11 04 0903-00-000n turbo codes partial proposal presentation slides

Upload: ki-sey

Post on 03-Apr-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    1/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 1

    Partial Proposal:

    Turbo Codes

    Marie-Helene Hamon, Olivier Seller, John Benko France Telecom

    Claude Berrou ENST Bretagne

    Jacky Tousch TurboConcept

    Brian Edmonston iCoding

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    2/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 2

    Outline

    Part I: Turbo Codes

    Part II: Turbo Codes for 802.11n

    Why TC for 802.11n?

    Flexibility

    Performance

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    3/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 3

    Outline

    Part I: Turbo Codes

    Part II: Turbo Codes for 802.11n

    Why TC for 802.11n?

    Flexibility

    Performance

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    4/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 4

    Known applications

    of convolutional

    turbo codes

    Application turbo code termination polynomials rates

    CCSDS(deep space) binary,16-state tail bits 23, 33, 25, 37 1/6, 1/4, 1/3,1/2

    UMTS,

    CDMA2000

    (3G Mobile)

    binary,

    8-state

    tail bits 13, 15, 17 1/4, 1/3, 1/2

    DVB-RCS

    (Return Channelover Satellite)

    duo-binary,

    8-state

    circular 15, 13 1/3 up to 6/7

    DVB-RCT

    (Return Channel

    over Terrestrial)

    duo-binary,

    8-state

    circular 15, 13 1/2, 3/4

    Inmarsat

    (M4)

    binary,

    16-state

    no 23, 35 1/2

    Eutelsat

    (Skyplex)

    duo-binary,

    8-state

    circular 15, 13 4/5, 6/7

    IEEE 802.16

    (WiMAX)

    duo-binary,

    8-state

    circular 15, 13 1/2 up to 7/8

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    5/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 5

    Main progress in turbo coding/decoding since 1993

    Max-Log-MAP and Max*-Log-MAP algorithms

    Sliding window

    Duo-binary turbo codes

    Circular (tail-biting) encoding

    Permutations

    Parallelism

    Computation or estimation of Minimum Hamming

    distances (MHDs)

    Stopping criterion

    Bit-interleaved turbo coded modulation

    Simplicity

    Simplicity

    Performance and simplicity

    Performance

    Performance

    Throughput

    Maturity

    Power consumption

    Performance and simplicity

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    6/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 6

    kbinarydata

    permutation

    Y1

    Y2

    X

    permutation

    k/2binarycouples

    pol ynom i al s 15, 13 ( or 13, 15)

    kbinarydata

    permutation

    Y1

    X

    permutation

    k/2binarycouples

    (a) (b)

    The TCs used in practice

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    7/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 7

    The turbo code proposed for all sizes, all coding rates

    permutation

    (N)N = k/2

    couplesof data

    co

    deword

    systematic part

    redundancy part

    1

    2

    punctu-ring

    Y

    A

    B

    A

    B

    Y

    systematic part

    redundancy part+

    circular (tail-biting)encoding

    Very simple algorithmic permutation:

    i =0,, N-1, j = 0, ...N-1

    level 1: ifj mod. 2 = 0, let (A,B) = (B,A) (invert the couple)

    level 2:

    - ifj mod. 4 = 0, thenP= 0;

    - ifj mod. 4 = 1, thenP=N/2 +P1;

    - ifj mod. 4 = 2, thenP=P2;

    - ifj mod. 4 = 3, thenP= N/2 +P3.

    i =P0*j +P+1 mod.N

    No ROM

    Quasi-regular (no routing issue)

    Versatility

    Inherent parallelism

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    8/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 8

    Decoding

    Max-Log-MAP algorithm

    Sliding window

    FER

    5

    5

    5

    5

    10-3

    10-4

    10-1

    10-2

    Eb/N0 (dB)3 4

    Full MAP Max-Log-MAP

    Theoretical limit

    (sphere packing bound)

    Gaussian,

    1504 bits,

    R = 4/5

    + inherent parallelism, easy connectivity (quasi-regular permutation)

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    9/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 9

    Decoding complexity

    Useful rate: 100 Mbps with 8 iterations

    5-bit quantization (data and extrinsic)

    Gates

    164,000 @ Clock = 100 Mhz

    82,000 @ Clock = 200 Mhz

    54,000 @ Clock = 400 Mhz

    RAM

    Data input buffer

    +

    8.5xkfor extrinsic information

    + 4000 for sliding window

    (example: 72,000 bits for 1000-byte block)

    No ROM

    For 0.18m CMOS

    Duo-binary TC decoders are already available from several providers

    (iCoding Tech., TurboConcept, ECC, Xilinx, Altera, )

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    10/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 10

    Outline

    Part I: Turbo Codes

    Part II: Turbo Codes for 802.11n

    Why TC for 802.11n?

    Flexibility

    Performance

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    11/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 11

    Introduction

    Purpose

    Show the multiple benefits of TCs for 802.11n standard

    Overview of duo-binary TCs

    Comparison between TC and .11a Convolutional Code

    High Flexibility Complexity

    Properties of Turbo Codes (TCs)

    Rely on soft iterative decoding to achieve high coding gains

    Good performance, near channel capacity for long blocks

    Easy adaptation in the standard frame (easy block size adaptation to the MAC layer)

    Well controlled hardware development and complexity

    TC advantages led to recent adoption in standards

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    12/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 12

    Duo-Binary Turbo Code

    s1 s3s2A

    B

    W

    systematic part

    redundancy partY

    permutation

    (k/2)N = k/2 couples

    of data

    c

    o

    de

    w

    o

    r

    d

    systematic part

    redundancy part

    1

    2

    puncturing

    Y1 or 2W1 or 2

    A

    B

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    13/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 13

    Duo-Binary Turbo Code

    Duo-binary input: Reduction ofLatency & Complexity (compared to UMTS TCs)

    Complexity per decoded bit is 35 % lower than binary UMTS TCs.

    Better convergence in the iterative decoding process

    Circular Recursive Systematic Codes

    Constituent codes

    No trellis termination overhead!

    Original permuter scheme

    Larger minimum distance

    Better asymptotic performance

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    14/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 14

    # of Iterations vs. Performance

    The number of

    iterations canbe adjusted for

    better

    performance

    complexity

    trade-off

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    15/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 15

    Simulation Environment

    Both Turbo Codes and 802.11a CCs simulated

    Simulation chain based on 802.11a PHY model SISO configuration

    CC59 and CC67 followed

    Simulated Channels: AWGN, models B, D, E No PHY impairments

    Packet size of 1000 bytes.

    Minimum of 100 packet errors

    Assume perfect channel estimation & synchronization

    Turbo Code settings: 8-state Duo-Binary Convolutional Turbo Codes

    Max-Log-MAP decoding

    8 iterations

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    16/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 16

    Performance: AWGN

    3.5-4 dB

    gain over

    802.11a CC

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    17/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 17

    Performance: model B

    ~3 dB

    gain over

    802.11a

    CC

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    18/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 18

    Performance: model D

    ~3 dB

    gain over

    802.11a

    CC

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    19/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 19

    Performance: model E

    ~3 dB

    gain over

    802.11a

    CC

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    20/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 20

    Flexibility

    All Coding Rates possible (no limitations)

    Same encoder/decoder for: any coding rate via simple puncturing adaptation

    different block sizes via adjusting permutation parameters

    4 parameters are used per block size to define an interleaver

    Higher PHY data rates enabled with TCs: High coding gains over 802.11a CC ( =>lower PER)

    More efficient transmission modes enabled more often. Combination with higher-order constellations

    Better system efficiency ARQ algorithm used less frequently

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    21/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 21

    Conclusions

    Mature, stable, well established and implemented

    Multiple Patents, but well defined licensing All other advanced FECs also have patents

    Complexity: Show 35% decrease in complexity per decoded bit over UMTS TCs

    Performance is slightly betterthan UMTS TCs

    Significant performance gain over .11a CC: 3.5 - 4 dB on AWGN channel

    3 dB on 802.11n channel models

  • 7/28/2019 11 04 0903-00-000n Turbo Codes Partial Proposal Presentation Slides

    22/22

    doc.: IEEE 802.11-04/903-00-0000n

    Submission

    September 2004

    France TelecomSlide 22

    References

    [1] IEEE 802.11-04/003, "Turbo Codes for 802.11n", France Telecom R&D, ENSTBretagne, iCoding Technology, TurboConcept, January 2004.

    [2] IEEE 802.11-04/243, "Turbo Codes for 802.11n", France Telecom R&D,iCodingTechnology, May 2004.

    [3] IEEE 802-04/256, "PCCC Turbo Codes for IEEE 802.11n", IMEC, March 2004.

    [4] C. Berrou, A. Glavieux, P. Thitimajshima, "Near Shannon limit error-correctingcoding and decoding: Turbo Codes", ICC93, vol. 2, pp. 1064-1070, May 93.

    [5] C. Berrou, "The ten-year-old turbo codes are entering into service", IEEECommunications Magazine, vol. 41, pp. 110-116, August 03.

    [6] C. Berrou, M. Jezequel, C. Douillard, S. Kerouedan, "The advantages of non-binaryturbo codes", Proc IEEE ITW 2001, pp. 61-63, Sept. 01.

    [7] TS25.212 : 3rd Generation Partnership Project (3GPP) ; Technical SpecificationGroup (TSG) ; Radio Access Network (RAN) ; Working Group 1 (WG1); "Multiplexingand channel coding (FDD)". October 1999.

    [8] EN 301 790 : Digital Video Broadcasting (DVB) "Interaction channel or satellitedistribution systems". December 2000.

    [9] EN 301 958 : Digital Video Broadcasting (DVB) "Specification of interactionchannel for digital terrestrial TV including multiple access OFDM". March 2002.