10 pages digest of the works at basel 2014-2015

40
Kouki Nakata University of Basel Switzerland Magnon Transport Theory All the responsibility of this slide rests with `Kouki Nakata' (2016) 10 pages digest of the works at Basel 2014-2015

Upload: kouki-nakata

Post on 18-Feb-2017

746 views

Category:

Science


0 download

TRANSCRIPT

Page 1: 10 pages digest of the works at Basel 2014-2015

Kouki Nakata

University of Basel Switzerland

Magnon Transport Theory

All the responsibility of this slide rests with `Kouki Nakata' (2016)

10 pages digest of the works at Basel 2014-2015

Page 2: 10 pages digest of the works at Basel 2014-2015

Yes !

[Phys. Rev. B 90, 144419 (2014)] [Phys. Rev. B 92, 014422 (2015)] [Phys. Rev. B 92, 134425 (2015)]

We have established it: Magnon counterpart of electron transport

Q. Can we control magnon transport 𝝁𝑩 like electrons 𝒆 ?

FINAL GOAL Establish valid methods to control magnon transport 𝝁𝐁

Page 3: 10 pages digest of the works at Basel 2014-2015

Charge transport 𝑒 Magnon transport 𝜇B

Wiedemann-Franz (WF) law [R. Franz and G. Wiedemann,

Annalen der Physik 165, 497 (1853)]

Thermoelectric property

Magnon Wiedemann-Franz law [K. Nakata et al., Phys. Rev. B 92, 134425 (2015)]

Thermomagnetic property

Superconducting state [H. K. Onnes (1911)]

Persistent charge current [M. Buttiker et al. Phys. Lett. A, 96, 365 (1983)]

Magnon-BEC [S. O. Demokritov et al., Nature 443, 430 (2006)]

Persistent magnon-BEC current [K. Nakata et al., Phys. Rev. B 90, 144419 (2014)]

Josephson effect [B. D. Josephson, Phys. Lett. 1, 251 (1962)]

Magnon Josephson effect [K. Nakata et al., Phys. Rev. B 90, 144419 (2014)]

Quantum Hall effect [K. v. Klitzing et al., Phys. Rev. Lett. 45, 494 (1980)]

Magnon quantum Hall effect [K. Nakata & D. Loss, to be submitted (2016)]

Find the counterpart !!

Guiding Principle

Page 4: 10 pages digest of the works at Basel 2014-2015

Magnon Wiedemann-Franz Law

VS

(Free electron at low temp.) Low temp.:

Electron (metal) Magnon (FI)

R. Franz and G. Wiedemann [Annalen der Physik 165, 497 (1853)]

K. Nakata and D. Loss [Phys. Rev. B 92, 134425 (2015)]

Fermion Boson Statistics

Lorenz number

WF law (Low temp.)

𝑇-linear behavior = Universal

Page 5: 10 pages digest of the works at Basel 2014-2015

1853

[R. Franz and G. Wiedemann, Annalen der Physik 165, 497 (1853)]

Wiedemann-Franz Law for Electron Transport in Metal

Wiedemann-Franz Law for Magnon Transport in FI [K. Nakata and D. Loss, Phys. Rev. B 92, 134425 (2015)]

2015

Page 6: 10 pages digest of the works at Basel 2014-2015

Experiment [S. O. Demokritov et al., Nature 443, 430 (2006)]

Quasi-equilibrium Magnon-BEC

Experimental result by [A. A. Serga et al., Nat. commun. 5, 3452 (2014)]

Microwave pumping: Room temperature

Page 7: 10 pages digest of the works at Basel 2014-2015

Magnon VS Magnon-BEC

Incoherent spin precession Macroscopic coherent spin precession Macroscopic spins

= Sum of variety kinds of modes Macroscopic number of magnons occupies a single state

Quasi-equilibrium condensation

Part I: Magnon Part II: Magnon-BEC

= Spin-wave ~ Superconducting state of spin-wave

Page 8: 10 pages digest of the works at Basel 2014-2015

dc ac : Josephson effect

BEC

BEC

Magnetic field difference:

Part II: Condensed magnon (BEC) Part I: Non-condensed magnon

ac/dc Properties

Page 9: 10 pages digest of the works at Basel 2014-2015

J J J

J

J

J

J J

BEC

Magnon-BEC Ring Analogous to superconducting ring

A-C phase Persistent magnon-BEC current

E (A-C phase)

(Note; as long as magnons are in condensation)

Page 10: 10 pages digest of the works at Basel 2014-2015

Non-condensed magnon

Cylindrical wire

Condensed magnon

(1) Magnetic current (2) (3)

𝜇B

𝑉m 𝐼m

Electromagnetism by Magnon Current

[D. Loss and P. M. Goldbart, Phys. Lett. A 215, 197 (1996)] [F. Meier and D. Loss, Phys. Rev. Lett. 90, 167204 (2003)]

(Flow of magnetic dipole)

𝐸m

Page 11: 10 pages digest of the works at Basel 2014-2015

Magnon Transport Ferromagnetic Insulator

Universal thermomagnetic relation Magnon Seebeck & Peltier effects

III. Measurement II. Magnon-BEC Berry phase Josephson & persistent currents

Electromagnetic control Direct detection

I. Wiedemann-Franz Law for Magnon in FI

SUMMARY

[Phys. Rev. B 90, 144419 (2014)] [Phys. Rev. B 92, 014422 (2015)] [Phys. Rev. B 92, 134425 (2015)]

Page 12: 10 pages digest of the works at Basel 2014-2015
Page 13: 10 pages digest of the works at Basel 2014-2015

Supplemental Material

Page 14: 10 pages digest of the works at Basel 2014-2015

Appendix: Part I

Page 15: 10 pages digest of the works at Basel 2014-2015

Magnon & Heat Currents

Magnon current

Heat current

: Magnon lifetime (phenomenologically introduced)

Page 16: 10 pages digest of the works at Basel 2014-2015

Onsager relation:

Integrating over

Linear response:

Magnon & Heat Currents

Page 17: 10 pages digest of the works at Basel 2014-2015

Onsager Matrix Magnon current

Heat current

Onsager coefficient

Onsager relation

Polylogarithm function:

Exponential integral: Euler constant:

Cross-section area of the junction interface:

Page 18: 10 pages digest of the works at Basel 2014-2015

Thermal Conductance 𝑲 for Boson

Note: Definition of thermal conductance

with

WF law

Magnon current Heat current

Magnetic conductance: 𝑮

Thermal conductance: 𝑲

for fermions

for bosons (magnons)

Page 19: 10 pages digest of the works at Basel 2014-2015

Thermo-electric & –magnetic Effects VS

(Free electron at low temp.) Low temp.:

Electron (metal) Magnon (FI)

R. Franz and G. Wiedemann [Annalen der Physik 165, 497 (1853)]

K. Nakata, P. Simon, and D. Loss [Phys. Rev. B 92, 134425 (2015)]

Fermion Boson Statistics

Onsager relation

Thomson relation

Seebeck & Peltier

Lorenz number

WF law (Low temp.)

Page 20: 10 pages digest of the works at Basel 2014-2015

REMARK There was a possibility at low temp.:

Magnon WF law in FI:

𝐾

𝐺= (

𝑘B

𝑔𝜇B)2𝑇 ∙

𝑘B𝑇

𝑔𝜇B𝐵

𝑛−1

∝ 𝑇𝑛

𝐾

𝐺= (

𝑘B

𝑔𝜇B)2𝑇 ∝ 𝑇

Page 21: 10 pages digest of the works at Basel 2014-2015

Anisotropic spin 𝜂 ≠ 1 Magnon-magnon interactions

At such low temperatures: Phonon contributions are negligibly small

WF law & Onsager relations: Broken

Contributions of the breakings: Negligibly small at low temperatures 𝒪(10−1)K

WF law & Onsager relations: Approximately satisfied at such low temperatures [Note: Originally (𝜂 = 1), the WF law is realized at such low temperatures]

Broken Relations & Low Temperature

[H. Adachi et al., Appl. Phys. Lett. 97, 252506 (2010)]

Page 22: 10 pages digest of the works at Basel 2014-2015

Magnon VS Magnon-BEC

Incoherent spin precession Macroscopic coherent spin precession = Macroscopic spins

= Sum of variety kinds of modes = Macroscopic number of magnons occupies a single state

Quasi-equilibrium condensation

Number density: Number density:

Part I: Magnon Part II: Magnon-BEC

= Spin-wave ~ Superconducting state of spin-wave

Cooper pair: 𝑐𝒌↑𝑐−𝒌↓ BCS ≠ 0

Page 23: 10 pages digest of the works at Basel 2014-2015

Appendix: Part II

Page 24: 10 pages digest of the works at Basel 2014-2015

Microwave pumping Non-equilibrium steady state

Quasi-equilibrium magnon-BEC = [Metastable state]

≠ [Ground state]

Thermalization

Microwave: Switched off

FMR

B B

Quasi-equilibrium magnon-BEC

[C. D. Batista et al., Rev. Mod. Phys., 86, 563 (2014)]

= Dynamical condensation ≠ Thermal condensation

U(1)-symmetry: Broken U(1)-symmetry: Recovered

Quasi-equilibrium Magnon-BEC

Page 25: 10 pages digest of the works at Basel 2014-2015

Quasi-equilibrium Magnon-BEC [C. D. Batista et al., Rev. Mod. Phys., 86, 563 (2014)]

= Dynamical condensation ≠ Thermal condensation

Page 26: 10 pages digest of the works at Basel 2014-2015

Magnon-BEC Order Parameter [Textbook by Leggett] BEC: Einstein for free particles (i.e., no interactions)

Single-particle density matrix

𝜌1(𝒓, 𝒓′; 𝑡);

Probability amplitude 𝜌1(𝒓, 𝒓′; 𝑡) ≡ 𝜓 +(𝒓𝑡)𝜓(𝒓′𝑡)

(𝜓: Bose field)

Single eigenvalue Single BEC Several eigenvalues Fragmented BEC

Penrose & Onsager (1956)

lim𝒓−𝒓′→∞

𝜌1 𝒓, 𝒓′; 𝑡 = Ψ∗ 𝒓𝑡 Ψ (𝒓′𝑡)

Ψ(𝒓𝑡) ≡ 𝜓 (𝒓𝑡) : BEC order parameter = Off-diagonal long-range order (ODLRO) Widely used in BEC community

Yang (1962)

Extension of definition including interactions

Quasi-equilibrium magnon-BEC by microwave pumping satisfies this condition Experiment [S. O. Demokritov et al., Nature 443, 430 (2006)]

Quantum ? OR Classical ? [A. Ruckriegel and P. Kopietz, PRL 115, 157203 (2015)]

Page 27: 10 pages digest of the works at Basel 2014-2015

Magnetic field difference:

Period of ac Josephson effect:

Parameter values:

Josephson current:

Josephson magnon current:

Adjusting parameters:

10 ns

ac Josephson Effect

Page 28: 10 pages digest of the works at Basel 2014-2015

ac Josephson Effect: Nonlinear Effect

Magnon Josephson Eq.:

Josephson current:

Time-evolution of phase:

Nonlinear effect: 𝑧(0) ≠ 0 & Δ𝐵 = 0 ac Josephson effect Period 𝑇~10ns at weak 𝐽ex

Nonlinear effect

Linear effect

Experimental reach 1T/cm: Linear effect ≪ Nonlinear effect

Period 𝑻 of ac Josephson effect:

e.g.:

Within experimental reach

𝑧 0 = 0.6

Initial population imbalance:

Page 29: 10 pages digest of the works at Basel 2014-2015

dc Josephson Effect

Electric field Magnetic field

No A-C phase A-C phase

Electromagnetically realizable by applying an increasing magnetic field:

: dc effect ? : dc effect

Page 30: 10 pages digest of the works at Basel 2014-2015

Macroscopic Quantum Self-Trapping

MQST

(a)

(b)-(d)

MQST occurs when

Page 31: 10 pages digest of the works at Basel 2014-2015

``Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic Josephson Junction’’ [M. Albiez et al., PRL 95, 010402 (2005)]

MQST in Cold Atoms Already experimentally observed [M. Albiez et al., PRL 95, 010402 (2005)]

Page 32: 10 pages digest of the works at Basel 2014-2015

time (p = 50)

Destabilized deviation: 1/p << 1

Stable

Magnon-BEC Ring

Quantization:

time

1/p

1

Page 33: 10 pages digest of the works at Basel 2014-2015

Device for Direct Measurement To detect persistent quantized magnon-BEC current in the ring

Page 34: 10 pages digest of the works at Basel 2014-2015

Appendix: Others

Page 35: 10 pages digest of the works at Basel 2014-2015

3-dim Cubic Ferromagnet

Holstein-Primakoff (H-P) transformation

Heisenberg spin model:

Standard textbook [K. Kubo] on magnetism tells us:

Fourier transformation:

Parabolic dispersion: → 0 (𝑘 → 0)

Magnon = A kind of Nambu-Goldstone mode

= Massless particle = Non-relativistic magnon

𝜔𝑘

𝑘

Picture from google search

Page 36: 10 pages digest of the works at Basel 2014-2015

d-dim Cubic Anti-Ferromagnet (d≥3)

Bogoliubov transformation New Magnon Operators: 𝛼 & 𝛽

Diagonalization:

Linear dispersion: Relativistic magnon = Dirac magnon on d-dim AF

𝑘

𝜔𝑘

Standard textbook [K. Kubo] on magnetism tells us:

Page 37: 10 pages digest of the works at Basel 2014-2015

Nambu-Goldstone (NG) Theorem Magnon = A kind of NG mode (particle)

A continuous symmetry is spontaneously broken (SSB) Massless particles = NG boson

Heisenberg model: SSB of SO(3) Magnon = NG mode

B

A

A B

Magnon

[TEXTBOOK by Peskin]

``Rough & intuitive’’ correspondence

(massless)

Picture from wiki.

Picture from Google search

The relation between [# of broken symmetries] & [# of NG particles]: See [Watanabe-Murayama] & [Hidaka]

Page 38: 10 pages digest of the works at Basel 2014-2015

Mermin–Wagner–Hohenberg-Coleman theorem:

Continuous symmetries cannot be spontaneously broken (NO SSB):

- 𝑑 ≤ 2 - At finite temperature - Sufficiently short-range interactions

Absence of NG particles (e.g. magnons) on 𝑑 ≤ 2

Why 3-dim ?

See also recent development: [Phys. Rev. Lett. 107, 107201 (2011)] D. Loss, F. L. Pedrocchi, and A. J. Leggett

NOTE: The absence of SSB is valid only in the thermodynamic limit Ordering in finite size at finite temperatures is possible

Picture from Google search

Page 39: 10 pages digest of the works at Basel 2014-2015

Lattice structure

Band structure

Dirac Magnon on 2-dim Honeycomb Lattice

Magnon Dirac Eq.

[arXiv:1512.04902] J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky

Dirac Magnon

Page 40: 10 pages digest of the works at Basel 2014-2015

AF Dirac Magnon

Dirac magnons are inherent to honeycomb lattice (geometric properties): Ferro or AF does not matter

In sharp contrast to cubic lattice

Ferromagnet Anti-ferromagnet

3-dim cubic lattice Since 1930

𝜔𝑘 ∝ 𝑘2 Non-relativistic

𝜔𝑘 ∝ 𝑘 Relativistic

2-dim honeycomb lattice [arXiv:1512.04902]

𝜔𝑘 ∝ 𝑘 Relativistic

𝜔𝑘 ∝ 𝑘 Relativistic

[arXiv:1512.04902] J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky