://crossmark.crossref.org/dialog/?doi=10.1016/j.lwt.2015.12.032&domain=pdfmailto:[email protected]

  • 8/15/2019 1-s2.0-S0023643815303893-main

    2/7

    the texture of meat product. There is limited research papers in theliterature about the effects of salt and moisture content varied withair drying on textural properties of meat muscle (Ruiz-Ramírez,Arnau, Serra,   &   Gou, 2005; Ruiz-Ramírez, Serra, Arnau,   &   Gou,2005) while there is no study about texture prole analysis (TPA)of freeze dried turkey meat as pastrami. Beside texture, color of themeat products gives important information about the quality.Babicet al. (2009) studied the color properties of completely freeze driedand rehydrated chicken meat,   Canto et al. (2012)  examined theeffect of hydrostatic pressure on color of refrigerated Caiman tailmeat, and Uguz et al. (2011) studied the effect of salt content oncolor properties of muscle. However, the effect of moisture contentvaried with freeze dryer on color of turkey meat has not beenstudied before. The other important safety and quality issue is themicrobial stability of foods having a strong correlation with watercontent and water activity (aw). The relationship between watercontent and aw  is demonstrated by sorption isotherms which areused for product development, shelf life prediction and determi-nation of package requirements depending on the products sensi-tivity to moisture gain or loss.  Comaposada, Gou, Pakowski, andArnau (2000)   analyzed the effect of salt content on desorptionisotherms of pork meat but the effect of salt content on the

    adsorption isotherms of freeze dried turkey meat has not beenexamined.

    In this study, TPA and color parameters, microstructure analysiswith Scanning Electron Microscopy (SEM), the adsorption iso-therms and microbiological count of freeze dried turkey meatincluding high salt-moisture or low salt-moisture were studied todetermine if it is possible to produce a low salted turkey meatproduct by reducing moisture content in freeze dryer withoutreducing microbiological and physical quality.

    2. Materials and methods

     2.1. Raw material and sample preparation

    All measurements were made on Bolca (Bolu, Turkey) brand'sturkey breast meat which was stored at 4   C until usage. The meatsamples were prepared for salting process after removing the fattyparts and cutting parallel to   ber direction. The thickness of thesamples were determined as 10 mm for only salted products (S) and20 mm for salted and pressed products (SP) by an electronic digitalcaliper (Fred Fowler Co., Newton, MA) because the samples becomethinner after pressing.

    Samples were placed between 10 mm thickness of coarse saltlayer and salted to different salt levels (4e5%and7e8% on dry base)with dry salting. After salting process, the samples were washedand dried on paper towels to eliminate excess salt. Samples werepressed with weight of 10 kg which is put onto each sample withdimensions of about 60   90   20 mm (approximately 80 g) for

    16 h. Meat samples release some water with pressing. Moisturecontent of products was measured according to method of Wiklund, Kemp, Li, and Wu (2010) and salt content of samples wasdetermined by Mohr's method (Kirk & Sawyer, 1991). Table 1 showsthe name of the samples with their salt and moisture contents.

    Salted and salted-pressed samples were freeze dried untildesired moisture contents with a pilot scale freeze drier (VirTisUltra 25 Super XL, New York, USA). In all experiments, the freezedrier shelf temperature was maintained at 40   C for freezing and20 C for drying step. Heatows perpendicular tober direction. Indrying step the chamber pressure was set at 10 Pa.

     2.2. Texture pro le analysis (TPA)

    Textural properties of samples were examined using Texture

    Analyzer Model TA Plus (Lloyd Instruments, Hampshire, UK) with1 kN load cell and data was interpreted using Nexygen™ (NexyGenPlus, Lloyd Instruments, Hampshire, UK) software. Cylindricalsubsamples (14.5 mm diameter and 10 mm height) were preparedfrom every meat sample by using a sharp cylindrical apparatus. Adouble compression test was applied to 30% compression of theiroriginal height with a cylindrical shaped probe of 25 mm diameter.The crosshead speed was set to 0.5 mm s1.

     2.3. Microstructure analyses

    Microstructures of samples were observed by SEM (XL-30 SFEG,Philips, Eindhoven, Holland). S and SP samples were completelyfreeze dried until constant mass. Samples with dimension of 5     2    5 mm were coated with gold by using Sputter CoaterSC7620 (Quorum Technologies Ltd., Lewes, UK) before the analysis.

     2.4. Color measurement 

    Color values of samples were measured by using a Konica

    Minolta CM-5 colorimeter (Osaka, Japan) according to CIELab sys-tem (L*: lightness, a*: redness, and b*: yellowness). Measurementswere evaluated at four points in central and lateral locations of samples and average results were given.

     2.5. Sorption isotherms

    Sealed glass jars which were containing different saturated saltsolutions (LiCI, MgCI2, Mg(NO3)2, NaCI, BaCI2) to provide aw   be-tween 0.11 and 0.92 were used for gravimetric determination of adsorption isotherms (Greenspan, 1977; Rahman  &  Sablani, 2009).Triplicate subsamples were taken from completely freeze driedmeat samples and they were placed into the jars within weightedpetri dishes (Bell  & Labuza, 2000). Small quantity of toluene was

    also added to each jar to inhibit fungal activity (Kaymak-Ertekin  &Gedik, 2004). Adsorption isotherms were determined at 15 C withtemperature controlled cabinet having ±1 C accuracy. The sampleswere weighted until desired equilibrium water content to bereached when the weight changes was as small as 0.001 g.

     2.6. Microbiological analyses

    Salted-pressed samples including low salt content (SP1) andhigh salt content (SP2) with high moisture and salted-pressedsamples including low salt content with low moisture (SP3) wereused to analyze the effects of salt contents and moisture contentson microbial counts of freeze dried products during the storage.

    Samples were individually overwrapped with polyvinyl-chloridelm (thickness: 0.04 mm) by an impulse sealer. A 10 g of samplewere transferred into a stomacher bag under aseptic conditions,and homogenized with 90 mL of sterile physiological saline (0.85%NaCI) in a laboratory blender (BagMixer 400 V W, Interscience,France) for 3 min. Serial decimal dilutions were prepared in thesterile physiological saline and 0.1 ml of appropriate dilutions wasspread in triplicate onto agar plates. Total aerobic mesophilic (TAM)bacteria count was enumerated on a Plate Count Agar (PCA, Merck)at 30   C for 72 h. Yeast and molds were incubated aerobically onPotato Dextrose Agar (PDA, Merck) at 25   C for 5 days.  Micrococciand  staphylococci  were determined on Mannitol Salt Phenol-RedAgar (MSA, Merck) by incubation at 30   C for 48 h.   Enter-obacteriacea   were incubated on Violet Red Bile Dextrose Agar

    (VRBD, Merck) at 30 

    C for 48 h in anaerobic conditions.

    M.Y. Yalç ın, M. Ş eker / LWT - Food Science and Technology 68 (2016) 153e159154

  • 8/15/2019 1-s2.0-S0023643815303893-main

    3/7

     2.7. Statistical analyses

    Statistical analysis was performed with the SPSS software(version 15 for windows, SPSS, Inc., Chicago, IL, USA). The data weresubjected to analysis of variance to determine the effects of different salting, drying level and pressure treatments on relatedparameters. The differences between microbiological results wereevaluated for signicance (P   <  0.05) by Duncan's multiple range

    test and all analyses were carried out at a 95% level of con

    dence.

    3. Results and discussion

     3.1. Salting and pressing processes

    Turkey breast meat samples having 74.84± 0.44% (on wet basis)of moisture and 19.81   ±  2.82% (on wet basis) of protein contentwere left to salting. The salt content of samples increased with timedue to diffusion of salt into samples with concentration differenceof salt in medium and samples. Samples were salted to 5% and 8%

    (by dry weight) salt levels. Time required to reach the salt levels of 0.052  ±  0.004 and 0.08  ±  0.005 g salt/g ids (initial dry solids) wasmeasured as 4 and 9 min respectively for samples of 10 mmthickness while it was measured as 9 and 30 min respectively forsamples of 20 mm thickness. The moisture content of all samplesdecreased after salting step (P< 0.05) due to moisture diffusion andit decreased further during pressing step due to mechanical forces(Table 1).

     3.2. Freeze drying 

    It took 27 h to dry non-treated samples completely but moisturecontent was reduced to 40% at 7 h. There was a sharp decrease inmoisture content up to 15% moisture content and then drying rateand water removal slowed down because sublimated vapor passesthrough a dry layer with increasing thickness over time and wateris progressively more bound at the end of the process as dryingproceeds. When only desorption of highly bound water takes place,freeze-drying kinetics are very slow. Therefore, complete drying

     Table 1

    Saltand moisturecontents of samples (C1, control;S1,low-salted; S2, high-salted;SP1 and SP2,low-saltedand highsaltedalso pressed and dried to 42% moisture; SP3and SP4,low-salted and high-salted also pressed and dried to 33% moisture).

    Sample Salt content (%, dry matter) Pressure treatment Moisture content (%), by wet weight

    After salting After pressing After drying

    C1 No salting X   e e   41.48  ±  1.83S1 4e5 X 73.36  ±  0.33   eS2 7e8 X 72.55  ±  0.50   eSP1 4e5   ✓   72.09  ±  0.98 71.06  ±  1.10SP2 7e8   ✓   70.66  ±  1.11 69.23  ±  1.50SP3 4e5   ✓   e e   33.12  ±  1.28SP4 7e8   ✓   e e

    Fig. 1.  Effect of salt and moisture contents and drying type on TPA parameters of dried turkey meat samples. Error bars represent the standard deviation of four samples' mea-

    surements (C1, control; S1, low-salted; S2, high-salted; SP1, low-salted pressed and dried to 42% moisture; SP2, high-salted pressed and dried to 42% moisture; SP3, low-salted

    pressed and dried to 33% moisture; SP4, high-salted pressed and dried to 33% moisture).

    M.Y. Yalç ın, M. Ş eker / LWT - Food Science and Technology 68 (2016) 153e159   155

  • 8/15/2019 1-s2.0-S0023643815303893-main

    4/7

    requires longer time.

     3.3. Texture pro le analysis

    The standard deviations of TPA parameter values were highbecause of the moisture distribution in central and lateral locationsof dried meat products due to different level of drying at thesepoints. Freeze dried control samples (C1) had signicantly lowerhardness values than highly salted samples (S2) as shown in Fig. 1.Increasing salt level enhanced hardness as it is indicated by higherhardness of SP2 samples than hardness of SP1 samples (P <  0.05).Ruiz-Ramírez, Arnau, et al. (2005)  also found that air dried and

    cured muscles with higher salt content had higher hardness valuethan muscles with low salt content. They explained the hardness of samples including higher salt level by compaction of the myo-brillar structure and inhibitory effect of NaCl on calpains activity.The effect of salting on hardness of freeze dried samples was foundsmilar to hardness of air dried samples. There was no statisticallysignicant difference between hardness of pressed and non-pressed samples having same salt content (P   0.05).  Garcia-Gilet al. (2014)   indicated that high pressure treatment of 100 MPaaffected softness. Hardness was not affected by pressing force weapplied but greater forces may change the hardness of samples.Decreasing moisture content increased hardness so that there wasa negative relationship between hardness and moisture content(P < 0.05). Ruiz-Ramírez, Serra, et al. (2005) indicated that hardness

    of cured loin products dried by air increased with drying and they

    explained the reasons of that as shrinkage with water loss duringthe drying. We dried our samples by freeze drying so effect of shrinkage on hardness is not expected so closer contact and in-teractions of proteins can be reason for enhanced hardness withreduction of moisture.

    Effect of salt levels, pressing and moisture levels on cohesive-ness was not found statistically signicant (P 0.05). Although thedifference was not signicant, the drier samples showed less actualcohesiveness value. Ruiz-Ramírez, Serra, et al. (2005) reported thatthere was a positive relationship between moisture content andcohesiveness of dry-cured loin products and they stated that thehigh energy is needed to compress harder samples and conse-quently this energy broke the protein interactions and reduced thecohesiveness.

    The springiness increased with presence of salt in sample andapplication of pressure, but this changes were not statistically sig-nicant (P     0.05). Springiness and moisture content showed apositive relationship for salted and pressed samples; however, itshould be noted that the difference was not important for low-salted samples (P   0.05) while it was important for high-saltedsamples (P  <  0.05). Ruiz-Ramírez, Arnau, et al. (2005) founded apositive relationship between moisture content and springness of cured muscles dried by air.

    Control samples had signicantly lower chewiness values whencompared to high salted samples (P  

  • 8/15/2019 1-s2.0-S0023643815303893-main

    5/7

    this differences were not great (P    0.05). The chewiness valuesincreased by drying samples at low salt content (P  <  0.05) but this

    effect was not observed at high salt content.On the other hand, samples with low salt-moisture content(SP3) has similar cohesiveness, springiness and chewiness valueswith samples including high salt-moisture content (SP2), but hasslightly lower hardness values which is not statistically signicant(P 0.05).

     3.4. Microstructure analyses

    In addition to water loss, salt diffusion caused higher gaps insalted samples when compared to raw muscle (Fig. 2a and b).Moreover swelling of   bers and disrupted muscle structureoccurred because of the salt diffusion.   Sultana et al. (2008)observed that salting of meat caused partial solubilization of 

    myobrillar proteins and consequently it weakens the myobrilstructure for frozen and chilled beef with the application of sodiumchloride and bicarbonate solution. Wang et al. (2014) indicated thatsalt addition led to degradation or denaturation of membrane andproteins linked the membrane to the myobrils in dry-cured duckproducts. According to Duranton, Simonin, Cheret, Guillou, and deLamballerie (2012), injection of salt solution (3% salt w/w) to porkmeat caused less visible but intact  bers. Salted samples subjectedto pressure treatment showed more compact and distruptedstructure than other samples (Fig. 2c). Garcia-Gil et al. (2014) re-ported that dry-cured ham muscles being subjected to high pres-sure were more compact than samples being not subjected to highpressure (500 MPa) becauseof the interstitial space reduction. Theyalso stated that the increase of hardness value could be related to

    compact structure of meat samples in addition to interstitial space

    reduction.

     3.5. Color measurements

    Salting of turkey meat samples did not affect the L* and b* values(P   0.05) as shown in Fig. 3. Curing agents stabilize the color of meat products but usage of NaCI alone could not provide enoughstabilization. The a* values decreased after salting (P  

  • 8/15/2019 1-s2.0-S0023643815303893-main

    6/7

     3.6. Sorption isotherms

    The equilibrium moisture content changed slowly with increaseof water activity upto 0.4 while a step increase at aw between 0.4and 0.6 and exponential increase after aw   of 0.6 were observed

    (Fig. 4). The equilibrium moisture content of sample including highlevel of salt was similar to one which has low level of salt at awbelow 0.4; however, it was higher after aw of 0.6. The aw of satu-rated NaCI solution was reported as 0.75 by Lioutas, Bechtel, andSteinberg (1984). They stated that NaCI binds a small amount of water at aw   below 0.75 because of crystallization and a largeamount of water at aw above 0.75. Muscles adsorbed less moisturebelow this point. Therefore, water sorption of samples includinghigh level of salt were greater than the samples including low levelof salt above aw of 0.75. Iglesias and Chirife (1976) indicated that thehigh protein content of meat products caused mostly the binding of water. They also explained that the number and availability of twotypes of hydrophilic groups (polar side chains and the carbonyl andimido groups of peptide bonds) are responsible for the wateradsorption. Water was adsorbed on polar side chains in monolayerat low humidities but adsorbed on peptide linkages in multilayerform at higher humidities.

     3.7. Microbiological analyses

    There were signicant increases in TAM counts of salted-pressedsamples including low salt content (SP1) or high salt content (SP2)with high moisture at day 28, 42 and 70 (Table 2). After 70 daysstorage, the mesophlic aerobic counts reached high values. Theinitial TAM counts of SP2 samples was higher than TAM counts of 

    SP1 samples. This should be a result of higher initial microbialcount of samples or contamination during processing. SP1 sampleshad higher TAM counts than SP2 samples after 42 days of storage.Increase of TAM counts with reduction of salt content must beresult of increased water activity and reduced antimicrobial effectof salt.  Uguz et al. (2011)  produced partially dried beef sampleswith air drying and found that increasing salt content reduced theinitial TAM count of dried beef samples. They did not examinemicrobial growth during storage. Reduction of moisture contentwith longer drying in samples including low salt and moisture(SP3) decreased the TAM counts compared to SP2 samples.

    Micrococcus/Staphylococcus counts were not detected in SP1, SP2and SP3 samples until 42 day. After this day,  Micrococcus/Staphy-lococcus counts reached detectable levels in SP1 and SP2 samplesand increased from 42 day to 70 day; however, in SP3 sample noMicrococcus/Staphylococcus   count was found. SP1 samples hadhigher  Micrococcus/Staphylococcus  counts than SP2 samples after42 days of storage. Reduction of moisture content with longerdrying in samples including low level of salt (SP3) caused lowercount of  Micrococcus/Staphylococcus .

    Initial Yeast/Mold counts of samples were not detectable level,they reached that levels after 70 days of storage. SP1 samples had

    higher Yeast/Mold count than SP2 samples and SP3 samples hadthe lowest count at the day of 70. These results show that, reductionof moisture content is more effective than high level salting processto reduce growth of TAM,  Micrococcus/Staphylococcus   and Yeast/Mould counts.  Enterobacteriaceae   counts were under detectablelevels (

  • 8/15/2019 1-s2.0-S0023643815303893-main

    7/7

    counts of SP3 samples having low level of salt-moisture were lowerthan those counts of SP2 samples. It can be concluded from theseresults that, salt content of freeze dried turkey meat can be reducedby reducing moisture content in freeze dryer without negativelyaffecting microbial quality.

    References

    Askin, O. O., & Kilic, B. (2009). Effect of microbial transglutaminase, sodiumcaseinate and non-fat dry milk on quality of salt-free, low fat turkey d€onerkebab. LWT-Food Science and Technology, 42(10), 1590e1596.

    Babic, J., Cantalejo, M. J., & Arroqui, C. (2009). The effects of freeze-drying processparameters on Broiler chicken breast meat.  LWT-Food Science and Technology,42(8), 1325e1334.

    Barbut, S. (2002).   Poultry meat processing and product technology. Poultry products processing. An industry guide  (pp. 1e30).

    Bell, L. N., & Labuza, T. P. (2000).  Moisture sorption practical aspects of isothermmeasurement and use. St. Paul, MN: American Association of Cereal Chemists(Chapter 3).

    Canto, A., Lima, B., Cruz, A., L azaro, C., Freitas, D., Faria, J. A., et al. (2012). Effect of high hydrostatic pressure on the color and texture parameters of refrigeratedCaiman (Caiman crocodilus yacare) tail meat.  Meat Science, 91(3), 255e260.

    Comaposada, J., Gou, P., Pakowski, Z., & Arnau, J. (2000). Desorption isotherms forpork meat at different NaCt contents and temperatures.   Drying Technology,18(3), 723e746.

    Cumhur,   €O., Şeker, M., & Sadıkoglu, H. (2015). Freeze-drying of turkey breast meat:

    mathematical modeling and estimation of transport parameters.  Drying Tech-nology. http://dx.doi.org/10.1080/07373937.2015.1064945.Duranton, F., Simonin, H., Cheret, R., Guillou, S., & de Lamballerie, M. (2012). Effect

    of high pressure and salt on pork meat quality and microstructure.   Journal of Food Science, 77 (8), E188eE194.

    Garcia-Gil, N., Santos-Garces, E., Fulladosa, E., Laverse, J., Del Nobile, M. A., & Gou, P.(2014). High pressure induces changes in texture and microstructure of musclesin dry-cured hams. Innovative Food Science & Emerging Technologies, 22, 63e69.

    George, J. P., & Datta, A. (2002). Development and validation of heat and masstransfer models for freeze-drying of vegetable slices. Journal of Food Engineering,52(1), 89e93.

    G€ok, V., Obuz, E., & Akkaya, L. (2008). Effects of packaging method and storage timeon the chemical, microbiological, and sensory properties of Turkish pastirmaeAdry cured beef product.   Meat Science, 80(2), 335e344.

    Greenspan, L. (1977). Humidity xed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards, 81(1), 89e96.

    Guler, S., & Seker, M. (2009). The effect of cinnamon and guar gum on bacillus

    cereus population in milk.  Journal of Food Processing and Preservation, 33 (3),415e426.

    Iglesias, H. A., & Chirife, J. (1976). Equilibrium moisture contents of air dried beef.Dependence on drying temperature.   International Journal of Food Science   &Technology, 11(6), 565e573.

    Kargozari, M., Moini, S., Basti, A. A., Emam-Djomeh, Z., Ghasemlou, M., Martin, I. R.,et al. (2014). Development of Turkish dry-fermented sausage (sucuk) refor-mulated with camel meat and hump fat and evaluation of physicochemical,textural, fatty acid and volatile compound proles during ripening.   LWT-FoodScience and Technology, 59(2), 849e858.

    Kaymak-Ertekin, F., & Gedik, A. (2004). Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes.  LWT-Food Science and Tech-nology, 37 (4), 429e438.

    Kirk, S., & Sawyer, R. (1991).   Pearson's composition and analysis of foods. LongmanGroup Ltd.

    Lioutas, T. S., Bechtel, P. J., & Steinberg, M. P. (1984). Desorption and adsorptionisotherms of meat-salt mixtures.   Journal of Agricultural and Food Chemistry,

     32(6), 1382e1385.Lopez-Quiroga, E., Antelo, L. T., & Alonso, A. A. (2012). Time-scale modeling and

    optimal control of freezeedrying. Journal of Food Engineering, 111(4), 655e666.Rahman, M. S., & Sablani, S. S. (2009). Water activity measurement methods of 

    foods. In  Food properties handbook  (pp. 9e32).Ruiz-Ramírez, J., Arnau, J., Serra, X., & Gou, P. (2005). Relationship between water

    content, NaCl content, pH and texture parameters in dry-cured muscles.  Meat Science, 70(4), 579e587.

    Ruiz-Ramírez, J., Serra, X., Arnau, J., & Gou, P. (2005). Proles of water content, wateractivity and texture in crusted dry-cured loin and in non-crusted dry-cured loin.Meat Science, 69(3), 519e525.

    Sadikoglu, H., Ozdemir, M., & Seker, M. (2003). Optimal control of the primarydrying stage of freeze drying of solutions in vials using variational calculus.Drying Technology, 21(7), 1307e1331.

    Sultana, A., Nakanishi, A., Roy, B., Mizunoya, W., Tatsumi, R., Ito, T., et al. (2008).Quality improvement of frozen and chilled beef biceps femoris with theapplication of salt-bicarbonate solution.  Asian Australasian Journal Of AnimalSciences, 21(6), 903.

    Uguz, Ş ., Soyer, A., & Dalmiş , Ü. (2011). Effects of different salt contents on somequality characteristics during processing of dry-cured turkish pastirma. Journalof Food Quality, 34(3), 204e211.

    Wang, D., Zhang, M., Xu, W., Bian, H., Liu, F., Geng, Z., et al. (2014). Changes inchemical-physical Index and microstructure during dry-cured duck processing.The Journal of Poultry Science, 51(2), 220e226.

    Wiklund, E., Kemp, R., Li, Y., & Wu, G. (2010). Spray chilling of deer carcas-sesdEffects on carcass weight, meat moisture content, purge and microbio-logical quality.   Meat Science, 86 (4), 926e930.

    M.Y. Yalç ın, M. Şeker / LWT - Food Science and Technology 68 (2016) 153e159   159

    http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref3http://refhub.elsevier.com/S0023-6438(15)30389-3/sref3http://refhub.elsevier.com/S0023-6438(15)30389-3/sref3http://refhub.elsevier.com/S0023-6438(15)30389-3/sref3http://refhub.elsevier.com/S0023-6438(15)30389-3/sref3http://refhub.elsevier.com/S0023-6438(15)30389-3/sref4http://refhub.elsevier.com/S0023-6438(15)30389-3/sref4http://refhub.elsevier.com/S0023-6438(15)30389-3/sref4http://refhub.elsevier.com/S0023-6438(15)30389-3/sref4http://refhub.elsevier.com/S0023-6438(15)30389-3/sref4http://refhub.elsevier.com/S0023-6438(15)30389-3/sref4http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref6http://refhub.elsevier.com/S0023-6438(15)30389-3/sref6http://refhub.elsevier.com/S0023-6438(15)30389-3/sref6http://refhub.elsevier.com/S0023-6438(15)30389-3/sref6http://refhub.elsevier.com/S0023-6438(15)30389-3/sref6http://refhub.elsevier.com/S0023-6438(15)30389-3/sref6http://dx.doi.org/10.1080/07373937.2015.1064945http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref10http://refhub.elsevier.com/S0023-6438(15)30389-3/sref10http://refhub.elsevier.com/S0023-6438(15)30389-3/sref10http://refhub.elsevier.com/S0023-6438(15)30389-3/sref10http://refhub.elsevier.com/S0023-6438(15)30389-3/sref10http://refhub.elsevier.com/S0023-6438(15)30389-3/sref10http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref12http://refhub.elsevier.com/S0023-6438(15)30389-3/sref12http://refhub.elsevier.com/S0023-6438(15)30389-3/sref12http://refhub.elsevier.com/S0023-6438(15)30389-3/sref12http://refhub.elsevier.com/S0023-6438(15)30389-3/sref12http://refhub.elsevier.com/S0023-6438(15)30389-3/sref12http://refhub.elsevier.com/S0023-6438(15)30389-3/sref13http://refhub.elsevier.com/S0023-6438(15)30389-3/sref13http://refhub.elsevier.com/S0023-6438(15)30389-3/sref13http://refhub.elsevier.com/S0023-6438(15)30389-3/sref13http://refhub.elsevier.com/S0023-6438(15)30389-3/sref13http://refhub.elsevier.com/S0023-6438(15)30389-3/sref13http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref16http://refhub.elsevier.com/S0023-6438(15)30389-3/sref16http://refhub.elsevier.com/S0023-6438(15)30389-3/sref16http://refhub.elsevier.com/S0023-6438(15)30389-3/sref16http://refhub.elsevier.com/S0023-6438(15)30389-3/sref16http://refhub.elsevier.com/S0023-6438(15)30389-3/sref16http://refhub.elsevier.com/S0023-6438(15)30389-3/sref17http://refhub.elsevier.com/S0023-6438(15)30389-3/sref17http://refhub.elsevier.com/S0023-6438(15)30389-3/sref17http://refhub.elsevier.com/S0023-6438(15)30389-3/sref17http://refhub.elsevier.com/S0023-6438(15)30389-3/sref17http://refhub.elsevier.com/S0023-6438(15)30389-3/sref18http://refhub.elsevier.com/S0023-6438(15)30389-3/sref18http://refhub.elsevier.com/S0023-6438(15)30389-3/sref18http://refhub.elsevier.com/S0023-6438(15)30389-3/sref18http://refhub.elsevier.com/S0023-6438(15)30389-3/sref18http://refhub.elsevier.com/S0023-6438(15)30389-3/sref18http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref20http://refhub.elsevier.com/S0023-6438(15)30389-3/sref20http://refhub.elsevier.com/S0023-6438(15)30389-3/sref20http://refhub.elsevier.com/S0023-6438(15)30389-3/sref20http://refhub.elsevier.com/S0023-6438(15)30389-3/sref20http://refhub.elsevier.com/S0023-6438(15)30389-3/sref20http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref23http://refhub.elsevier.com/S0023-6438(15)30389-3/sref23http://refhub.elsevier.com/S0023-6438(15)30389-3/sref23http://refhub.elsevier.com/S0023-6438(15)30389-3/sref23http://refhub.elsevier.com/S0023-6438(15)30389-3/sref23http://refhub.elsevier.com/S0023-6438(15)30389-3/sref24http://refhub.elsevier.com/S0023-6438(15)30389-3/sref24http://refhub.elsevier.com/S0023-6438(15)30389-3/sref24http://refhub.elsevier.com/S0023-6438(15)30389-3/sref24http://refhub.elsevier.com/S0023-6438(15)30389-3/sref24http://refhub.elsevier.com/S0023-6438(15)30389-3/sref24http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref26http://refhub.elsevier.com/S0023-6438(15)30389-3/sref26http://refhub.elsevier.com/S0023-6438(15)30389-3/sref26http://refhub.elsevier.com/S0023-6438(15)30389-3/sref26http://refhub.elsevier.com/S0023-6438(15)30389-3/sref26http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref27http://refhub.elsevier.com/S0023-6438(15)30389-3/sref26http://refhub.elsevier.com/S0023-6438(15)30389-3/sref26http://refhub.elsevier.com/S0023-6438(15)30389-3/sref26http://refhub.elsevier.com/S0023-6438(15)30389-3/sref26http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref25http://refhub.elsevier.com/S0023-6438(15)30389-3/sref24http://refhub.elsevier.com/S0023-6438(15)30389-3/sref24http://refhub.elsevier.com/S0023-6438(15)30389-3/sref24http://refhub.elsevier.com/S0023-6438(15)30389-3/sref24http://refhub.elsevier.com/S0023-6438(15)30389-3/sref23http://refhub.elsevier.com/S0023-6438(15)30389-3/sref23http://refhub.elsevier.com/S0023-6438(15)30389-3/sref23http://refhub.elsevier.com/S0023-6438(15)30389-3/sref23http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref22http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref21http://refhub.elsevier.com/S0023-6438(15)30389-3/sref20http://refhub.elsevier.com/S0023-6438(15)30389-3/sref20http://refhub.elsevier.com/S0023-6438(15)30389-3/sref20http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref19http://refhub.elsevier.com/S0023-6438(15)30389-3/sref18http://refhub.elsevier.com/S0023-6438(15)30389-3/sref18http://refhub.elsevier.com/S0023-6438(15)30389-3/sref18http://refhub.elsevier.com/S0023-6438(15)30389-3/sref18http://refhub.elsevier.com/S0023-6438(15)30389-3/sref17http://refhub.elsevier.com/S0023-6438(15)30389-3/sref17http://refhub.elsevier.com/S0023-6438(15)30389-3/sref16http://refhub.elsevier.com/S0023-6438(15)30389-3/sref16http://refhub.elsevier.com/S0023-6438(15)30389-3/sref16http://refhub.elsevier.com/S0023-6438(15)30389-3/sref16http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref15http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref14http://refhub.elsevier.com/S0023-6438(15)30389-3/sref13http://refhub.elsevier.com/S0023-6438(15)30389-3/sref13http://refhub.elsevier.com/S0023-6438(15)30389-3/sref13http://refhub.elsevier.com/S0023-6438(15)30389-3/sref13http://refhub.elsevier.com/S0023-6438(15)30389-3/sref12http://refhub.elsevier.com/S0023-6438(15)30389-3/sref12http://refhub.elsevier.com/S0023-6438(15)30389-3/sref12http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref11http://refhub.elsevier.com/S0023-6438(15)30389-3/sref10http://refhub.elsevier.com/S0023-6438(15)30389-3/sref10http://refhub.elsevier.com/S0023-6438(15)30389-3/sref10http://refhub.elsevier.com/S0023-6438(15)30389-3/sref10http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref9http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://refhub.elsevier.com/S0023-6438(15)30389-3/sref8http://dx.doi.org/10.1080/07373937.2015.1064945http://refhub.elsevier.com/S0023-6438(15)30389-3/sref6http://refhub.elsevier.com/S0023-6438(15)30389-3/sref6http://refhub.elsevier.com/S0023-6438(15)30389-3/sref6http://refhub.elsevier.com/S0023-6438(15)30389-3/sref6http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref5http://refhub.elsevier.com/S0023-6438(15)30389-3/sref4http://refhub.elsevier.com/S0023-6438(15)30389-3/sref4http://refhub.elsevier.com/S0023-6438(15)30389-3/sref4http://refhub.elsevier.com/S0023-6438(15)30389-3/sref3http://refhub.elsevier.com/S0023-6438(15)30389-3/sref3http://refhub.elsevier.com/S0023-6438(15)30389-3/sref3http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref2http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1http://refhub.elsevier.com/S0023-6438(15)30389-3/sref1