1 segmentation of salient regions in outdoor scenes using imagery and 3-d data gunhee kim daniel...

28
1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics Institute < WACV2008 >

Post on 15-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

1

Segmentation of Salient Regions in Outdoor Scenes

Using Imagery and 3-D Data

Segmentation of Salient Regions in Outdoor Scenes

Using Imagery and 3-D Data

Gunhee Kim Daniel Huber Martial Hebert

Carnegie Mellon University

Robotics Institute

< WACV2008 >

Page 2: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

2

Perception for Unmanned VehiclesPerception for Unmanned Vehicles

Imagery

3-D scan

Sensors

Input Data

Vrml_file

Page 3: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

3

Problem StatementProblem Statement

• Our ultimate goal is…

• Here, we focus on a crucial pre-requisite step !!

Page 4: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

4

Object DetectionObject Detection

• Naïve Scanning

Page 5: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

5

Object DetectionObject Detection

• Prioritize the searching regions

Salient Regions

Page 6: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

6

Problem StatementProblem Statement

• Saliency Detection using Imagery and 3-D Data

– A Mid-level vision task

– No high-level priors, models, or learning

– Only low-level information

– Ex) pixel colors, (x,y,z)-coordinates

Page 7: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

7

Problem StatementProblem Statement

< Input >

1. An image

2. 3D scan data

< Output >

Information-theoreticoptimal clustering

Segmentation of top-k most salient regions

Page 8: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

8

Saliency Saliency

• Saliency: The quality of standing out relative to neighboring items

• Top-down

– Driven by high-level concepts

– Memories and Experiences

• Bottom-up

– Driven by low-level features

– Intensity, contrast, color, orientation, and motion

Page 9: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

9

Two Bottom-Up ModelsTwo Bottom-Up Models

• Itti-Koch-Niebur Model [1]

[1] L.Itti, C.Koch and E.Niebur A Model of Saliency-based Visual Attention for Rapid Scene Analysis, PAMI, 1998.

Page 10: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

10

Two Bottom-Up ModelsTwo Bottom-Up Models

• Kadir-Brady Saliency detector [3]

– Find the region which are locally complex, and globally discriminative.

[3] T.Kadir and M. Brady, Scale, Saliency and Image Description. IJCV 45 (2):83-105, 2001.

More flatter, higher complex

Scale, rotation, affine invariance

Page 11: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

11

Previous Work for Saliency in 3-DPrevious Work for Saliency in 3-D

[1] S. Frintrop, E. Rome, A. N¨uchter, and H. Surmann. A bimodal laser-based attention system. CVIU, 2005.[2] D. M. Cole, A. R. Harrison, and P.M. Newman. Using naturally salient regions for slam with 3d laser data, ICRA workshop on SLAM, 2005.

• BILAS [3]: Itti et al [1]’s model

• Cole et al. [4]:

Kadir-Brady [2]’s model

Page 12: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

12

Saliency of 3-D Data Saliency of 3-D Data

• A point cloud

• Gestalt laws of grouping [5]

Proximity laws Continuity & Simplicity laws

Page 13: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

13

Saliency of 3-D Data Saliency of 3-D Data

• How to detect salient regions in 3-D data?

• (Answer) Find the set of clusters that best fit 3-D pdfs– Gaussian

– Uniform

GaussianUniform

Page 14: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

14

Robust Information-Theoretic Clustering (RIC) [6]Robust Information-Theoretic Clustering (RIC) [6]

• Input: A feature set + Families of pdfs

• Output: Clusters according to how well they fit the pdfs

• Minimum Description Length (MDL) principle

– Goodness of fit = compression costs

– Huffman-like coding

[6] C.Bohm,C.Faloutsos, J.Y.Pan, and C.Plant, Robust information-theoretic clustering, KDD 2006

Page 15: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

15

Proposed ApproachProposed Approach

Clustering of 3-D Data using RIC

Projection of Clusterson an Image

Compute Saliency Valuesof Clusters

Image Segmentation of Top-ranked Saliency Regions

Page 16: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

16

Clustering in 3-D DataClustering in 3-D Data

• RIC clustering

Uniform distGaussian dist

InformationTheoretic Optimal Clustering

Page 17: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

17

Proposed ApproachProposed Approach

Clustering on 3-D Data using RIC

Projection of Clustersto an Image

Compute Saliency Valuesof Clusters

Image Segmentation of Top-ranked Saliency Regions

Projection of Clustersto an Image

Page 18: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

18

Saliency FeaturesSaliency Features

)( ii Cf )( ie Cf

)( ih Cf

)( is Cf

)( is Cf

3D-data Image data (RGB color)

Local Regional Global

Page 19: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

19

Saliency FeaturesSaliency Features

)( ii Cf

Local 3D-data

1. Compression Cost- how well the cluster is fit to the reference family of pdfs

Page 20: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

20

Saliency FeaturesSaliency Features

Local RGB-data

2. Entropy of RGB histograms

[7] - Follow Kadir-Brady’s definition

)( ie Cf

[7] T. Kadir and M. Brady. Saliency, scale and image description. IJCV, 45(2):83–105, 2001.

Page 21: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

21

Saliency FeaturesSaliency Features

Regional RGB-data

3. Center-surround contrast [8]

- Follow Itti et al’s definition

[8] T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum.Learning to detect a salient object, CVPR, 2007.

)( ih Cf

Page 22: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

22

Saliency FeaturesSaliency Features

Global RGB-data

4. Color spatial distribution [8] - Rare color: More salient

[8] T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum.Learning to detect a salient object, CVPR, 2007.

)( is Cf

)( is Cf

Page 23: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

23

Proposed ApproachProposed Approach

Clustering on 3-D Data using RIC

Projection of Clustersto an Image

Compute Saliency Valuesof Clusters

Image Segmentation of Top-ranked Saliency Regions

Projection of Clustersto an Image

Page 24: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

24

Image SegmentationImage Segmentation

• From Sparse Points to Dense Regions

• Using Conventional Markov-Random Field (MRF) Models

– Labeling Problem

Page 25: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

25

Qualitative ResultsQualitative Results

Page 26: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

26

Qualitative ResultsQualitative Results

Page 27: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

27

Future WorkFuture Work

• Integration with the Recognition

• Over-segmentation & Under-segmentation

– Model-specific pdfs

Page 28: 1 Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data Gunhee Kim Daniel Huber Martial Hebert Carnegie Mellon University Robotics

28

ConclusionConclusion

• Bottom-up saliency detection using Imagery and 3-D data as a mid-level task

– (x,y,z)-coordinates of 3-D data and Colors at pixels.

• Practically useful building block for perception of unmanned vehicles