1001011 - design-wind

Upload: jonathan-wardrop

Post on 02-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 1001011 - Design-Wind

    1/56

    31 0

    14

    . .

    334 , 43 , 60067 , 2656

    ( 47) 1 2700 ( 47) 1 2702 ( 4 ) 24 373 ( 4 ) 24 3

  • 8/11/2019 1001011 - Design-Wind

    2/56

  • 8/11/2019 1001011 - Design-Wind

    3/561

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 1 -

    REINFORCED CONCRETE DESIGN IN COMPLIANCE WITHACI 318M-08: DESIGN FOR WIND

    Please stay tuned. We will be starting at8:00 am UAE Time.

    You will be able to listen to the seminarusing computer speakers

    If you are encountering technical difficulties, please call 00 1 847 991 2700 Visit us at: www.skghoshassociates.com

    SKGA Web Seminarin cooperation with and under sponsorship of

    the Department of Municipal Affairs, Emirate of Abu Dhabi, UAE

    - 2 -

    REINFORCED CONCRETE DESIGN INCOMPLIANCE WITH ACI 318M-08

    A web seminar series in cooperation with and under sponsorship ofthe Department of Municipal Affairs, Emirate of Abu Dhabi, UAE.

    Part 14: BUILDING DESIGN EXAMPLE DESIGN FOR WIND

    S. K. Ghosh Associates Inc.

    Palatine, IL and Aliso Viejo, CA

    www.skghoshassociates.com

  • 8/11/2019 1001011 - Design-Wind

    4/562

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 3 -

    - 4 -

    Example Office Building

    Part of Chapter 2 updated to ACI 318-08 andconverted to metric units.

  • 8/11/2019 1001011 - Design-Wind

    5/563

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 5 -

    Example Office Building

    Plan view of the example building

    7900 7900 7900 7900 7900 7900 7900

    6 7 0 0

    6 7 0 0

    6 7 0 0

    Unit: mm

    - 6 -

    Example Office Building

    Elevation view of the example building

    1 1 @

    3 7 0 0 = 4 0

    , 7 0 0

    4 9 0 0

    Unit: mm

  • 8/11/2019 1001011 - Design-Wind

    6/564

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 7 -

    Example Office Building Design of Main Wind-Force-Resisting System (MWFRS)

    - 8 -

    Design Data

    Design Data

    Building location: Abu Dhabi,

    Latitude : 24 28 N

    Longitude : 54 22 E

    Material properties

    Concrete: f c = 40 MPa, w c = 2400 kg/m 3

    Reinforcement: f y = 420 MPa

  • 8/11/2019 1001011 - Design-Wind

    7/565

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 9 -

    Design Data

    Design Data

    Service loads

    Live loads: roof = 1.0 kN/m 2

    floors = 2.5 kN/m 2 plus

    1.0 kN/m 2 for partitions

    SIDL: roof = 2.0 kN/m 2 + 900 kN penthouse

    floors = 2.0 kN/m 2

    - 10 -

    Design Data

    Design Data

    Wind design data

    Basic wind speed V = 38 m/sec

    (Figure 8, Vickery report)

    Exposure B (IBC 1609.4, ASCE 6.5.6.3)

    For Occupancy Category II, I = 1.0

    (IBC Table 1604.5, ASCE Table 6-1)

  • 8/11/2019 1001011 - Design-Wind

    8/566

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 11 -

    Design Data

    Design Data

    Member dimensions

    Slab: 200 mm

    Beams: 550 550 mm

    Interior columns: 650 650 mm

    Edge columns: 600 600 mm

    Wall thickness: 300 mm

    - 12 -

    Wind Load Determination

    Step 1: Basic wind speed, V, and winddirectionality factor, K d

    V = 38 m/sec

    Kd = 0.85 for main wind-force-resisting systems ofbuildings per ASCE Table 6-4

  • 8/11/2019 1001011 - Design-Wind

    9/567

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 13 -

    Wind Load Determination

    ASCE Table 6-4 Wind directionality factor, k d

    - 14 -

    Wind Load Determination

    Step 2: Importance factor, I

    I = 1.0 per IBC Table 1604.5, ASCE Table 6-1 forOccupancy Category II

    Occupancy

    Category

    Non-Hurricane Prone Regionsand Hurricane Prone Regions

    with V = 38 45 m/sec

    Hurricane ProneRegions with V > 45

    m/sec

    I 0.87 0.77

    II 1.00 1.00

    III 1.15 1.15

    IV 1.15 1.15

  • 8/11/2019 1001011 - Design-Wind

    10/568

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 15 -

    Wind Load Determination

    Step 3: Exposure category and velocity pressureexposure coefficient, K zValues of K z are to be determined from ASCE Table 6-3.In lieu of linear interpolation, K z may be calculated atany height z m above ground level by the followingequations:

    - 16 -

    Wind Load Determination

    = 3-second gust speed power law exponent

    from ASCE Table 6-2

    = 7.0 for Exposure B

    Zg = nominal height of the atmospheric

    boundary layer from ASCE Table 6-2

    = 365.76 m for Exposure B

  • 8/11/2019 1001011 - Design-Wind

    11/569

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 17 -

    Wind Load Determination

    ASCE Table 6-2 Terrain Exposure Constant

    Exposure zg (m) b b c l (m) zmin(m)*

    B 7.0 365.76 1/7 0.84 1/4.0 0.45 0.30 97.54 1/3.0 9.14

    C 9.5 274.32 1/9.5 1.00 1/6.5 0.65 0.20 152.4 1/5.0 4.57

    D 11.5 213.36 1/11.5 1.07 1/9.0 0.80 0.15 198.12 1/8.0 2.13

    ^ ^

    *zmin = minimum height used to ensure that the equivalent height z is greater of 0.6h or z min .

    For buildings with h zmin , z shall be taken as z min.

    - 18 -

    Wind Load Determination

    Table: Velocity pressure exposure coefficient K z

    Level Height above ground level, z (m) K z12 45.6 1.109

    11 41.9 1.082

    10 38.2 1.0549 34.5 1.024

    8 30.8 0.991

    7 27.1 0.955

    6 23.4 0.916

    5 19.7 0.872

    4 16.0 0.822

    3 12.3 0.762

    2 8.6 0.688

    1 4.9 0.586

  • 8/11/2019 1001011 - Design-Wind

    12/5610

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 19 -

    Wind Load Determination

    Step 4: Topographic factor, K zt

    Assuming the example building is situated on levelground and not on a hill, ridge, or escarpment, K zt isequal to 1.

    - 20 -

    Wind Load Determination

    ASCE Figure 6-4 Topographic factor, K zt

  • 8/11/2019 1001011 - Design-Wind

    13/5611

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 21 -

    Wind Load Determination

    ASCE Figure 6-4 Topographic factor, K zt

    - 22 -

    Wind Load Determination

    Step 5: Gust effect factors, G and G f

    Gust effect factor depends on whether a building isrigid or flexible (ASCE 6.5.8). A rigid building has afundamental natural frequency n 1 greater than orequal to 1 Hz, while a flexible building has afundamental natural frequency less than 1 Hz(ASCE 6.2).

  • 8/11/2019 1001011 - Design-Wind

    14/5612

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 23 -

    Wind Load Determination

    N-S direction:

    Ta = 0.0488 (45.6) 0.75 = 0.856 sec

    (ASCE Eq. 12.8-7)

    n1= 1/T a = 1.17 Hz > 1.0 Hz

    Thus, the example building is rigid in N-S directionand G = 0.85

    - 24 -

    Wind Load Determination

    E-W direction:

    Ta

    = 0.0466 (45.6) 0.9 = 1.45 sec

    n1 = 1/T a = 0.7 Hz

    Thus, the example building is flexible in E-Wdirection.

  • 8/11/2019 1001011 - Design-Wind

    15/5613

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 25 -

    Wind Load Determination

    ASCE Eq. 6-8

    where,

    - 26 -

    Wind Load Determination

    intensity of turbulence at height

    (ASCE Eq. 6-5 and Table 6-2 for Exposure B)

    ASCE Eq. 6-9

  • 8/11/2019 1001011 - Design-Wind

    16/5614

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 27 -

    Wind Load Determination

    = 0.6h zmin= 0.6 45.6 = 27.36 m > z min = 9.14 m

    (Table 6-2 for Exposure B)

    background response

    ASCE Eq. 6-6

    - 28 -

    Wind Load Determination

    integral length scale of turbulence at equivalent height

    (ASCE Eq. 6-5 and Table 6-2 for Exposure B)

  • 8/11/2019 1001011 - Design-Wind

    17/5615

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 29 -

    Wind Load Determination

    The resonant response factor R is computed from:

    ASCE Eq. 6-10

    damping ratio (assumed to be 0.01)

    - 30 -

    Wind Load Determination

    ASCE Eq. 6-11

    N1 = reduced frequencyASCE Eq. 6-12

    mean hourly wind speed at height

    (ASCE Eq. 6-14 and Table 6-2 for Exposure B)

  • 8/11/2019 1001011 - Design-Wind

    18/5616

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 31 -

    Wind Load Determination

    ASCE Eq. 6-13a

    ASCE Eq. 6-13a

    - 32 -

    Wind Load Determination

    ASCE Eq. 6-13a

  • 8/11/2019 1001011 - Design-Wind

    19/5617

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 33 -

    Wind Load Determination

    Step 6: Enclosure classification

    It is assumed in this example that the building isenclosed per IBC 1609.2, ASCE 6.5.9.

    - 34 -

    Wind Load Determination

    Step 7: Internal pressure coefficient, GC pi

    Internal pressure coefficients are to be determinedfrom ASCE Figure 6-5, based on building enclosureclassification.

    For an enclosed building, GC pi = 0.18.

  • 8/11/2019 1001011 - Design-Wind

    20/5618

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 35 -

    Wind Load Determination

    ASCE Figure 6-5 Internal pressure coefficient, GC pi

    - 36 -

    Wind Load Determination

    Step 8: External pressure coefficients, C pN-S direction (ASCE Figure 6-6):

    Windward wall: C p = 0.8

    Leeward wall (L/B = 20.7/55.9 = 0.37): C p = -0.5

    Side wall: C p = - 0.7

    Roof (h/L = 45.6/20.7 = 2.2):

    Cp = -1.3 over entire roof (20.7m < h/2 = 22.8m).

    May be reduced to 0.80 -1.3 = -1.04 for area

    greater than 92.9 m 2 per ASCE Figure 6-6.

  • 8/11/2019 1001011 - Design-Wind

    21/56

  • 8/11/2019 1001011 - Design-Wind

    22/5620

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 39 -

    Wind Load Determination

    ASCE Figure 6-6 C p for MWFRS: Walls

    - 40 -

    Wind Load Determination

    ASCE Figure 6-6 C p for MWFRS: Roofs

  • 8/11/2019 1001011 - Design-Wind

    23/5621

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 41 -

    Wind Load Determination

    - 42 -

    Wind Load Determination

    Step 9: Velocity pressure, q z

    The velocity pressure at height z is determined byEq. 6-15 in ASCE 6.5.10:

    qz = 0.613 K z Kzt Kd V2 I

    where all terms have been defined previously.

    ASCE Eq. 6-15

  • 8/11/2019 1001011 - Design-Wind

    24/5622

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 43 -

    Wind Load Determination

    Velocity Pressure q z (V = 38 m/sec)Level Height above ground level, z (m) K z qz (N/m 2)

    12 45.6 1.109 834

    11 41.9 1.082 814

    10 38.2 1.054 793

    9 34.5 1.024 770

    8 30.8 0.991 746

    7 27.1 0.955 719

    6 23.4 0.916 689

    5 19.7 0.872 656

    4 16.0 0.822 618

    3 12.3 0.762 574

    2 8.6 0.688 518

    1 4.9 0.586 441

    where q = q z for windward walls at height z above groundq = q h for leeward walls, side walls, and roof, evaluated at height hq i = q h for all walls and roofs of enclosed buildings

    - 44 -

    Wind Load Determination

    Step 10: Design wind pressure, p

    For rigid buildings of all heights, design windpressures on the main wind-force-resisting systemare calculated by Eq. 6-17:

    p = q GC p q i (GC pi) ASCE Eq. 6-17

  • 8/11/2019 1001011 - Design-Wind

    25/5623

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 45 -

    Wind Load Determination

    Table: Design Wind Pressure in N-S Direction (V = 38 m/sec)Location Level Height above

    ground level,

    z(m)

    External Pressure Internal Pressure

    q

    (N/m 2)

    G C p qGC p(N/m 2)

    q i(N/m 2)

    GC pi q iGC pi(N/m 2)

    Windward 12 45.6 834 0.85 0.8 567 834 0.18 150

    11 41.9 814 0.85 0.8 554 834 0.18 150

    10 38.2 793 0.85 0.8 539 834 0.18 150

    9 34.5 770 0.85 0.8 524 834 0.18 150

    8 30.8 746 0.85 0.8 507 834 0.18 150

    7 27.1 719 0.85 0.8 489 834 0.18 150

    6 23.4 689 0.85 0.8 469 834 0.18 150

    5 19.7 656 0.85 0.8 446 834 0.18 150

    4 16.0 618 0.85 0.8 420 834 0.18 150

    3 12.3 574 0.85 0.8 390 834 0.18 1502 8.6 518 0.85 0.8 352 834 0.18 150

    1 4.9 441 0.85 0.8 300 834 0.18 150

    Leeward --- All 834 0.85 -0.5 -354 834 0.18 150

    Side --- All 834 0.85 -0.7 -496 834 0.18 150

    Roof --- 45.6 834 0.85 -1.04 -737 834 0.18 150

    - 46 -

    Wind Load Determination

    Table: Design Wind Forces in N-S Direction (V = 38 m/sec)

    Level Heightabove

    groundlevel, z (m)

    TributaryHeight

    (m)

    Windward Leeward TotalDesign

    Wind Force(kN)

    External DesignWind Pressure,

    q zGC p (N/m 2)

    DesignWind Force,

    P* (kN)

    External DesignWind Pressure,

    q hGC p (N/m 2)

    Design WindForce, P*

    (kN)

    12 45.6 1.9 567 60.2 -354 -37.6 97.9

    11 41.9 3.7 554 114.5 -354 -73.3 187.8

    10 38.2 3.7 539 111.5 -354 -73.3 184.8

    9 34.5 3.7 524 108.3 -354 -73.3 181.6

    8 30.8 3.7 507 104.9 -354 -73.3 178.2

    7 27.1 3.7 489 101.1 -354 -73.3 174.4

    6 23.4 3.7 469 96.9 -354 -73.3 170.3

    5 19.7 3.7 446 92.3 -354 -73.3 165.6

    4 16.0 3.7 420 87.0 -354 -73.3 160.3

    3 12.3 3.7 390 80.7 -354 -73.3 154.0

    2 8.6 3.7 352 72.8 -354 -73.3 146.1

    1 4.9 4.3 300 72.1 -354 -85.2 157.3

    *P = qGC p Tributary height 55.9 m 1958.3

  • 8/11/2019 1001011 - Design-Wind

    26/5624

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 47 -

    Wind Load Determination

    For flexible buildings, ASCE Eq. 6-19 is to be used:

    p = q G fCp q i (GC pi) ASCE Eq. 6-19

    - 48 -

    Wind Load DeterminationTable: Design Wind Pressure in E-W Direction (V = 38 m/sec)

    Location Level Height aboveground

    level,z(m)

    External Pressure Internal Pressure

    q(N/m 2)

    G C p qGC p(N/m 2)

    q i(N/m 2)

    GC pi q iGC pi(N/m 2)

    Windward 12 45.6 834 0.89 0.8 594 834 0.18 150

    11 41.9 814 0.89 0.8 580 834 0.18 150

    10 38.2 793 0.89 0.8 565 834 0.18 150

    9 34.5 770 0.89 0.8 548 834 0.18 150

    8 30.8 746 0.89 0.8 531 834 0.18 150

    7 27.1 719 0.89 0.8 512 834 0.18 150

    6 23.4 689 0.89 0.8 491 834 0.18 150

    5 19.7 656 0.89 0.8 467 834 0.18 150

    4 16.0 618 0.89 0.8 440 834 0.18 150

    3 12.3 574 0.89 0.8 408 834 0.18 150

    2 8.6 518 0.89 0.8 369 834 0.18 150

    1 4.9 441 0.89 0.8 314 834 0.18 150

    Leeward --- All 834 0.89 -0.27 -200 834 0.18 150

    Side --- All 834 0.89 -0.7 -520 834 0.18 150

    Roof --- 45.6 * 834 0.89 -1.00 -742 834 0.18 150

    --- 45.6 834 0.89 -0.78 -576 834 0.18 150

    --- 45.6 834 0.89 -0.62 -460 834 0.18 150

    * from windward edge to 22.8 m, from 22.8 m to 45.6 m, from 45.6 m to 55.9 m

  • 8/11/2019 1001011 - Design-Wind

    27/5625

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 49 -

    Wind Load Determination

    Table: Design Wind Forces in E-W Direction (V = 38 m/sec)

    Level

    Heightabove

    groundlevel, z

    (m)

    TributaryHeight

    (m)

    Windward Leeward TotalDesignWind

    Force (kN)External DesignWind Pressure,

    q zG fCp (N/m 2)

    DesignWind

    Force, P*(kN)

    External DesignWind Pressure,

    q hG fCp (N/m 2)

    DesignWind Force,

    P* (kN)

    12 45.6 1.9 594 23.4 -200 -7.9 31.2

    11 41.9 3.7 580 44.4 -200 -15.3 59.7

    10 38.2 3.7 565 43.2 -200 -15.3 58.6

    9 34.5 3.7 548 42.0 -200 -15.3 57.3

    8 30.8 3.7 531 40.7 -200 -15.3 56.0

    7 27.1 3.7 512 39.2 -200 -15.3 54.5

    6 23.4 3.7 491 37.6 -200 -15.3 52.9

    5 19.7 3.7 467 35.8 -200 -15.3 51.1

    4 16.0 3.7 440 33.7 -200 -15.3 49.1

    3 12.3 3.7 408 31.3 -200 -15.3 46.6

    2 8.6 3.7 369 28.2 -200 -15.3 43.6

    1 4.9 4.3 314 27.9 -200 -17.8 45.8

    606.6*P = qGC p Tributary height 20.7 m

    - 50 -

    Wind Load Analysis

    Method of analysis

    3-D analysis

    Rigid diaphragms, rigid-end offsets

    Stiffness properties

    Beams : EI eff = 0.7 EI gColumns : EI eff = 1.0 EI gShear walls : EI eff = 1.0 EI g

    P-delta effects

  • 8/11/2019 1001011 - Design-Wind

    28/5626

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 51 -

    Wind Load Analysis

    Load combination

    1.4D (ACI Eq. 9-1)

    1.2D + 1.6L (ACI Eq. 9-2)

    1.2D + 1.6L + 0.8W (ACI Eq. 9-3)

    1.2D + 0.5L + 1.6W (ACI Eq. 9-4)

    0.9D + 1.6W (ACI Eq. 9-6)

    - 52 -

    Beam Design

    7900 7900 7900 7900 7900 7900 7900

    6 7 0 0

    6 7 0 0

    6 7 0 0

    Beam C4 C5

    Unit: mmBeam dimension: 550 mm 550 mm

  • 8/11/2019 1001011 - Design-Wind

    29/5627

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 53 -

    Beam Design

    Table: Summary of Design Bending Moments and Shear Forces for BeamC4-C5 at the Second Floor Level

    Load Case Location Bending Moment(kN-m)

    Shear Force (kN)

    Dead (D) Support -195 138Midspan 110

    Live (L) Support -69 48Midspan 40

    Wind(W)

    Case 1 (E-W) Support 35 10

    Case 2 (E-W) support 26 7Case 3 Support 26 7Case 4 support 21 6

    - 54 -

    Beam Design

    Table: Summary of Design Bending Moments and Shear Forces for BeamC4-C5 at the Second Floor Level

    Load combination Location Bending Moment (kN-m) Shear Force (kN)

    1.4D Support -273 194

    Midspan 154

    1.2D + 1.6L Support -345 242Midspan 196

    1.2D + 1.6L 0.8W Support -373 250

    -317 234

    Midspan 196

    1.2D + 0.5L 1.6W Support -325 205

    -213 174

    Midspan 152

    0.9D 1.6W Support -231 140

    -120 109

    Midspan 99

  • 8/11/2019 1001011 - Design-Wind

    30/5628

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 55 -

    Beam Design

    Using No. 25 reinforcement and 10-mm stirrups:d = 550 40 10 25/2 = 487.5 mm

    Min. As = (0.25 400.5

    550 487.5)/(420) = 1009 mm2

    = 1.4b wd/fy = 894 mm 2 (ACI 10.5.1)

    Max. A s = (0.85 1fcbwd/fy) (0.003/0.007)= 7070 mm 2 (ACI 10.3.5)

    Location Mu(kN-m)As

    (mm 2) Reinf. Mn

    (kN-m)Support -373 2116 5-No.25 429Midspan 196 1112 3-No.25 264

    - 56 -

    Beam Design

    Shear design

    Tributary area was calculated following ACI 13.6.8(Factored shear in slab system with beams).

  • 8/11/2019 1001011 - Design-Wind

    31/5629

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 57 -

    Beam Design

    6.7 m

    C

    54

    7.9 m

    6.7 m

    3.35 m 3.35 m1.2 m

    3.35 m

    Beam tributary area

    - 58 -

    Beam Design

    Total trapezoidal area tributary to beam =2[1/2 (1.2 + 7.9) 3.35] = 30.5 m 2

    Dead load = (0.2 2400 9.81/1000 30.5)+(0.35 0.55 2400 9.81/1000 7.25)+(2 30.5) =237.5 kN

    wD = 237.5 / 7.25 = 32.8 kN/m

  • 8/11/2019 1001011 - Design-Wind

    32/5630

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 59 -

    Beam Design

    Reduced floor live load =

    = 2.08 kN/m 2

    Live load = (2.08 + 1.0) 30.5 = 94 kNwL = 94 / 7.25 = 13.0 kN/m

    - 60 -

    Beam Design

    Vu = 250 kN at support (from the load combinationtable for 1.2D + 1.6L +0.8W)

    wu = 1.2w D + 1.6 w L = 60.2 kN/m

    Vu = 250 60.2 0.488 = 220.6 kN at critical section

    Vc = 0.17 (40) 0.5 550 487.5/1000 = 288 kN

    Vu (= 220.6 kN) Vc (216 kN) [ = 0.75 ]

  • 8/11/2019 1001011 - Design-Wind

    33/5631

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 61 -

    Beam Design

    Provide minimum shear reinforcement (ACI 11.4.6.3)

    When using No.10 (A s =79 mm 2) for stirrups,

    s = (2 79 420)/(0.062 40 0.5 550) = 308 mm= (2 79 420)/(0.35 550) = 345 mm

    - 62 -

    Beam Design

    Maximum spacing:

    d/2 = 510/2 = 255 mm (governs)

    600 mm

    Provide No.10 @ 250 mm at both ends of the beam.Stirrup can be discontinued at section where V u Vc /2. This occurs at 2.35 m from the face of thesupport.

  • 8/11/2019 1001011 - Design-Wind

    34/5632

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 63 -

    Beam Design

    Reinforcing bar cutoff point

    Cutoff 3 of the 5-No.25 top bars away from support

    Mn (2-No.25) = 177 kN-m

    Try load combination: 1.2D + 1.6L + 0.8W

    RR = (60.1 7.25 2 /2 + 373 317) / 7.25 = 225.6 kN

    60.1 (x2 /2) 225.6x + 373 177 = 0

    Cutoff point x = 1.0 m from face of support

    - 64 -

    Beam Design

    w u = 1.2w D + 1.6w L = 60.1 kN/m

    M-=373 kN-mM

    -

    =317 kN-m

    7.25 m

    210.1 kN 225.6 kN

    RRRLx

    Top reinforcing bar cutoff point

  • 8/11/2019 1001011 - Design-Wind

    35/56

  • 8/11/2019 1001011 - Design-Wind

    36/5634

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 67 -

    Beam Design

    Governing Cutoff point x = 1.0 m from face of support

    ACI 12.10.3

    3-No.25 must extend a distance

    d = 487.5 mm (governs) or

    12d b = 12 x 25 = 300 mm

    beyond the distance x = 1.0 mThus, total required bar length = 1.0 + 0.49 = 1.49 m; use

    1.5 m

    - 68 -

    Beam Design

    ACI 12.10.4

    3-No.25 must extend a full development length l dbeyond the face of the support

  • 8/11/2019 1001011 - Design-Wind

    37/5635

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 69 -

    Beam Design

    where,

    t = reinforcement location factor = 1.3 for top bars

    e = coating factor = 1.0 for uncoated bars

    s = reinforcement size factor = 1.0 for No.25 bars

    = lightweight aggregate factor = 1.0

    cb = spacing or cover dimension

    (governs)

    - 70 -

    Beam Design

    (cb + Ktr)/d b = (53 + 0)/25 = 2.12 < 2.5

    l d = 0.92 < 1.5 m

    Retain cutoff length of 1.5 m

  • 8/11/2019 1001011 - Design-Wind

    38/5636

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 71 -

    Beam Design

    ACI 12.10.5

    Flexural reinforcement terminated in a tension zone:

    Point of inflection is 4.6 m from face of support >1.5 m

    Check ACI 12.10.5.1:

    If Vu (cutoff point) 2Vn /3, tension reinforcementcan be terminated there

    - 72 -

    Beam Design

    Vn = (Vc + Vs) = (Vc + Avfytd/s )

    = 0.75 [288 + (157 420 487.5)/(1000x250)]

    = 312 kN

    2Vn /3 = 208 kN

    Vu @ 1.5 m from face of support = 225.6 (60.1 1.5)= 135 kN < 208 kN

    Therefore, 3-No.25 bars can be terminated at 1.5 mfrom face of support

  • 8/11/2019 1001011 - Design-Wind

    39/5637

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 73 -

    Beam Design

    Structural integrity reinforcement (ACI 7.13.2.5)

    Other than perimeter beams, when closed stirrupsare not provided

    At least one-quarter of positive reinforcementrequired at midspan, but not less than two bars,shall be continuous or spliced with Class Btension splices over the supports

    - 74 -

    Beam Design

  • 8/11/2019 1001011 - Design-Wind

    40/5638

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 75 -

    Column Design

    7900 7900 7900 7900 7900 7900 7900

    6 7 0 0

    6 7 0 0

    6 7 0 0

    Column C4

    Unit: mmColumn dimension: 650 mm 650 mm

    - 76 -

    Column Design

    Table: Summary of Design Axial force, Bending Moments, and ShearForces for Column C4 Supporting the Second Floor

    Load Case AxialForces (kN)

    BendingMoment (kN-m)

    Shear Force (kN)

    Dead (D) 5701 0 0Live (L) 1100 0 0

    Wind(W)

    Case 1 0 35 21Case 2 0 26 15Case 3 9 26 15Case 4 6 21 12

  • 8/11/2019 1001011 - Design-Wind

    41/5639

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 77 -

    Column Design

    Table: Summary of Design Axial force, Bending Moments, and ShearForces for Column C4 Supporting the Second Floor

    Load Case AxialForces (kN)

    BendingMoment (kN-m)

    Shear Force (kN)

    1.4D 7981 0 01.2D + 1.6L 8601 0 0

    1.2D + 1.6L + 0.8W(Wind Case 1)

    8601 28 17

    1.2D + 0.5L + 1.6W

    (Wind Case 1)

    7391 56 34

    0.9D - 1.6W(Wind Case 1)

    5131 -56 -34

    - 78 -

    Column Design

    Design for axial force and bending

    650 650 mm column with 12 - No.28 bars

    g = 1.75 % > 1.0 % O.K.

    < 8.0 % O.K.

  • 8/11/2019 1001011 - Design-Wind

    42/5640

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 79 -

    Column Design

    - 80 -

    Column Design

    Shear design

    where N u = 5131 kN is the smallest axial forcecorresponding to the largest shear force on thesection and d = 650 40 10 28/2 = 586 mm

    ACI Eq. (11-4)

  • 8/11/2019 1001011 - Design-Wind

    43/5641

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 81 -

    Column Design

    Vu (= 34 kN) < Vc /2 = (0.75 765)/2 = 287 kN

    Transverse reinforcement requirements must satisfyACI 7.10.5, with No.10 ties, the vertical spacing ofthe ties must not exceed the least of the following:

    16(longitudinal bar diameter) = 16 28 = 448 mm (governs)

    48(tie bar diameter) = 48 10 = 480 mmLeast column dimension = 650 mm

    - 82 -

    Column Design

    Use No.10 ties @ 400 mm with the first tie locatedvertically not more than 400/2 = 200 mm above thetop of the slab and not more than 75 mm below thelowest horizontal reinforcement in the beams (ACI7.10.5.4 and 7.10.5.5)

  • 8/11/2019 1001011 - Design-Wind

    44/5642

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 83 -

    Column Design

    Splice length of longitudinal reinforcement

    ACI 12.17.2.1

    From the P-M interaction diagram, it can be seen thatthe column reinforcement is in compression for allload combinations. As a result, lap splice length isdetermined in accordance with ACI 12.16.1.

    - 84 -

    Column Design

    Splice length of longitudinal reinforcement

    ACI 12.16.1

    For f y = 420 MPa and f c = 40 MPa,

    l dc = 0.071f ydb = 0.071x420x28 = 835 mm

  • 8/11/2019 1001011 - Design-Wind

    45/5643

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 85 -

    Column Design

    Splice length of longitudinal reinforcement

    ACI 12.17.2.4

    In both directions of the cross-section:

    0.0015hs = 0.0015x650x400 = 390 mm 2

    Area of ties provided in both direction:

    Av = 3-legged No.10 = 3x79 = 237 mm 2 < 0.0015hsThus, lap splice length cannot be reduced by a factor

    of 0.83.

    - 86 -

    Column Design

    Provide 850 mm splice length

  • 8/11/2019 1001011 - Design-Wind

    46/5644

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 87 -

    Column Design

    - 88 -

    Shear Wall Design

    7900 7900 7900 7900 7900 7900 7900

    6 7 0 0

    6 7 0 0

    6 7 0 0

    Shear Wall

    Unit: mm

  • 8/11/2019 1001011 - Design-Wind

    47/5645

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 89 -

    Shear Wall Design

    Table: Summary of Design Axial forces, Bending Moments, and ShearForces at the Base of the Shear Wall on Line 7

    Load Case AxialForce (kN)

    BendingMoment (kN-m)

    Shear Force(kN)

    Dead (D) 15,885 0 0Live (L) 2539 0 0

    Wind(W)

    Case 1 0 13,376 897Case 2 0 14,211 955

    Case 3 45 10,034 673Case 4 34 11,021 741

    - 90 -

    Shear Wall Design

    Table: Summary of Design Axial forces, Bending Moments, and ShearForces at the Base of the Shearwall on Line 7

    Load Case AxialForces (kN)

    BendingMoment (kN-m)

    Shear Force(kN)

    1.4D 22,239 0 01.2D + 1.6L 23,124 0 0

    1.2D + 1.6L + 0.8W(Wind Case 2)

    23,124 11,369 764

    1.2D + 0.5L + 1.6W(Wind Case 2)

    20,332 22,738 1528

    0.9D - 1.6W(Wind Case 2)

    14,297 -22,738 -1528

  • 8/11/2019 1001011 - Design-Wind

    48/5646

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 91 -

    Shear Wall Design

    Shear design

    The shear strength of the concrete is determined inaccordance with ACI 11.9.5 for walls subjected toaxial compression:

    Vc = 0.17 (40) 0.5 300 5880/1000 = 1897 kN

    where, d = 0.8 l w = 0.8x7350 = 5880 mm

    - 92 -

    Shear Wall Design

    Vc = 0.75x1897 = 1423 kN < V u = 1528 kN

    Horizontal shear reinforcement shall be provided inaccordance with ACI 11.9.9.

    Because the wall is more than 250 mm thick, twolayers of reinforcement is necessary in accordancewith ACI 14.3.4.

  • 8/11/2019 1001011 - Design-Wind

    49/5647

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 93 -

    Shear Wall Design

    According to ACI 11.9.9.3, spacing of horizontalreinforcement shall not exceed

    l w /5 = 7350/5 = 1470 mm,

    3h = 3 300 = 900 mm, or

    450 mm. (governs)

    - 94 -

    Shear Wall Design

    According to ACI 11.9.9.2, ratio of horizontal shearreinforcement shall not be less than 0.0025.

    With 2 layers of No.14 bars, spacing required:

    s = (2 154) / (300 0.0025) = 411 mm

    Provide 2-No. 14 horizontal bars @ 400 mm( t = 0.00257).

  • 8/11/2019 1001011 - Design-Wind

    50/5648

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 95 -

    Shear Wall Design

    By ACI 11.9.3, shear strength V n at any horizontalsection must be less than or equal to0.83 (40) 0.5 300 5880 1/1000 = 9260 kN

    Vn = Vc + Vs= 1897 + (2 154 420 5880)/(400 1000)

    = 3799 kN < 9260 kN O.K.

    - 96 -

    Shear Wall Design

    The ratio of vertical shear reinforcement area to grossconcrete area of horizontal section shall not be lessthan 0.0025 nor the value obtained by Eq. (11-30)

    (ACI 11.9.9.4):

    l = 0.0025 + 0.5(2.5-h w / l w)( t 0.0025)

    = 0.0025 + 0.5 (2.5-45.6/7.35)(0.00257-0.0025)

    = 0.00237

  • 8/11/2019 1001011 - Design-Wind

    51/5649

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 97 -

    Shear Wall Design

    According to ACI 11.9.9.5, spacing of verticalreinforcement shall not exceed

    l w /5 = 7450/5 = 1490 mm

    3h = 3 300 = 900 mm or

    450 mm

    Provide 2-No. 14 vertical bars @ 400 mm

    ( l = 0.00257)

    - 98 -

    Shear Wall Design

    The provided vertical and horizontal reinforcement

    satisfy the requirements of ACI 14.3.2 and 14.3.3 forminimum ratio of vertical and horizontal

    reinforcement to gross concrete area, respectively,and ACI 14.3.5 for maximum bar spacing.

  • 8/11/2019 1001011 - Design-Wind

    52/5650

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 99 -

    Shear Wall Design

    In accordance with ACI 14.4, the shear wall isdesigned for combined flexure and axial load as acompression member following the provisions ofACI 10.2, 10.3, 10.10, 10.11, 10.14, 14.2, and 14.3.

    - 100 -

    Shear Wall Design

    The wall is reinforced with 12-No. 28 bars in the 650

    650 mm columns at both ends of the wall and 2-No.14 vertical bars @ 400 mm in the web.

  • 8/11/2019 1001011 - Design-Wind

    53/5651

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 101 -

    Shear Wall Design

    - 102 -

    Shear Wall Design

    Development length of horizontal reinforcement

    where, t = reinforcement location factor = 1.0 e = coating factor = 1.0 for uncoated bars s = reinforcement size factor = 0.8 for No.14 bar = lightweight aggregate factor = 1.0

  • 8/11/2019 1001011 - Design-Wind

    54/5652

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 103 -

    Shear Wall Design

    cb = spacing or cover dimension

    (cb + Ktr)/d b = (27 + 0)/14 = 1.93 < 2.5

    (governs)

    - 104 -

    Shear Wall Design

    Required l d (= 347 mm) can be accommodated withinthe 650 mm dimension of columns, so that hooksare not needed at the ends of the bars.

  • 8/11/2019 1001011 - Design-Wind

    55/5653

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    - 105 -

    Shear Wall Design

    - 106 -

    If you are encountering technical difficulties, please call 00 1 847 991 2700

  • 8/11/2019 1001011 - Design-Wind

    56/56

    S. K. Ghosh Associates Inc.

    - 107 -

    Thank You!!

    For more informationwww.skghoshassociates.com

    Chicago Main Office334 East Colfax Street, Unit EPalatine, IL 60067

    Phone: (847) 991-2700Fax: (847) 991-2702Email: [email protected]

    Southern California Office43 Vantis DriveAliso Viejo, CA 92656

    Phone: (949) 249-3739Fax: (949) 249-3989Email: [email protected]