1.0plus1.0minus1.010.951.0 resilient architectures and...

22
Resilient Architectures and Algorithms for Generation Control of Inertialess AC Microgrids Alejandro D. Dom´ ınguez-Garc´ ıa Coordinated Science Laboratory Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign NSF Workshop on Power Electronics-Enabled Operation of Power Systems Illinois Institute of Technology Chicago, IL November 1, 2019

Upload: others

Post on 24-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Resilient Architectures and Algorithms forGeneration Control of Inertialess AC Microgrids

Alejandro D. Domınguez-Garcıa

Coordinated Science LaboratoryDepartment of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

NSF Workshop on Power Electronics-Enabled Operation of Power SystemsIllinois Institute of Technology

Chicago, ILNovember 1, 2019

Page 2: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Microgrid Notion

A group of loads and distributed energy resources (DERs) interconnectedvia an electrical network with a small physical footprint with the possibilityof operating:

M1. as part of a large power system [Grid-connected mode]

M2. as an autonomous power system [Islanded mode]

Examples of Distributed Energy Resources (DERs)

PV systems Electric Vehicles Fuel Cells Residential Storage

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 1 / 19

Page 3: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

tie line

microgrid

G

G

bulk grid

Grid-Connected: May be viewed as a single entity with the idea ofcontrolling the DERs within its boundaries to provide services to thebulk grid

Islanded: Enables consumers to maintain electricity supply byappropriately controlling the DERs within its boundaries

Different control objectives for each operational mode and each typeof DER

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 2 / 19

Page 4: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

tie line

microgrid

G

G

bulk grid

Grid-Connected: May be viewed as a single entity with the idea ofcontrolling the DERs within its boundaries to provide services to thebulk grid

Islanded: Enables consumers to maintain electricity supply byappropriately controlling the DERs within its boundaries

Different control objectives for each operational mode and each typeof DER

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 2 / 19

Page 5: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

tie line

microgrid

G

G

bulk grid

Grid-Connected: May be viewed as a single entity with the idea ofcontrolling the DERs within its boundaries to provide services to thebulk grid

Islanded: Enables consumers to maintain electricity supply byappropriately controlling the DERs within its boundaries

Different control objectives for each operational mode and each typeof DER

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 2 / 19

Page 6: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Architectural SolutionsCentralized:

I Requires communication between a central processor and the variousgeneration resources (and possibly loads)

I Requires up-to-date knowledge of generation resource availabilityI Subject to failures at the decision maker (single-point-of-failure)

Distributed:I Inherent ability to handle incomplete global knowledgeI Potential resiliency to faults and/or unpredictable behavior

DistributedCentralized

2

1

3

6

4

5

in

Controller

1

2

3

i

4

5

6

n

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 3 / 19

Page 7: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Our Distributed Control Platform

Each control node acquires information locally (e.g., frommeasurements) and via exchanges with nearby control nodes

The information is used as inputs to a suite of distributed algorithmsimplementing requisite control functions

Communication link to assetsCommunication link to assets

Communication link across feedersCommunication link across feeders

Communication link between control nodesCommunication link between control nodes

X Control node XX Control node X

X Control area XX Control area X

AggregationAggregation

B6

A3 A4

B1

B2

B5

B4

. . .

Bus 2

Bus 201Bus 101

200HP

Inductionmotor

4MVA

Diesel

Bus 203

Grid - Bus1

SEL751-1 SEL751-2 SEL751-3

Bus 205

C1

1200kVA

I1

3000kVA

I2

250kVA

C2

1500kVA

Bus 105

Bus 106

Bus 107

P1

1000kVA

Bus 102 Bus 103

Bus 204

3 MVA

ESS

C3

1000kVA

P2

1000kVAI5

400kVA

T101

500kVA

13.8/0.48kV

T102

2500kVA

13.8/0.48kV

T103

3750kVA

13.8/4.16kV

T106

500kVA

13.8/0.208kV

T104

2000kVA

4.16/0.48kV

T104

2000kVA

4.16/0.48kV

F1_CB1 F1_CB2 F1_CB3

F1_CB4 F1_CB5 F1_CB6 F1_CB7 F1_CB8F1_CB12

F1_CB13

F1_GCB

F1_CB9

F1_CB10 F1_CB11

F1_CB14

T107

2500kVA

13.8/0.48kV

Bus 202

C4

1000kVAP5

700kVA

F2_CB1 F2_CB2 F2_CB3

F2_CB5

F2_CB11

F2_CB6 F2_CB7

F2_CB8 F2_CB4

F2_CB9 F2_CB10

F2_CB19 F2_CB12 F2_CB13

F2_CB14 F2_CB15

F2_CB17 F2_CB18 F2_CB16

T201

2500kVA

13.8/0.48kV

T203

3750kVA

13.8/4.16kVT202

500kVA

13.8/0.208kV

T204

1000kVA

4.16/0.48kV

T205

1500kVA

4.16/0.48kV

T207

5000kVA

13.8/0.48kV

T206

2500kVA

13.8/0.48kV

T210

1000kVA

13.8/0.48kV

T208

2000kVA

13.8/0.48kV

T209

2000kVA

13.8/0.48kV

I3

300kVA

I4

500kVAP3

1000kVA

Bus 206 Bus 207

Bus 209 Bus 210

Bus 208

Bus 104

. . .

. . .

. . .

. . .

. . .

B4B2

B5

B7

B6

A1A3

A2 A4

B3

B1

Distributed

control

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 4 / 19

Page 8: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Our Work in the Last Decade

We have developed, mathematically analyzed, and tested numerousdistributed algorithms for performing several control functions, including:

I frequency control, voltage control, optimal dispatch, provision of ancillary services,optimal power flow, synchronization

Our laboratory-grade control node prototypes are currently equipped withdistributed algorithms for frequency control [TCST 2017]

Laboratory-grade control node prototype

Load Bus

Generator Bus

1

4

5

2

3

6 1

4

5

2

3

6

0 2 4 6 80.75

1

1.25

1.5

time, t [s]

P4(t) P5(t) P6(t)∆ω(t) [rad/s]

0 2 4 6 8

0−0.01−0.02−0.03−0.04−0.05−0.06

time, t [s]0 2 4 6 8

0.75

1

1.25

1.5

time, t [s]

P1(t) P2(t) P3(t)

(a) Electrical single-linediagram of 6 bus microgrid

(b) Communicationgraph

(c) Load perturbations (e) Weighted averagefrequency error

(d) Generators share loadaccording to their power ratings

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 5 / 19

Page 9: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Our Work in the Last Decade

We have developed, mathematically analyzed, and tested numerousdistributed algorithms for performing several control functions, including:

I frequency control, voltage control, optimal dispatch, provision of ancillary services,optimal power flow, synchronization

Our laboratory-grade control node prototypes are currently equipped withdistributed algorithms for optimal asset scheduling [CDC 2012]

Laboratory-grade control node prototype

P1 P2 P3 P4 P5 P6

1 2 3 4 5 6

20 40 60 80

0

0.5

1

k

Pj[k]

P1[k] P2[k] P3[k]

P4[k] P5[k] P6[k]

(c) Estimation of the optimal power outputs ofthe generation units, Pj [k], j = 1, 2, 3, 4, 5, 6

(a) Electrical single-line diagramof 6 bus microgrid

(b) Communication graph

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 6 / 19

Page 10: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Our Work in the Last Decade

We have developed, mathematically analyzed, and tested numerousdistributed algorithms for performing several control functions, including:

I frequency control, voltage control, optimal dispatch, provision of ancillary services,optimal power flow, synchronization

Our laboratory-grade control node prototypes are currently equipped withdistributed algorithms for provision of regulation services [CDC 2011]

Laboratory-grade control node prototype

Feeder

1 2

3 4

1 2

3 4

0 10 20 30 40 50 60 70 80

Time (minutes)

-150

-100

-50

0

50

100

150

Act

ive

Po

wer

(k

W)

Three-phase Active Power Injection to Bulk Grid

RegD Signal

Active power injection

660 665 670 675 680 685 690

Time (seconds)

-40

-38

-36

(a) Electrical single-line diagramof 4 bus microgrid

(b) Communication graph (c) Aggregate response of DERs to PJM RegD signal

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 7 / 19

Page 11: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Controller Hardware-in-the-loop (C-HIL) Testing

All our distributed algorithms have been tested in a C-HILenvironment

C-HIL testing is a safe, low cost, repeatable, flexible and efficientapproach for testing control hardware

CONTROLLED

SYSTEM

computer simulation (in real-time)

communication protocol

reference

signaloutput

control signal

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 8 / 19

Page 12: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Illinois C-HIL Testbed Architecture

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 9 / 19

Page 13: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Cyber Layer

Ethernet shield

(enables ethernet communication)

Arduino microcontroller board

(enables implementation of control algorithms)

Xbee module + Xbee shield

(enables wireless communication)

Cyber layer controller

The cyber layer is equipped with cyber layer controllers, eachoutfitted with wireless and ethernet transceivers

Cyber layer controllers execute the distributed algorithms necessary toimplement each particular control function

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 10 / 19

Page 14: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Physical Layer

The Typhoon HIL402 and Typhoon HIL603 are utilized for real-timeemulation of the physical layer

The emulators are equipped with detailed and reduced models of:I Rooftop photovoltaic (PV) panelsI Battery storage systemsI Wind turbine generatorsI MicroturbinesI Fuel cellsI Loads

Simulation time steps are as low as 500ns

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 11 / 19

Page 15: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Low-level controllers

Low-level controllers cabinet

TI MSP-EXP432e401y Ethernet board

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 12 / 19

Page 16: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Equipment cabinet

A laboratory

prototype of

the control node

A laboratory

prototype of

the control node

View of the testbed control console showing severallaboratory-grade control node prototypes

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 13 / 19

Page 17: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Moving Forward

Demonstrate the ability of our distributed architecture to handlechallenging scenarios, including:

Networking multiple already-existing microgrids

Plug-and-play integration of additional assets

Communication failures and control node reboot/shutdown

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 14 / 19

Page 18: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Networking of Multiple Microgrids

B6

A3 A4

B1

B2

B5

B4

Bus 2

Bus 201Bus 101

200HP

Inductionmotor

4MVA

Diesel

Bus 203

Grid - Bus1

SEL751-1 SEL751-2 SEL751-3

Bus 205

C1

1200kVA

I1

3000kVA

I2

250kVA

C2

1500kVA

Bus 105

Bus 106

Bus 107

P1

1000kVA

Bus 102 Bus 103

Bus 204

3 MVA

ESS

C3

1000kVA

P2

1000kVAI5

400kVA

T101

500kVA

13.8/0.48kV

T102

2500kVA

13.8/0.48kV

T103

3750kVA

13.8/4.16kV

T106

500kVA

13.8/0.208kV

T104

2000kVA

4.16/0.48kV

T104

2000kVA

4.16/0.48kV

F1_CB1 F1_CB2 F1_CB3

F1_CB4 F1_CB5 F1_CB6 F1_CB7 F1_CB8F1_CB12

F1_CB13

F1_GCB

F1_CB9

F1_CB10 F1_CB11

F1_CB14

T107

2500kVA

13.8/0.48kV

Bus 202

C4

1000kVAP5

700kVA

F2_CB1 F2_CB2 F2_CB3

F2_CB5

F2_CB11

F2_CB6 F2_CB7

F2_CB8 F2_CB4

F2_CB9 F2_CB10

F2_CB19 F2_CB12 F2_CB13

F2_CB14 F2_CB15

F2_CB17 F2_CB18 F2_CB16

T201

2500kVA

13.8/0.48kV

T203

3750kVA

13.8/4.16kVT202

500kVA

13.8/0.208kV

T204

1000kVA

4.16/0.48kV

T205

1500kVA

4.16/0.48kV

T207

5000kVA

13.8/0.48kV

T206

2500kVA

13.8/0.48kV

T210

1000kVA

13.8/0.48kV

T208

2000kVA

13.8/0.48kV

T209

2000kVA

13.8/0.48kV

I3

300kVA

I4

500kVAP3

1000kVA

Bus 206 Bus 207

Bus 209 Bus 210

Bus 208

Bus 104

. . .

. . .

. . .

. . .

. . .

B4B2

B5

B7

B6

A1A3

A2 A4

B3

B1

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 15 / 19

Page 19: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Networking of Multiple Microgrids

B6

A3 A4

B1

B2

B5

B4

. . .

Bus 2

Bus 201Bus 101

200HP

Inductionmotor

4MVA

Diesel

Bus 203

Grid - Bus1

SEL751-1 SEL751-2 SEL751-3

Bus 205

C1

1200kVA

I1

3000kVA

I2

250kVA

C2

1500kVA

Bus 105

Bus 106

Bus 107

P1

1000kVA

Bus 102 Bus 103

Bus 204

3 MVA

ESS

C3

1000kVA

P2

1000kVAI5

400kVA

T101

500kVA

13.8/0.48kV

T102

2500kVA

13.8/0.48kV

T103

3750kVA

13.8/4.16kV

T106

500kVA

13.8/0.208kV

T104

2000kVA

4.16/0.48kV

T104

2000kVA

4.16/0.48kV

F1_CB1 F1_CB2 F1_CB3

F1_CB4 F1_CB5 F1_CB6 F1_CB7 F1_CB8F1_CB12

F1_CB13

F1_GCB

F1_CB9

F1_CB10 F1_CB11

F1_CB14

T107

2500kVA

13.8/0.48kV

Bus 202

C4

1000kVAP5

700kVA

F2_CB1 F2_CB2 F2_CB3

F2_CB5

F2_CB11

F2_CB6 F2_CB7

F2_CB8 F2_CB4

F2_CB9 F2_CB10

F2_CB19 F2_CB12 F2_CB13

F2_CB14 F2_CB15

F2_CB17 F2_CB18 F2_CB16

T201

2500kVA

13.8/0.48kV

T203

3750kVA

13.8/4.16kVT202

500kVA

13.8/0.208kV

T204

1000kVA

4.16/0.48kV

T205

1500kVA

4.16/0.48kV

T207

5000kVA

13.8/0.48kV

T206

2500kVA

13.8/0.48kV

T210

1000kVA

13.8/0.48kV

T208

2000kVA

13.8/0.48kV

T209

2000kVA

13.8/0.48kV

I3

300kVA

I4

500kVAP3

1000kVA

Bus 206 Bus 207

Bus 209 Bus 210

Bus 208

Bus 104

. . .

. . .

. . .

. . .

. . .

B4B2

B5

B7

B6

A1A3

A2 A4

B3

B1

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 16 / 19

Page 20: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Integration of an Additional Asset

B6

A3 A4

B1

B2

B5

B4

. . .

Bus 2

Bus 201Bus 101

200HP

Inductionmotor

4MVA

Diesel

Bus 203

Grid - Bus1

SEL751-1 SEL751-2 SEL751-3

Bus 205

C1

1200kVA

I1

3000kVA

I2

250kVA

C2

1500kVA

Bus 105

Bus 106

Bus 107

P1

1000kVA

Bus 102 Bus 103

Bus 204

3 MVA

ESS

C3

1000kVA

P2

1000kVAI5

400kVA

T101

500kVA

13.8/0.48kV

T102

2500kVA

13.8/0.48kV

T103

3750kVA

13.8/4.16kV

T106

500kVA

13.8/0.208kV

T104

2000kVA

4.16/0.48kV

T104

2000kVA

4.16/0.48kV

F1_CB1 F1_CB2 F1_CB3

F1_CB4 F1_CB5 F1_CB6 F1_CB7 F1_CB8F1_CB12

F1_CB13

F1_GCB

F1_CB9

F1_CB10 F1_CB11

F1_CB14

T107

2500kVA

13.8/0.48kV

Bus 202

C4

1000kVAP5

700kVA

F2_CB1 F2_CB2 F2_CB3

F2_CB5

F2_CB11

F2_CB6 F2_CB7

F2_CB8 F2_CB4

F2_CB9 F2_CB10

F2_CB19 F2_CB12 F2_CB13

F2_CB14 F2_CB15

F2_CB17 F2_CB18 F2_CB16

T201

2500kVA

13.8/0.48kV

T203

3750kVA

13.8/4.16kVT202

500kVA

13.8/0.208kV

T204

1000kVA

4.16/0.48kV

T205

1500kVA

4.16/0.48kV

T207

5000kVA

13.8/0.48kV

T206

2500kVA

13.8/0.48kV

T210

1000kVA

13.8/0.48kV

T208

2000kVA

13.8/0.48kV

T209

2000kVA

13.8/0.48kV

I3

300kVA

I4

500kVAP3

1000kVA

Bus 206 Bus 207

Bus 209 Bus 210

Bus 208

Bus 104

. . .

. . .

. . .

. . .

. . .

B4B2

B5

B7

B6

A1A3

A2 A4

B3

B1

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 17 / 19

Page 21: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Integration of an Additional Asset

B6

A3 A4

B1

B2

B5

B4

. . .

Bus 2

Bus 201Bus 101

200HP

Inductionmotor

4MVA

Diesel

Bus 203

Grid - Bus1

SEL751-1 SEL751-2 SEL751-3

Bus 205

C1

1200kVA

I1

3000kVA

I2

250kVA

C2

1500kVA

Bus 105

Bus 106

Bus 107

P1

1000kVA

Bus 102 Bus 103

Bus 204

3 MVA

ESS

C3

1000kVA

P2

1000kVAI5

400kVA

T101

500kVA

13.8/0.48kV

T102

2500kVA

13.8/0.48kV

T103

3750kVA

13.8/4.16kV

T106

500kVA

13.8/0.208kV

T104

2000kVA

4.16/0.48kV

T104

2000kVA

4.16/0.48kV

F1_CB1 F1_CB2 F1_CB3

F1_CB4 F1_CB5 F1_CB6 F1_CB7 F1_CB8F1_CB12

F1_CB13

F1_GCB

F1_CB9

F1_CB10 F1_CB11

F1_CB14

T107

2500kVA

13.8/0.48kV

Bus 202

C4

1000kVAP5

700kVA

F2_CB1 F2_CB2 F2_CB3

F2_CB5

F2_CB11

F2_CB6 F2_CB7

F2_CB8 F2_CB4

F2_CB9 F2_CB10

F2_CB19 F2_CB12 F2_CB13

F2_CB14 F2_CB15

F2_CB17 F2_CB18 F2_CB16

T201

2500kVA

13.8/0.48kV

T203

3750kVA

13.8/4.16kVT202

500kVA

13.8/0.208kV

T204

1000kVA

4.16/0.48kV

T205

1500kVA

4.16/0.48kV

T207

5000kVA

13.8/0.48kV

T206

2500kVA

13.8/0.48kV

T210

1000kVA

13.8/0.48kV

T208

2000kVA

13.8/0.48kV

T209

2000kVA

13.8/0.48kV

I3

300kVA

I4

500kVAP3

1000kVA

Bus 206 Bus 207

Bus 209 Bus 210

Bus 208

Bus 104

. . .

. . .

. . .

. . .

. . .

B4B2

B5

B7

B6

A1A3

A2 A4

B3

B1

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 18 / 19

Page 22: 1.0plus1.0minus1.010.951.0 Resilient Architectures and ...peac.ece.iit.edu/wp-content/uploads/2019/11/1101... · The Typhoon HIL402 and Typhoon HIL603 are utilized for real-time emulation

Failure of multiple control nodes

B6

A3 A4

B1

B2

B5

B4

. . .

Bus 2

Bus 201Bus 101

200HP

Inductionmotor

4MVA

Diesel

Bus 203

Grid - Bus1

SEL751-1 SEL751-2 SEL751-3

Bus 205

C1

1200kVA

I1

3000kVA

I2

250kVA

C2

1500kVA

Bus 105

Bus 106

Bus 107

P1

1000kVA

Bus 102 Bus 103

Bus 204

3 MVA

ESS

C3

1000kVA

P2

1000kVAI5

400kVA

T101

500kVA

13.8/0.48kV

T102

2500kVA

13.8/0.48kV

T103

3750kVA

13.8/4.16kV

T106

500kVA

13.8/0.208kV

T104

2000kVA

4.16/0.48kV

T104

2000kVA

4.16/0.48kV

F1_CB1 F1_CB2 F1_CB3

F1_CB4 F1_CB5 F1_CB6 F1_CB7 F1_CB8F1_CB12

F1_CB13

F1_GCB

F1_CB9

F1_CB10 F1_CB11

F1_CB14

T107

2500kVA

13.8/0.48kV

Bus 202

C4

1000kVAP5

700kVA

F2_CB1 F2_CB2 F2_CB3

F2_CB5

F2_CB11

F2_CB6 F2_CB7

F2_CB8 F2_CB4

F2_CB9 F2_CB10

F2_CB19 F2_CB12 F2_CB13

F2_CB14 F2_CB15

F2_CB17 F2_CB18 F2_CB16

T201

2500kVA

13.8/0.48kV

T203

3750kVA

13.8/4.16kVT202

500kVA

13.8/0.208kV

T204

1000kVA

4.16/0.48kV

T205

1500kVA

4.16/0.48kV

T207

5000kVA

13.8/0.48kV

T206

2500kVA

13.8/0.48kV

T210

1000kVA

13.8/0.48kV

T208

2000kVA

13.8/0.48kV

T209

2000kVA

13.8/0.48kV

I3

300kVA

I4

500kVAP3

1000kVA

Bus 206 Bus 207

Bus 209 Bus 210

Bus 208

Bus 104

. . .

. . .

. . .

. . .

. . .

B4B2

B5

B7

B6

A1A3

A2 A4

B3

B1

A. D. Domınguez-Garcıa (Illinois) Microgrid Distributed Control [email protected] 19 / 19