100301 high fieldlaserphysics1

18
7/23/2019 100301 High FieldLaserPhysics1 http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 1/18 High-Field Laser Physics ETH Zürich Spring Semester 2010 H. R. Reiss

Upload: jasmon

Post on 18-Feb-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 1/18

High-Field Laser Physics

ETH Zürich

Spring Semester 2010H. R. Reiss

Page 2: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 2/18

OUTLINE

I. STRONG-FIELD ENVIRONMENT

A. Atomic units

B. The intensity-frequency diagramC. Inadequacy of the electric field as an intensity measure

D. Failure of perturbation theory and its consequences

E. Measures of intensity

F. Upper and lower frequency limits on the dipole approximation

II. S MATRIX

A. Physically motivated derivation of the S matrix

B. Perturbation theory from the S matrix

C. Nonperturbative analytical approximations

D. The A2(t) term; classical-quantum difference

III. NONPERTURBATIVE METHODS

A. Tunneling

B. Strong-field approximation

IV. BASIC ELECTRODYNAMICS

A. Fundamental Lorentz invariants: essential field identifiers

B. Longitudinal and transverse fields

C. Lorentz force

D. Gauges and their special importance in strong fields 2

Page 3: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 3/18

OUTLINE (continued)

V. APPLICATIONS

A. Rates

B. SpectraC. Momentum distributions

D. Angular distributions

E. Higher harmonic generation (HHG)

F. Short pulses

VI. EFFECTS OF POLARIZATION

VII. STABILIZATIONVIII. RELATIVISTIC EFFECTS

A. Relativistic notation

B. Dirac equation and Dirac matrices

C. Negative energy solutions

D. Relativistic quantum mechanics (RQM) vs. relativistic quantum field theory (RQFT)

E. Relativistic rates and spectra

IX. OVERVIEW

A. Very low frequencies

B. Compendium of misconceptions

3

Page 4: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 4/18

INTENSITY-FREQUENCY DIAGRAM

An intensity-frequency diagram is very informative; it will be used repeatedly.

Some of the axis units are in a.u.

More complete details on atomic units will follow.

For now:

• 1 a.u. intensity = 3.511016 W/cm2 |F | = 1 a.u. applied electric field = Coulomb field at 1a.u. from a Coulomb center.

• 1 a.u. length = a0 = Bohr radius

• 1 a.u. frequency = 1 a.u. energy = 2R = 27.2 eV = 45.56 nm

NOTE: The electric field will be designated by F rather than E to avoid confusion with the

energy E .

4

Page 5: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 5/18

5

10-3 10-2 10-1 100 101

Field frequency (a.u.)

10-3

10-2

10-1

100

101

102

103

104

105

106

107

   I  n   t  e  n  s   i   t  y   (  a .  u .   )

104 103 102 101

Wavelength (nm)

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

   I  n   t  e  n  s   i   t  y   (   W

   /  c  m

   2   )

10.6 m

CO2

800 nm

Ti:sapph

100 eV

E=1a.u.=3.51e16W/cm2

Page 6: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 6/18

6

10-3 10-2 10-1 100 101

Field frequency (a.u.)

10-3

10-2

10-1

100

101

102

103

104

105

106

107

   I  n   t  e  n  s   i   t  y   (  a .  u .   )

104 103 102 101

Wavelength (nm)

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

   I  n   t  e  n  s   i   t  y   (   W

   /  c  m

   2   )

10.6 m

CO2

800 nm

Ti:sapph

100 eV

E=1 a.u.   U p

  =  

F F 

Page 7: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 7/18

7

10-3 10-2 10-1 100 101

Field frequency (a.u.)

10-3

10-2

10-1

100

101

102

103

104

105

106

107

   I  n   t  e  n  s   i   t  y   (  a .  u .   )

104 103 102 101

Wavelength (nm)

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

   I  n   t  e  n  s   i   t  y   (   W

   /  c  m

   2   )

10.6

m

CO2

800 nm

Ti:sapph

100 eV

E=1 a.u.   U p

  =  

  2  U  p

  =  m c  2

Page 8: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 8/18

8

10-3 10-2 10-1 100 101

Field frequency (a.u.)

10-3

10-2

10-1

100

101

102

103

104

105

106

107

   I  n   t  e  n  s   i   t  y   (  a .  u .   )

104 103 102 101

Wavelength (nm)

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

   I  n   t  e  n  s   i   t  y   (   W

   /  c  m

   2   )

10.6 m

CO2

800 nm

Ti:sapph

100 eV

E=1 a.u.   U p

  =  

  2  U  p  =  m

 c  2

U. Laval

1988

F = 1

Page 9: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 9/18

THE ELECTRIC FIELD IS NOT A GOOD INTENSITY MEASURE

The experiments at Université Laval (Canada) in 1988 used a CO2 laser at 10.6 m to ionize Xe at

a peak intensity of 1014 W/cm2.

9000 photons were required just to supply the ponderomotive energy Up.

This was a very-strong-field experiment.

The maximum electric field was only |F | = 0.05 a.u.

Notice also that relativistic effects can be reached at low frequencies and small electric fields.

9

Page 10: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 10/18

WHY IS THE INTENSITY LIMIT ON PERTURBATION THEORY SO IMPORTANT?

When using any power series expansion, it may not be obvious from qualitative behavior that

the radius of convergence has been surpassed.

However, when the expansion is used beyond the radius of convergence, the result may be

drastically in error.

A simple example can illustrate this.

Consider the geometric series:

1| x |

... x  x  x 1 x 1

1 ) x ( F    32 

To simplify matters, suppose x is positive: x> 0.

1/(1-x) changes sign when x > 1, but the expansion is a sum of positive terms! 

Perturbation theory (PT) in quantum mechanics does not fail so spectacularly, but PT can be

completely misleading.

10

Page 11: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 11/18

0.2 0.4 0.6 0.8 1.0

x

-20

-10

0

10

20

1/(1-x)

1+x+x2+x3+x4+x5

Radius of convergence

11

Page 12: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 12/18

ATOMIC UNITS

Define 3 basic quantities to be of unit value. This will set values for e2 , ħ, m.

Unit of length:

Unit of velocity:

Unit of time:

m10 29177249.5 .u.a1me

a   11

 

s

m10 18769142 .2 .u.a1

ev 

meR 

mv Set    6 

0 2 

42 

0   

s10 41888433.2 .u.a1meemev 

a

Set 

  17 

4

3

2 2 

 

 

These 3 definitions give:

The only solution is:

(Note: some of the choices, such as mv 02 /2 = R  were selected to give ħ = 1, m = 1, e2 = 1.)

432 2 2  me,e,me    

1e,1m,1   2 

12

Page 13: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 13/18

ATOMIC UNITS, continued

Derived quantities:

Unit of energy:

Unit of frequency:

Unit of electric field strength:

Unit of energy flux:

eV 2113962 .27 .u.a1me

R 2 E 2 

4

0     

Hz 10 13413732 .4me

.u.a11   16 

3

4

0     

 

m / V 10 14220826 .5 .u.a1

cetandis

volts

length

1

e

voltselectronensionlessdim

mc 

e

mc 

emc 

e

1me

ea

R 2 F 

11

3

2 3

4

 

  

 

 

  

 

 

  

   

  

 

   

 

 

8 8 

.u.a8 

c then.,u.a1F cesin

2  / 

1mc 

8 F 

.u.a

.u.a

0 0 

e

2 2 5 2 

0 0 

 I  I  I 

 I 

 I  I 

 I 

 I 

13

Page 14: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 14/18

ATOMIC UNITS, continued 2

Convenient conversions:

Wavelength to frequency:

example: 800 nm  (a.u.) = 45.5633526 / 800 = 0.0570 a.u.

Atomic units and mc2 units:

nm

5633526 .45 .u.a

    

2 5  mc 10 32513625 .5 .u.a1  

.u.a10 87788622 .1unit mc 1   42 

14

Page 15: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 15/18

15

PONDEROMOTIVE ENERGY

The electric field strength is not a useful indicator of the strength of a plane-wave field.

(However, it is the only strength indicator for a quasistatic electric (QSE) field. Much more to be

said later.)

The limit for perturbation theory: U p <   U p = ponderomotive energy 

Index for relativistic behavior: U p = O(mc2 )

Ponderomotive energy is a useful guide to the coupling between an electron and a plane-

wave field.

An electron in a plane-wave field oscillates (“quivers”, “wiggles”, “jitters”) in consequence of the

electromagnetic coupling between the field and the electron. The energy of this interaction in

the frame of reference in which it is minimal is the ponderomotive energy.

In a.u.:

on polarizati circular F 

1

on polarizati linear 2 

2 U 

2  p

 

 

 

 

 

  

 

 

 

  

 I 

Page 16: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 16/18

16

FIGURE-8 MOTION OF A FREE ELECTRON IN A

LINEARLY POLARIZED PLANE-WAVE FIELD

CIRCULAR MOTION OF A FREE ELECTRON IN A

CIRCULARLY POLARIZED PLANE-WAVE FIELD

B

Page 17: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 17/18

17

MEASURES OF INTENSITY

Dimensionless measures are always to be preferred.

U p is basic, but it can be compared to 3 other relevant energies in strong-field problems:

  energy of a single photon of the field

E B binding energy of an electron in a bound system

mc2 electron rest energy (actually, just c2 in a.u.; the m is retained because of its familiarity)

This leads to 3 dimensionless measures of intensity:

z = U p  /    non-perturbative intensity parameter (note that z  1 /  3 )

z1 = 2 U p / E B bound-state intensity parameter (z  1 /  2 )

z f = 2 U p  / mc2 free-electron intensity parameter (z  1 /  2 )

A commonly used measure is the Keldysh parameter  K = 1/ z11/2

 K is the ratio of tunneling time to wave period; a measure that implies a tunneling process,

which is not appropriate to ionization by a plane wave. It is generally the only parameter

employed, which is not sufficient.

Page 18: 100301 High FieldLaserPhysics1

7/23/2019 100301 High FieldLaserPhysics1

http://slidepdf.com/reader/full/100301-high-fieldlaserphysics1 18/18

18

MEASURES OF INTENSITY, continued

 z = U  p  /  

This is called the non-perturbative intensity parameter because a channel closing is non-analytical behavior that limits the radius of convergence of a perturbation expansion. An

ionized electron must have at least the energy U p + E B to be a physical particle. If U p   , then

at least one additional photon must participate to satisfy energy conservation. If the minimum

number of photons n0 that must participate is increased from n0 to n0 +1, this is called a channel

closing, and perturbation theory fails.

 z1 = 2 U  p  / E B

This ratio compares the interaction energy of an electron with the field to the interaction energy

of an electron with a binding potential. If U p > E B the field is dominant, if U p < E B then the

binding potential is dominant. Validity of the Strong-Field Approximation (SFA) requires that the

field should be dominant.

 z f = 2 U  p  / mc 2

This is the primary intensity parameter for free electrons.