1. superjoninĖs keramikos ir jŲ technologijos 1.1. superjoniniŲ kristalŲ struktŪros -retoji...

62
1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; - Kristalinės V O . , Na+, H+ superjonikų struktūros; - Netvarkios Li+ superjonikų struktūros; - Superjoninių keramikų gamybos technologiniai ypatumai. 1.2. JONINIS SUPERJONIKŲ LAIDUMAS IR POLIARIZACINIAI REIŠKINIAI 1.3. DINAMINĖS SUPERJONIKŲ SAVYBĖS - Dielektrinės skvarbos ir elektrinio joninių ir superjoninių kristalų laidumo priklausomybių nuo elektrinio lauko dažnio aprašas; - Relaksacinė superjonikų joninio laidumo dispersija; - Relaksacinė ir rezonansinė ir dispersijos Li+ superjonikuose. 1.4. SUPERJONINIŲ JUNGINIŲ TAIKYMAS - Superjoniniai akumuliatoriai; - Kuro gardelės; - Deguonies dujų jutikliai; - Anglies monoksido dujų jutikliai; - Jonistoriai. Pagrindinė literatūra: 1.Tetsuichi Kudo and Kazuo Fueki “Solid State Ionics”, Kadansha, 1990. 2. M.B. Salamon “Physics of Superionic Conductors”, Springer-Verlag Berlin Heidelberg, New York, 1979. 3. V. Grivickas, A,F.Orliukas, A. Žindulis, S. Tamulevičius, Medžiagų mokslas, Progretus, Vilnius, 2008. 4. A.F. Orliukas, “Superjoniniai laidininkai”, Vilnius, VUL, 2004. 5. V.V.Kharton, „Solid State Electrochemistry I“, Fundamentals, Materials and their Applications, Wiley-Vch Verlag GmbH&Co. KGaA,2009. 6. John O‘M. Bockris, Amulys K. N. Reddy, Maria Gambos- Aldeco, Modern Electrochemistry (Fundamentals of electrodics), (Kluwer academic publishers, New York, Boston, Doldrecht, London, Moscow, 2002). 7. Anthony R. West „ Solid State Chemistry and its Applications“, John Wiley & Sons Ltd., Reprinted 1990. 8. A.K. Jonscher „Dielectric relaxation in solids“, Chelsea Dielectrcs Press, London, 1996. MEDŽIAGŲ INŽINERIJA. DOKTORANTAMS SUPERJONIKŲ SANDAS

Upload: archibald-hunt

Post on 28-Jan-2016

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

1 SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS11 SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose - Kristalinės VO

Na+ H+ superjonikų struktūros

- Netvarkios Li+ superjonikų struktūros- Superjoninių keramikų gamybos technologiniai ypatumai12 JONINIS SUPERJONIKŲ LAIDUMAS IR POLIARIZACINIAI REIŠKINIAI13 DINAMINĖS SUPERJONIKŲ SAVYBĖS- Dielektrinės skvarbos ir elektrinio joninių ir superjoninių kristalų laidumo priklausomybių nuo elektrinio lauko dažnio

aprašas- Relaksacinė superjonikų joninio laidumo dispersija- Relaksacinė ir rezonansinė ir dispersijos Li+ superjonikuose14 SUPERJONINIŲ JUNGINIŲ TAIKYMAS- Superjoniniai akumuliatoriai- Kuro gardelės- Deguonies dujų jutikliai- Anglies monoksido dujų jutikliai- Jonistoriai

Pagrindinė literatūra

1Tetsuichi Kudo and Kazuo Fueki ldquoSolid State Ionicsrdquo Kadansha 1990

2 MB Salamon ldquoPhysics of Superionic Conductorsrdquo Springer-Verlag Berlin Heidelberg New York 1979

3 V Grivickas AFOrliukas A Žindulis S Tamulevičius Medžiagų mokslas Progretus Vilnius 2008

4 AF Orliukas ldquoSuperjoniniai laidininkairdquo Vilnius VUL 2004

5 VVKharton bdquoSolid State Electrochemistry Ildquo Fundamentals Materials and their Applications Wiley-Vch Verlag GmbHampCo KGaA2009

6 John OlsquoM Bockris Amulys K N Reddy Maria Gambos- Aldeco Modern Electrochemistry (Fundamentals of electrodics) (Kluwer academic publishers New York Boston Doldrecht London Moscow 2002)

7 Anthony R West bdquo Solid State Chemistry and its Applicationsldquo John Wiley amp Sons Ltd Reprinted 1990

8 AK Jonscher bdquoDielectric relaxation in solidsldquo Chelsea Dielectrcs Press London 1996

9 F A Karamov bdquoSuperionic Conductors Cambidge International Science Publishing2008

10 JKawamura S Yoshikado T sakuma Y Michihiro M Aniya Y Ito bdquoSuperionic Conductor PhysicsldquoWorld Scientific 2007

10 K Funke Science and Technology of Advanced Materials14 (2013) 043502 (50 pp)

Paruošė prof AFOrliukas

MEDŽIAGŲ INŽINERIJA DOKTORANTAMS SUPERJONIKŲ SANDAS

Chemical state

changes

Secondary (rechargeable) battery-electric power

Primary or full cell-electric power

Electric power-photo cell

light

Electric signal-chemical sensors

massColoration-

electrochromic display (ECD)

Electric signal

Electrolysis (electric power Chemical

species

Electrochemical devices agree T Kudo K Fueki SSI 1990

1833 Faradays Law

1897 ZrO2 glower (Nernst)

1920 High ionic conduction in -AgI

1933 Diffusion theory of lattice defects

1934 Ion transport mechanism for -AgI

1943 Ionic conduction theory for ZrO2

1962 High temperature fuel cell using ZrO2

1967 -alumina Rb Ag4I5

1969 Electro-chromism in WO3

1970 Electric double-layer capacitors (ionistor)

1970 Electrochemical memory devices

1972 Solid state Li battery memoriode

1976 NASICON secondary battery using TiS2

intercalation1979 High Cu+ conductor

Organic polymer solid-electrolyte1981 Plastic battery

1983 Commercial ECD

Future prospects of SSI Neuron fiber Bio-computer system

a

bc

x

yz

Ag

J

ndashAgJ structure

ndashAgJ lattice

J d h b

In the lattice of -AgI are d-12 b-6 and h-24 energy positions for diffusion of 2 Ag ions

YSZ

(UO2 PO4)n

-H+ ryšiai

-PO4 kompleksai

-H3O+

-H2O

HUP structure

) -Li3Fe2(PO4)3 Li+ ion map on the (010) plane b) oxygen window in phase on the (001) plane c) - Li3Fe2(PO4)3 Li+

ion map on the (010) plane

T=450K

T=523K fazė-monoklininė (P2n)

fazė-rombinė (Pcan)

fazė -metastabili

1

1

1

1

Ideal lattice Point Frenkel ndashtype defects

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 2: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

Chemical state

changes

Secondary (rechargeable) battery-electric power

Primary or full cell-electric power

Electric power-photo cell

light

Electric signal-chemical sensors

massColoration-

electrochromic display (ECD)

Electric signal

Electrolysis (electric power Chemical

species

Electrochemical devices agree T Kudo K Fueki SSI 1990

1833 Faradays Law

1897 ZrO2 glower (Nernst)

1920 High ionic conduction in -AgI

1933 Diffusion theory of lattice defects

1934 Ion transport mechanism for -AgI

1943 Ionic conduction theory for ZrO2

1962 High temperature fuel cell using ZrO2

1967 -alumina Rb Ag4I5

1969 Electro-chromism in WO3

1970 Electric double-layer capacitors (ionistor)

1970 Electrochemical memory devices

1972 Solid state Li battery memoriode

1976 NASICON secondary battery using TiS2

intercalation1979 High Cu+ conductor

Organic polymer solid-electrolyte1981 Plastic battery

1983 Commercial ECD

Future prospects of SSI Neuron fiber Bio-computer system

a

bc

x

yz

Ag

J

ndashAgJ structure

ndashAgJ lattice

J d h b

In the lattice of -AgI are d-12 b-6 and h-24 energy positions for diffusion of 2 Ag ions

YSZ

(UO2 PO4)n

-H+ ryšiai

-PO4 kompleksai

-H3O+

-H2O

HUP structure

) -Li3Fe2(PO4)3 Li+ ion map on the (010) plane b) oxygen window in phase on the (001) plane c) - Li3Fe2(PO4)3 Li+

ion map on the (010) plane

T=450K

T=523K fazė-monoklininė (P2n)

fazė-rombinė (Pcan)

fazė -metastabili

1

1

1

1

Ideal lattice Point Frenkel ndashtype defects

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 3: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

1833 Faradays Law

1897 ZrO2 glower (Nernst)

1920 High ionic conduction in -AgI

1933 Diffusion theory of lattice defects

1934 Ion transport mechanism for -AgI

1943 Ionic conduction theory for ZrO2

1962 High temperature fuel cell using ZrO2

1967 -alumina Rb Ag4I5

1969 Electro-chromism in WO3

1970 Electric double-layer capacitors (ionistor)

1970 Electrochemical memory devices

1972 Solid state Li battery memoriode

1976 NASICON secondary battery using TiS2

intercalation1979 High Cu+ conductor

Organic polymer solid-electrolyte1981 Plastic battery

1983 Commercial ECD

Future prospects of SSI Neuron fiber Bio-computer system

a

bc

x

yz

Ag

J

ndashAgJ structure

ndashAgJ lattice

J d h b

In the lattice of -AgI are d-12 b-6 and h-24 energy positions for diffusion of 2 Ag ions

YSZ

(UO2 PO4)n

-H+ ryšiai

-PO4 kompleksai

-H3O+

-H2O

HUP structure

) -Li3Fe2(PO4)3 Li+ ion map on the (010) plane b) oxygen window in phase on the (001) plane c) - Li3Fe2(PO4)3 Li+

ion map on the (010) plane

T=450K

T=523K fazė-monoklininė (P2n)

fazė-rombinė (Pcan)

fazė -metastabili

1

1

1

1

Ideal lattice Point Frenkel ndashtype defects

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 4: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

a

bc

x

yz

Ag

J

ndashAgJ structure

ndashAgJ lattice

J d h b

In the lattice of -AgI are d-12 b-6 and h-24 energy positions for diffusion of 2 Ag ions

YSZ

(UO2 PO4)n

-H+ ryšiai

-PO4 kompleksai

-H3O+

-H2O

HUP structure

) -Li3Fe2(PO4)3 Li+ ion map on the (010) plane b) oxygen window in phase on the (001) plane c) - Li3Fe2(PO4)3 Li+

ion map on the (010) plane

T=450K

T=523K fazė-monoklininė (P2n)

fazė-rombinė (Pcan)

fazė -metastabili

1

1

1

1

Ideal lattice Point Frenkel ndashtype defects

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 5: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

ndashAgJ lattice

J d h b

In the lattice of -AgI are d-12 b-6 and h-24 energy positions for diffusion of 2 Ag ions

YSZ

(UO2 PO4)n

-H+ ryšiai

-PO4 kompleksai

-H3O+

-H2O

HUP structure

) -Li3Fe2(PO4)3 Li+ ion map on the (010) plane b) oxygen window in phase on the (001) plane c) - Li3Fe2(PO4)3 Li+

ion map on the (010) plane

T=450K

T=523K fazė-monoklininė (P2n)

fazė-rombinė (Pcan)

fazė -metastabili

1

1

1

1

Ideal lattice Point Frenkel ndashtype defects

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 6: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

In the lattice of -AgI are d-12 b-6 and h-24 energy positions for diffusion of 2 Ag ions

YSZ

(UO2 PO4)n

-H+ ryšiai

-PO4 kompleksai

-H3O+

-H2O

HUP structure

) -Li3Fe2(PO4)3 Li+ ion map on the (010) plane b) oxygen window in phase on the (001) plane c) - Li3Fe2(PO4)3 Li+

ion map on the (010) plane

T=450K

T=523K fazė-monoklininė (P2n)

fazė-rombinė (Pcan)

fazė -metastabili

1

1

1

1

Ideal lattice Point Frenkel ndashtype defects

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 7: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

YSZ

(UO2 PO4)n

-H+ ryšiai

-PO4 kompleksai

-H3O+

-H2O

HUP structure

) -Li3Fe2(PO4)3 Li+ ion map on the (010) plane b) oxygen window in phase on the (001) plane c) - Li3Fe2(PO4)3 Li+

ion map on the (010) plane

T=450K

T=523K fazė-monoklininė (P2n)

fazė-rombinė (Pcan)

fazė -metastabili

1

1

1

1

Ideal lattice Point Frenkel ndashtype defects

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 8: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

(UO2 PO4)n

-H+ ryšiai

-PO4 kompleksai

-H3O+

-H2O

HUP structure

) -Li3Fe2(PO4)3 Li+ ion map on the (010) plane b) oxygen window in phase on the (001) plane c) - Li3Fe2(PO4)3 Li+

ion map on the (010) plane

T=450K

T=523K fazė-monoklininė (P2n)

fazė-rombinė (Pcan)

fazė -metastabili

1

1

1

1

Ideal lattice Point Frenkel ndashtype defects

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 9: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

) -Li3Fe2(PO4)3 Li+ ion map on the (010) plane b) oxygen window in phase on the (001) plane c) - Li3Fe2(PO4)3 Li+

ion map on the (010) plane

T=450K

T=523K fazė-monoklininė (P2n)

fazė-rombinė (Pcan)

fazė -metastabili

1

1

1

1

Ideal lattice Point Frenkel ndashtype defects

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 10: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

1

1

1

1

Ideal lattice Point Frenkel ndashtype defects

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 11: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

The energy relief of of ions in the lattice with the point Frenkel ndashtype defects

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 12: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

NF-concentrof pFrenkel def

F-free energy of lattice

GF-Gibbs energy

S-entrophy S=QT

HF-enthalpy H=TS+pV

P1P2-probabilities

N

Nrsquo-jtarpmazgiuose

N-jmazguose

P1-jpasiskirstimo tikimybe

P2-vakansiju pasiskirstymo tikimybe

SF=QT HF=U+pV

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 13: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

1

1

1

1

Point Schottky-type defects

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 14: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

F-free energy of the lattice

Nš-concentr of pSchottky defects

N-concentration of the ions inttice

T-temperature

P-probability

Gš-Gibbs energy

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 15: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

Synthesis conditions of the Li1+xMxTi2-x(PO4)3 (where M=Sc Al Fe Y x=03) compounds by a solid phase reaction

Li2CO3

(purity 99999)Extra pure

NH4H2PO4TiO2

M2O3

The mixture was placed in the ethyl alcohol and

milled in a planetary mill during 8 h

The stoichiometric mixture was

heated at T=773K during 24 h

The mixture was placed in the ethyl alcohol and milled

during 12 h

The mixtures with Al Fe Y were heated at T=1173K during 1h and mixture with Sc was heated 1h at

T=1153K

The powders with Al Fe Y were

heated at T=1273Kduring 2 h

Cooling down to room temperatureMilling of the each

powder in the ethyl alcohol during 10 h

Drying the powder at

T=393K during 24 h

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 16: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Uniaxialy pressing of the powder at 300MPa

Heating of the pressed samples up to T=673K with

the velocity of 5degmin

Annealing of the samples at T=673K during 1 h

Heating of the samples of the system with Sc up toT=1543K with Al up to

T=1383K with Fe up to T=1283K with Y up to

T= 1293K with the velocity of

5degmin

The sintering of the ceramics at the

sintering temperaturewas conducted in air

for 1 h

Cooling down to T=300K with the

velocity of 5degmin

Sintering of the Li1+xMx Ti2-x(PO4)3 (where M=Sc Al Fe Y x=03) ceramics

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 17: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

Commercial YSZ GDC and SDC powder with different surface area SBET from company

Fuel Cell Materials were used for the sintering of the ceramics

The powder was uniaxially cold-pressed at 150 MPa The sintering of the ceramic samples was conducted in air at

temperature T = 1773 K The sintering duration of the ceramics was 1 h The composition SBET of the powder and relative density of the ceramics are presented in

Table

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 18: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

About BETBET theory is rule for the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for measurement of the specific surface area of a material In 1938 Stefan Brunauer Paul Hugh Emmett and Edward Teller published article about the BET theory in journal J Am Chem Soc 60 (1938) 309 and for he first time ldquo BET ldquoconsists of the first initials of their family names

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 19: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

YSZ GDC SDC composition SBET of the powder theoretical and relative densities of the ceramics

Composition SBET m2g Dtheoretical gcm3 d

Gd02Ce08O19 220 724[3] 950

Sm02Ce08O19 212 715[1] 940

Sm015Ce085O2 195 722[5] 940

Sm015Ce085O1925 203 - 940

Sm015Ce085O1925 8 - 920

Gd01Ce09O195 644 721[2] 970

Gd01Ce09O2 201 - 950

92 mol ZrO2 8 molY2O3 167 596[4] 970

92 mol ZrO2 8 molY2O3 124 - 950

1 HBLi et alActa Mater54(2006)721 2 KHuang et alJAmerCeramSoc81(1998)3573GChiadeli et alSolState Ioncs 176(2005)1505 4 HLiu et alMat And Design 31(2010)2972 5 CJiang et al Power Sources 165(2007)134

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 20: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

SEM images of Ce09Gd01O195 ceramics sintered from powder with SBET = 15803 m2g (a) and

SBET = 644 m2g (b)

a) b)

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 21: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

tgjj RCa

r

1

C

R

a

R C

b

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 22: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

jr

jUR

UC

ja Ua

U

a) b)

tguu

RCR

C

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 23: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

) )

021

m j

)

j

m j

1 2

Debaye formula

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 24: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

Moving of ionic charge carriers in in the superionic lattice

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 25: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

100 101 102 103 104 105 106 107 108 109 101010-3

10-2

10-1

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

Sm

f Hz

T=680K

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 26: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

0 100 200 300 400 5000

100

200

300

400

500

0 100 200 300 400 5000

100

200

300

400

500

Z middotm

Z middotm

8YSZ SBET

=167m2g

8YSZ SBET

=124m2g

T=680K

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 27: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

12 13 14 15 16 17 18 19 20 21 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

12 14 16 18 20 2210-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

103T K

tot

Sm 15SDC S

BET=203m2g E

tot=083eV

15SDC SBET

=8m2g Etot

=119eV

10GDC SBET

=644m2g Etot

=122eV

20GDC SBET

=220m2g Etot

=112eV

8YSZ SBET

=167m2g Etot

=098eV

8YSZ SBET

=124m2g Etot

=103eV

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 28: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

Total ionic conductivities (tot) and their activation

energies (Etot of GDC SDC 8YSZ ceramics at 700 K

Composition SBET m2g tot Sm Etot eV

20GDC 220 0094 112

10GDC 644 019 122

15SDC 8 0056 119

15SDC 203 0041 083

8YSZ 167 0004 098

8YSZ 124 0019 103

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 29: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

14 16 18 2010-3

10-2

10-1

100

15SDC BET = 8 15SDC BET = 203 10GDC BET = 201 10GDC BET = 644

b Sm

1000T K -1

8YSZ

BET = 167 BET = 124

800 700 600 500T K

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 30: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

kT

Eff f

R exp0

f0 = 278 1011 Hz

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 31: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

In the terahertz frequency range an oscillator law described the complex electrical conductivity dispersion

i

22

0

020

0~

where γ is the damping of the oscillator Δε is oscillator strength and ε is the high frequency permittivity originating from the electronic polarization and from the phonons above 3 THZ

8

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 32: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

Frequency dependences of real part of complex electric conductivity of LLTO ceramics in THz frequency range at different temperatures

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 33: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

CO2 dujų jutiklio struktūrinė schema

Li13Al015Y015 Ti17(PO4)3

Solid electrolytePtPt

Al2O3

Li2 CO3

V

The glue

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 34: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

EMF mV 003CO2+N2

01CO2+N2

10CO2+N2

300

200

100

300 400 500 t0 C

10CO2+N2

CO2 dujų jutiklio E-P-T charakteristikos

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 35: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

Uc

Katodas

Oras

U

Elektrodai

AnodasKuras

L

UR UA

YSZd

Kietojo elektrolito kuro gardelės struktūrinė schema

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 36: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

H2O garų išėjimo kanalasSOFC tuščiaviduriai cilindrai

H2O garų išėjimo kanalo išorinė sienelė

Vidinė izoliacija

Kuro įvedimo anga

Oro įvedimoanga

Šiluminė izoliacija

Vėsinimo kanalas

Cilindrinės formos SOFC modulis

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 37: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

U

V

250 750 1250

200

400

800

W m

Wc

m2

00

04

08

12

j mAcm2

Storasluoksnio SOFC U ndash j ndash W charakteristikos

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 38: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

5kW SOFC modulis pagal SPS Badwal ir K Foger

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 39: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

50 100 150 2000

2

4

6W

kW

IA

SOFC W ndash I charakteristika 1203 K temperatūroje

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 40: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

W is about (300-400) Ahkg

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 41: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

E = CU2 2 J

P = U2 4R W

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 42: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

Ag4RbI5 AgC

Ag+

Ag+

Ag+

-----

d

Ionistor Cc = ᵋᵋ 0S d

Ag+ + e-

Ag0

In 1938 Stefan Brunauer Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time ldquoBETrdquo consists of the first initials of their family names [BET (m2g)]

CBET about 200m2 g

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
Page 43: 1. SUPERJONINĖS KERAMIKOS IR JŲ TECHNOLOGIJOS 1.1. SUPERJONINIŲ KRISTALŲ STRUKTŪROS -Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose; -

AČIŪ

  • PowerPoint Presentation
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62