11-5784 js fire scenarios final

Upload: aadi-khan

Post on 02-Jun-2018

237 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    1/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    Jump Start: Fire Overpressure Analysisin Aspen HYSYS and Aspen Plus

    A Brief Tutorial (and supplement to training and online documentation)

    Anum Qassam, Product Management, Aspen Technology, Inc.

    Jennifer Dyment, Product Marketing, Aspen Technology, Inc.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    2/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    Table of Contents

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    Initial Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    Unwetted (API) Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Calculation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Vessel Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    Supercritical Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Calculation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    Vessel Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    Edit Flash Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Wetted (API) Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Calculation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    Vessel Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    Semi-Dynamic Flash Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    Calculation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    Vessel Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    Edit Flash Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    3/24

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    1

    IntroductionAPI Standard 521 recommends that all pressure vessels under 25 feet in elevation be protected against overpressure

    resulting from an external pool fire. A plant fire is a dangerous situation where flammable fluid is trapped inside a high-

    pressure vessel, with heat continually added to the system. For two-phase separators, the trapped liquid inventorys

    composition, temperature, and pressure are constantly in flux. For a vessel with no liquid inventory, ideal gas expansion

    can ease the difficulty of the calculation, but the complexity of the relief load calculation increases substantially at non-

    ideal conditions. The Safety Environment in Aspen HYSYS and Aspen Plus offers a variety of calculation methodologies

    to quickly calculate the orifice area required to protect a vessel against overpressure due to the fire contingency.

    This is not meant to be used as a stand-alone reference document. AspenTech recommends that a range of other

    resources be referenced to give the new user a comprehensive view of how to use Aspen HYSYS and Aspen Plus. These

    may include:

    Jump Start: Relief Sizing in Aspen HYSYS and Aspen Plus V8.6

    AspenTech support website (support.aspentech.com)

    AspenTech courseware available in on-line and in-person versions

    AspenTech business consultants

    Additional jump start guidesavailable on a variety of related topics

    This document provides a detailed overview of the steps required to calculate the required relief load for the fire

    overpressure contingency within the Safety Environment of Aspen Plus and Aspen HYSYS, with a detailed overview of

    calculation assumptions and nuances for both the new and experienced safety engineer.

    This document will assume the user is familiar with all the basic functionality of the Safety Environment including, but not

    limited to:

    1. Adding a Relief Device2. Designing and Sizing a Pressure Safety Valve

    3. Multi-valve Sizing

    4. Line Sizing

    5. Reports

    Aspen Plus or Aspen HYSYS can be used to follow this jump start guide. Use the example file PRESSURE RELIEF

    STARTER.hsc in Aspen HYSYS or the example file Safety Analysis without PRD.bkp in Aspen Plus. Both files are

    available on aspenONE Exchange.

    http://www.aspentech.com/Pressure-Safety-Valve-Sizing-HYSYS/http://support.aspentech.com/http://support.aspentech.com/http://www.aspentech.com/Pressure-Safety-Valve-Sizing-HYSYS/http://support.aspentech.com/
  • 8/10/2019 11-5784 JS Fire Scenarios Final

    4/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    2

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    Initial SetupAll examples and screenshots in this guide are based on the example file PRESSURE RELIEF STARTER.hsc in Aspen

    HYSYS. If more familiar with Aspen Plus, use the Safety Analysis without PRD.bkp file instead. Make sure that the

    correct units are selected when specifying parameters when prompted, as shown in Figure 1.

    To begin, you should:

    1. Open the file PRESSURE RELIEF STARTER.hsc or Safety Analysis without PRD.bkp

    2. Enter the Safety Analysis Environment

    3. Add a PSV to stream vapOut

    4. Open the PSV system tab by double-clicking the icon on the flowsheet

    5. Set the Design Temperature to Reference

    6. Set the Design Pressure to 35 psiG

    Figure 1: Initial Setup of Flowsheet and PSV System Tab

    For detailed explanations on any of the aforementioned steps, please refer to theJump Start: Relief Sizing in Aspen HYSYS

    and Aspen Plus V8.6.

    Tip: Are you ready to enter the Safety Environment? Before you enter the Safety Environment, confirm that the

    simulation flowsheet contains a stream that best reflects the contents of the vessel (e.g. the feed stream to the

    protected unit operation). For help with the Aspen Plus or Aspen HYSYS simulation environment, please refer to the

    respective simulation manuals available athttp://support.aspentech.com.

    http://www.aspentech.com/Pressure-Safety-Valve-Sizing-HYSYS/http://www.aspentech.com/Pressure-Safety-Valve-Sizing-HYSYS/http://www.aspentech.com/Pressure-Safety-Valve-Sizing-HYSYS/http://www.aspentech.com/Pressure-Safety-Valve-Sizing-HYSYS/http://www.aspentech.com/Pressure-Safety-Valve-Sizing-HYSYS/http://support.aspentech.com/http://support.aspentech.com/http://www.aspentech.com/Pressure-Safety-Valve-Sizing-HYSYS/http://www.aspentech.com/Pressure-Safety-Valve-Sizing-HYSYS/http://support.aspentech.com/
  • 8/10/2019 11-5784 JS Fire Scenarios Final

    5/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    3

    Unwetted (API) CalculationThis section describes how to calculate the required relief load for a vessel with all-vapor in accordance with API 521

    Section 5.15.2.2.2. The Unwetted (API) method is generally applicable for ideal-like systems with vapor compressibility

    between 0.8 and 1.1.

    Getting Started

    Select the Scenarios tab and click the Create Scenario button, as shown in Figure 2.

    Figure 2: Scenario Tab

    Double-click on the new scenario to open up the Scenario Setup screen (Figure 3). You can also highlight the scenario and

    click the Open Scenario button.

    Figure 3: Scenario Setup

    Next, select Fire from the Scenario Type drop-down menu, as shown below in Figure 4.

    Figure 4: Scenario Selector

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    6/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    4

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    Confirm the fluid properties by selecting the Fluid Properties tab (Figure 5). The property of specific interest in the fire

    calculation is the Operating Phase of the Reference Stream (vapOut @ Main).

    Figure 5: Operating Phase on Fluid Properties Tab

    Since the Reference Stream is all-vapor at the operating conditions specified on the Equipment Tab, only the Unwetted

    (API) and Supercritical Calculation Methods are available in the drop-down list on the Scenario Setup tab, shown in Figure

    6.

    Figure 6: Calculation Method Drop-down

    Confirm that the Unwetted (API) method is selected.

    Calculation Parameters

    The Max Wall Temp. is the only calculation-specific input for the Unwetted (API) calculation (Figure 7), and it is defaulted

    to the API-recommended 593.3 C (1100 F) for carbon steel. You can change this value for the specific equipment

    metallurgy.

    Figure 7: Unwetted (API) Calculation Parameter

    Vessel ParametersThis section will detail how to specify or calculate the Exposed Area value for up to three vessels in the same system.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    7/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    5

    Specify Exposed Area

    If you have a value for the Exposed Area, select No for the Calculate Exposed Area? field. The Exposed Area box will

    turn blue, and you can type in the Exposed Area amount, as shown in Figure 8.

    Figure 8: Unwetted (API) Specify Exposed Area

    Calculate Exposed Area

    If you would like to calculate the Exposed Area, select Yes for the Calculate Exposed Area?field. Enter the Diameter,

    Vessel Tan/Tan, Elevation, Maximum Flame Height, and Additional Area % (Figure 9) in order to calculate the exposed

    fire area per API 521.

    Figure 9: Unwetted (API) Calculate Exposed Area

    Note: The calculation assumes that the vessels have 2:1 Ellipsoidal heads.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    8/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    6

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    Number of Vessels Selection

    You can also calculate the Exposed Area as the sum of up to three vessels. From the number of vessels in the drop-down,

    select 3, as shown below in Figure 10.

    Figure 10: Number of Vessels Drop-down

    Enter any of the equipment specific parameters for three vessels (Figure 11).

    Figure 11: Unwetted (API) Exposed Area Calculation for Three Vessels

    Results

    The Unwetted (API) calculation methodology determines the Required Relieving Flow (Figure 12) based on Equation (12)

    in API 521 5e.

    Figure 12: Unwetted (API) Required Relieving Flow

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    9/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    7

    The Relieving Temperature is calculated based on an ideal gas expansion from the operating conditions to the relief

    temperature, per Equation (11) in API 521 5e, as shown below in Figure 13.

    Figure 13: Unwetted (API) Relieving Temperature

    Supercritical CalculationThis section of the document will detail the steps required to calculate the required relief load for a vessel that contains a

    supercritical fluid at relieving conditions.

    The implementation is based on the algorithm developed by Ouderkirk in the article Rigorously Size Relief Valves forSupercritical Fluids.

    Getting Started

    In order to use the Supercritical Calculation Method, the user must ensure that the Reference Stream Operating Phase is

    Vapor (verify on Fluid Properties tab) and that the Number of Vessels is 1, as shown in Figure 14. Confirm that the

    Reference Stream is still vapOut @ Main.

    Figure 14: Preconditions to Use Supercritical Calculation

    Note: The methodology is also applicable for non-ideal vapor systems.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    10/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    8

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    Select Supercritical from the Calculation Method drop-down (Figure 15).

    Figure 15: Supercritical Calculation Method Selector

    Calculation Parameters

    Select whether adequate drainage or firefighting is present near the vessel, as shown in Figure 16. The selection will affect

    the constant in the fire heat flux equation (see API Section 5.15.2.2.1).

    Figure 16: Supercritical Calculation Parameters

    Next, specify the vessel dimensions.

    Vessel Parameters

    This section will detail how to specify the equipment dimensions and F factor for the Supercritical Calculation

    Methodology.

    Equipment Dimensions

    Specify the Vessel Orientation, Diameter, Vessel Tan/Tan, Elevation, Maximum Flame Height, and Additional Area % for

    the Supercritical Calculation Methodology, shown in Figure 17.

    Figure 17: Supercritical Vessel Parameters

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    11/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    9

    Environmental F Factor

    Calculate or specify the Environmental Factor for each vessel based on the insulation conductivity and Insulation

    Thickness on each vessel. An F factor of 1 means there is no insulation or heat input reduction. Traditional values for

    Insulation Thickness and conductivity are available in the F1 help.

    Specify F Factor

    To specify the Exposed Area, select No for the Calculate F Factor? field. The Environment Factor F input will turn blue,

    then enter the value in the box, as shown in Figure 18.

    Figure 18: Specify F Factor

    Calculate F Factor

    If the user would like to calculate the Exposed Area, select Yes for the Calculate F Factor? field, as shown in Figure 19.

    The Insulation k and Insulation Thickness values will become blue. Enter the numbers, as appropriate, for the vessel, then

    the Environment Factor F will be calculated.

    Figure 19: Calculate F Factor

    Edit Flash Table

    View and edit the flash details by clicking the Edit Flash Table link, as shown in Figure 20.

    Figure 20: Edit Flash Table

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    12/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    10

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    Edit the # of Flashes and Max Iteration Temperature for better accuracy, as shown in Figure 21.

    Figure 21: Supercritical Flash Data

    Results

    The Required Relieving Flow is determined by the Mass Flow Rate that results in the greatest Required Orifice Area from

    the iterative flash calculation (see Edit Flash Table dialog box), as shown in Figure 22.

    Figure 22: Supercritical Required Relieving Flow

    The Relieving Temperature is based on the temperature that corresponds to the greatest Required Orifice Area from the

    iterative flash calculation (see Edit Flash Table dialog box), shown in Figure 23.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    13/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    11

    Figure 23: Supercritical Relieving Temp

    The Supercritical Calculation Methodology uses the Direct Integration (HEM) methodology to determine the Calculated

    Orifice. Therefore, you cannot select an alternative sizing method and the drop-down gets deactivated.

    Wetted (API) CalculationThis section of the document will detail the steps required to calculate the required relief load for a vessel that contains

    liquid at relieving conditions. The implementation is based on Section 5.15.2.2.1 from API 521 5e.

    Getting Started

    Confirm that the Scenario Setup tab for Scenario100 of 100 PSV 001 is open (see Figure 3). To select a 2-phase stream for

    this example, check the Override checkbox (Figure 24) to select an alternate stream for the scenario analysis.

    Figure 24: Override Stream

    The Select Reference Stream dialog box should open. Select the stream labeled FeedStream, as shown in Figure 25.

    Figure 25: Reference Stream Selector

    Confirm that the Reference Stream operating phase is TwoPhase (Figure 26) by checking the Fluid Properties tab.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    14/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    12

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    Figure 26: Verify Operating Phase (Wetted Vessel)

    Confirm that Fire is the selected Scenario Type (see Figure 4). The Calculation Method drop-down for fire is based on the

    operating phase of the Reference Stream fluid. For a two-phase Reference Stream, Wetted (API) and Semi-Dynamic Flash

    should be available in the drop-down, as shown in Figure 27. Select Wetted (API) Calculation Method.

    Figure 27: Wetted (API) Calculation Method Drop-down

    Calculation Parameters

    This section details the selection of the Calculation Parameters specific to the Wetted (API) calculation methodology.Select whether adequate drainage or firefighting is present near the vessel, as shown in Figure 28. The selection will affect

    the constant in the fire heat flux equation (see API Section 5.15.2.2.1).

    Figure 28: Wetted (API) Drainage Parameter

    Next, specify the Latent Heat of Vaporization, or use the simulation engine to estimate the Latent Heat of Vaporization for

    a wide-boiling point mixture. The Required Relieving Flow is indirectly proportional to the value of the Latent Heat of

    Vaporization, therefore use a reasonably conservative value in the calculation.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    15/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    13

    Specify the Latent Heat of Vaporization

    To specify the Latent Heat of Vaporization, select No for the Estimate Latent Heat? drop-down. The Latent Heat input

    box will turn blue (Figure 29), allowing you to enter the desired value.

    Figure 29: Specify Latent Heat of Vaporization

    Estimate the Latent Heat of Vaporization

    To estimate the Latent Heat of Vaporization, select Yes for the Estimate Latent Heat? drop-down. The Initial %

    Vaporized and Final % Vaporized input boxes will turn blue (Figure 30), allowing you to enter those values.

    Figure 30: Estimate Latent Heat of Vaporization

    The Latent Heat of Vaporization is generally based on the heat required to vaporize the specified portion of the Reference

    Stream at relieving conditions (excluding sensible heat, per API 521).

    Vessel Parameters

    This section will detail how to determine the Exposed Area and Environmental Factor for the Wetted (API) calculation

    methodology.

    Exposed Area

    Specify or calculate the exposed wetted surface area for up to 3 vessels by changing the Number of Vessel drop-down.

    The user can continue to either specify or calculate the exposed wetted surface area for each vessel, as shown in Figure

    31.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    16/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    14

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    Figure 31: Wetted (API) Multi-vessel Configuration

    Specify Exposed Area

    To specify the Exposed Area for the vessel, select No for the Calculate Exposed Area? field. The Exposed Area box will

    turn blue, allowing you to type in the Exposed Area, as shown in Figure 32.

    Figure 32: Wetted (API) Specify Exposed Area

    Calculate Exposed Area

    To calculate the Exposed Area, select Yes for the Calculate Exposed Area? field. Specify the Vessel Type, Diameter,

    Vessel Tan/Tan, Liquid Level, Elevation, Maximum Flame Height, and Additional Area % (Figure 33) in order to calculate

    the exposed fire area per API 521.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    17/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    15

    Figure 33: Wetted (API) Calculate Exposed Area

    Environmental Factor

    Calculate or specify the Environmental Factor for each vessel based on the insulation conductivity and Insulation

    Thickness on each vessel. An F factor of 1 means there is no insulation. Traditional values for Insulation Thickness and

    conductivity are available in the F1 help.

    Specify F Factor

    Select No for the Calculate F Factor? field. The Environment Factor F input will turn blue (Figure 34), allowing you to

    enter the value in the box.

    Figure 34: Wetted (API) Specify F Factor

    Calculate F Factor

    Select Yes for the Calculate F Factor? field. The Insulation k and Insulation Thickness values will become blue, as

    shown in Figure 35. Enter the numbers, as appropriate for the vessel, and the Environment Factor F will be calculated.

    Figure 35: Wetted (API) Calculate F Factor

    Note: The calculation assumes that the vessels have 2:1 Ellipsoidal heads.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    18/24

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    19/24

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    20/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    18

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    Figure 41: Semi-Dynamic Flash Vessel Inputs

    Environmental Factor

    Calculate or specify the Environmental Factor for each vessel based on the insulation conductivity and Insulation

    Thickness on each vessel. An F factor of 1 means there is no insulation. Traditional values for Insulation Thickness and

    conductivity are available in the F1 help.

    Specify F Factor

    Select No for the Calculate F Factor? field. The Environment Factor F input will turn blue, allowing you to enter the

    value in the box, as shown in Figure 42.

    Figure 42: Semi-Dynamic Flash Specify F Factor

    Calculate F Factor

    Select Yes for the Calculate F Factor?field. The Insulation k and Insulation Thickness values will become blue, as

    shown in Figure 43. Enter the numbers as appropriate for the vessel, and the Environment Factor F will be calculated.

    Figure 43: Semi-Dynamic Flash Calculate F Factor

    Note: The calculation assumes that the vessels have 2:1 Ellipsoidal heads.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    21/24

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    22/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    20

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    Results

    The Required Relieving Flow (Figure 46) is determined by the maximum Vapor Volumetric Flow generated during the

    step-wise batch vaporization.

    Figure 46: Semi-Dynamic Flash Required Relieving Flow

    The Relieving Temperature is based on the temperature that resulted in the maximum generated Vapor Volumetric Flow,

    as shown in Figure 47.

    Figure 47: Semi-Dynamic Flash Relieving Temperature

    ConclusionsAPI 521 recommends that all vessels under 25 ft. in elevation be protected for the fire overpressure scenario. Depending

    on the protected system, varying levels of rigor may be required in determining the required relieving load. The Safety

    Environment in Aspen HYSYS and Aspen Plus now provides rigorous determination of the required fire relief load. Users

    can now size relief devices for the fire overpressure scenarioquickly and easily.

  • 8/10/2019 11-5784 JS Fire Scenarios Final

    23/24

    2014 Aspen Technology, Inc. AspenTech, aspenONE, the Aspen leaf logo, the aspenONE logo, and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved.11-5784-0614

    Jump Start: Fire Overpressure Analysis in Aspen HYSYS and Aspen Plus

    21

    References1. American Petroleum Inst., Sizing Selection, and Installation of Pressure-Relieving Devices in Refineries, ANSI/API RP

    520, 8th Ed., Part 1: Sizing and Selection, Washington D.C., Dec. 2008.

    2. American Petroleum Inst., Pressure-relieving and Depressuring Systems, ANSI/API Standard 521, Fifth Ed., Jan. 2007.

    3. Center for Chemical Process Safety, Guidelines for Engineering Design for Process Safety, 2nd Ed., April 2012.

    4. Ouderkirk, Ryan. Rigorously Size Relief Valves for Supercritical Fluids, in Chemical Engineering Process, August 2002.

    Additional Resources

    Public Website:

    http://www.aspentech.com/products/relief-sizing/

    http://www.aspentech.com/products/aspen-HYSYS.aspx

    http://www.aspentech.com/products/aspen-plus/

    Online Training:

    http://www.aspentech.com/products/aspen-online-training

    AspenTech YouTube Channel:

    http://www.youtube.com/user/aspentechnologyinc

    http://www.aspentech.com/products/relief-sizing/http://www.aspentech.com/products/aspen-HYSYS.aspxhttp://www.aspentech.com/products/aspen-plus/http://www.aspentech.com/products/aspen-online-traininghttp://www.youtube.com/user/aspentechnologyinchttp://www.aspentech.com/products/relief-sizing/http://www.aspentech.com/products/aspen-HYSYS.aspxhttp://www.aspentech.com/products/aspen-plus/http://www.aspentech.com/products/aspen-online-traininghttp://www.youtube.com/user/aspentechnologyinc
  • 8/10/2019 11-5784 JS Fire Scenarios Final

    24/24

    Worldwide Headquarters

    Aspen Technology, Inc.

    200 Wheeler Road

    Burlington, MA 01803

    United States

    phone: +17812216400

    fax: +17812216410

    [email protected]

    Regional Headquarters

    Houston, TX | USA

    phone: +12815841000

    So Paulo | Brazil

    phone: +551134436261

    Reading | United Kingdom

    phone: +44(0)1189226400

    Singapore | Republic of Singapore

    phone: +6563953900

    Manama | Bahrain

    phone: +97317503000

    About AspenTech

    AspenTech is a leading supplier of software that optimizes process manufacturingfor energy, chemicals,

    engineering and construction, and other industries that manufacture and produce products from a

    chemical process. With integrated aspenONE solutions, process manufacturers can implement best

    practices for optimizing their engineering, manufacturing, and supply chain operations. As a result,

    AspenTech customers are better able to increase capacity, improve margins, reduce costs, and become

    more energy efficient. To see how the worlds leading process manufacturers rely on AspenTech to

    achieve their operational excellence goals, visit www.aspentech.com.

    http://localhost/var/www/apps/conversion/tmp/scratch_10/[email protected]://localhost/var/www/apps/conversion/tmp/scratch_10/[email protected]