11367_2017_1288_moesm1_esm.docx10.1007... · web view*c (construction of 100 % pvc pipe), p1 (100 %...

13
ELECTRONIC SUPPLEMENTARY MATERIAL CARBON FOOTPRINTING Estimation of greenhouse gas emissions from sewer pipeline system Daeseung Kyung 1 • Dongwook Kim 2 • Sora Yi 3 • Wonyong Choi 4 Woojin Lee 4 Received: 14 June 2016 / Accepted: 17 February 2017 © Springer-Verlag Berlin Heidelberg 2017 Responsible editor: 1 Department of Advanced Technology, Land & Housing Institute, Korea Land & Housing Corporation, 539-99 Expo-ro, Yuseong-gu, Daejeon 34047, South Korea 2 Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea 3 Korea Environment Institute, 370 Sicheong-daero, Sejong 30147, South Korea 4 School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam- ro, Nam-gu, Pohang 37673, South Korea Daeseung Kyung and Dongwook Kim contributed equally to this manuscript Woojin Lee woojin_lee@kaist. edu S1

Upload: phamminh

Post on 27-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

ELECTRONIC SUPPLEMENTARY MATERIAL

CARBON FOOTPRINTING

Estimation of greenhouse gas emissions from sewer pipeline system

Daeseung Kyung1 • Dongwook Kim2 • Sora Yi3 • Wonyong Choi4 • Woojin Lee4

Received: 14 June 2016 / Accepted: 17 February 2017© Springer-Verlag Berlin Heidelberg 2017

Responsible editor:

1Department of Advanced Technology, Land & Housing Institute, Korea Land & Housing Corporation, 539-99 Expo-ro, Yuseong-gu, Daejeon 34047, South Korea2Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea3Korea Environment Institute, 370 Sicheong-daero, Sejong 30147, South Korea4School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea

Daeseung Kyung and Dongwook Kim contributed equally to this manuscript

Woojin Leewoojin_lee@kaist. edu

S1

Page 2: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

Contents

Type Title Page

Table S1The size of the pipelines and their proportions in the DMC

systemS3

Table S2 Pipe specifications for material type and diameter S3

Table S3 Annual electricity consumption at pump stations in DMC S4

Table S4Statistics of the replaced pipeline length and manholes in

DMCS4

Table S5Detailed distribution of calculated GHG emissions from

D300 PVC pipelineS5

Table S6Comparison of emission factor and system boundary with

previous studiesS5

Table S7Significant factors affecting GHG emissions at each life

cycle stage based on the sensitivity analysisS6

Table S8Effect of pipeline replacement ratio on GHG emissions at

overall, MI, and EL stagesS6

Table S9Effect of pipe diameter change on GHG emissions at overall,

MP, and OP stagesS7

Table S10Effect of biofilm reaction rate change on GHG emissions at

overall and OP stagesS7

Fig. S1 Map of DMC and location of WWTPs S8

Fig. S2 GHG emissions with different combination of pipe materials S9

References References S10

S2

Page 3: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

Table S1 The size of the pipelines and their proportions in the DMC system

Installed pipe length (m)150 mm 300 mm 450 mm 700 mm 900 mm

PVC 5,881 3,597 973 0 0

PE 29,853 123,230 45,913 17,196 2,292

Concrete 0 444,989 615,810 467,807 167,190

Cast iron 3,343 6,499 4,332 1,211 388

Total(%)

39,077(2.0)

578,315(29.8)

667,028(34.4)

486,214(25.0)

169,870(8.8)

Table S2 Pipe specifications for material type and diameterInternal diameter

(mm)

External diameter

(mm)

Density

(kg∙m-3)

Mass

(kg∙m-1)

PVCa

150 170 1,400 7.03

300 323 1,400 15.75

450 471 1,400 21.26

PEa

150 176 900 5.99

300 338 900 17.13

450 508 900 39.27

700 788 900 92.55

900 1,012 900 151.36

Concreteb

300 350 2,403 61.33

450 520 2,403 128.14

700 802 2,403 289.14

900 1,024 2,403 450.26

Cast ironc

150 170 4,400 22.11

300 326 4,400 56.24

450 480 4,400 96.41

700 738 4,400 188.83

900 945 4,400 286.91a(Mirai 2012), b(Dobong 2012), c(Shinan 2012)

S3

Page 4: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

Table S3 Annual electricity consumption at pump stations in DMC

2014Electricity Consumption (MWh)

Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Pump 6 Pump 7

January 300 7,920 11,177 55,695 38,149 18,432 6,794

February 242 9,180 11,748 54,954 39,892 19,776 6,643

March 292 8,520 10,761 56,345 38,772 16,778 4,174

April 482 9,780 12,060 58,042 42,232 18,847 4,941

May 433 8,880 12,069 53,779 40,540 17,429 5,407

June 596 10,101 12,794 53,415 42,224 18,161 5,474

July 619 12,039 13,821 49,860 44,586 20,378 5,915

August 749 12,015 13,794 45,446 45,770 22,015 6,553

September 748 14,805 14,580 43,793 49,270 22,915 7,571

October 692 9,720 12,395 56,341 42,098 18,670 6,424

November 697 9,801 12,219 53,488 45,332 18,727 6,689

December 580 8,529 10,834 54,744 43,323 14,378 5,800

Total 1,722

Table S4 Statistics of the replaced pipeline length and manholes in DMCYear Replaced pipeline length (m) Replaced Manholes (Unit)

2001 24,561 276

2002 11,569 451

2003 24,569 379

2004 20,248 533

2005 25,098 536

2006 11,223 715

2007 16,882 425

2008 10,285 428

2009 24,963 499

2010 23,473 2,427

Average 19,287 667

S4

Page 5: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

Table S5 Detailed distribution of calculated GHG emissions from D300 PVC pipeline

Stage GHG emissions (kgCO2eq∙m-1) Percentage (%)MP 50.13 38.0MT 0.40 0.3CO 44.74 33.9OP 10.82 8.2MI 10.04 7.6EL 15.74 11.9

Table S6 Comparison of emission factors and system boundary with previous studies

This study Venkatesh et al.a CPSAb

Emission factor (EFEST)(kgCO2eq∙m-1)

PVC 121 220 47.4PE 111 153 37.5Concrete 96 37.4 31Cast iron 162 1,840 N/Ac

System boundaryFrom material production to end of lifed

From material production to rehabilitation

From material production to construction

Database

Country Korea Norway United Kingdom

Life Cycle Inventory

Korean LCI database and Ecoinvet database (v.2.2)

Ecoinvent database (v 2.01)

CPSA proprietary data about four factories and Plastics Europe DB

a(Venkatesh et al. 2009)b(CPSA 2001)cIn CPSA study, the emission factor for PP pipe was estimated, instead of PE pipedThe Emissions from operation stage are excluded

S5

Page 6: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

Table S7 Significant factors affecting GHG emissions at each life cycle stage based on the sensitivity analysis

Stage Significant factor Sensitivity (%)

MPmaterial of pipeline 70.6

EFEST of pipeline 23.7

MT transportation distance (Dm) 99.2

COEF of excavator (EFe) 71.7

material of pipeline 25.5

OPdiameter of pipeline 59.8

biofilm reaction rate (Rateb) 19.0

MItransportation distance (Dm) 40.2

pipe replacement ratio (ratiom) 32.2

ELpipe replacement ratio (ratiom) 62.9

material of pipeline 36.8

Table S8 Effect of pipeline replacement ratio on GHG emissions at overall, MI, and EL stages

ScenarioOverall(tCO2eq∙yr-1)

MI and EL stages(tCO2eq∙yr-1) (%)

Current replacement ratio (0.199) 6.64×103 6.97×102 10.49%

Enhancement of replacement ratio: -1 % (0.197) 6.63×103 6.89×102 10.40%

Enhancement of replacement ratio: -3 % (0.193) 6.61×103 6.76×102 10.21%

Enhancement of replacement ratio: -5 % (0.189) 6.58×103 6.59×102 10.02%

Enhancement of replacement ratio: -10 % (0.179)

6.57×103 6.26×102 9.54%

Enhancement of replacement ratio: -15 % (0.169)

6.53×103 5.92×102 9.06%

S6

Page 7: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

Table S9 Effect of pipe diameter on GHG emissions at overall, MP, and OP stages

ScenarioTotal

(tCO2eq∙yr-1)

MP stage OP stage

(tCO2eq∙yr-1) (%) (tCO2eq∙yr-1) (%)

D150: Construction of 228km

pipeline with 150 mm diameter7.05×103 1.07×103 15.18 4.66×103 66.16

D300: Construction of 228km

pipeline with 300 mm diameter7.28×103 1.11×103 15.25 4.83×103 66.26

D450: Construction of 228km

pipeline with 450 mm diameter7.52×103 1.17×103 15.53 4.97×103 66.11

D700: Construction of 228km

pipeline with 700 mm diameter7.99×103 1.29×103 16.20 5.23×103 65.47

D900: Construction of 228km

pipeline with 900 mm diameter8.34×103 1.40×103 16.76 5.40×103 64.82

Table S10 Effect of biofilm reaction rate change on GHG emissions at overall and OP stages

ScenarioTotal(tCO2eq∙yr-1)

OP stage(tCO2eq∙yr-1) (%)

Current biofilm reaction rate (5.24×10-5) 6.64×103 4.45×103 67.00Reduction of biofilm reaction rate: -1  % (5.12×10-

5)6.58×103 4.37×103 66.36

Reduction of biofilm reaction rate: -2  % (5.14×10-

5)6.56×103 4.31×103 65.72

Reduction of biofilm reaction rate: -3  % (5.08×10-

5)6.52×103 4.24×103 65.08

Reduction of biofilm reaction rate: -4  % (5.03×10-

5)6.46×103 4.16×103 64.44

Reduction of biofilm reaction rate: -5  % (4.98×10-

5)6.40×103 4.09×103 63.80

S7

Page 8: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

S8

Page 9: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

Fig. S1 Map of DMC and location of WWTPs

S9

Page 10: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

ELMI

OP

MP

MICO

6.93 e+37.17 e+3

6.58 e+3

7.05 e+3

6.41 e+3 6.46 e+37.0e+3

6.0e+3

5.0e+3

4.0e+3

3.0e+3

2.0e+3

0.0

GH

G e

mis

sion

s (tC

O2e

q ∙y

r-1)

Fig. S2 GHG emissions with different combination of pipe materials

*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC and 50 % concrete pipe), and P5 (50 % PE and 50 % concrete pipe)

S10

Page 11: 11367_2017_1288_MOESM1_ESM.docx10.1007... · Web view*C (construction of 100 % PVC pipe), P1 (100 % PE pipe), P2 (100 % concrete pipe), P3 (50 % PVC and 50 % PE pipe), P4 (50 % PVC

ReferencesCPSA (2001) Environmental assessment of UK sewer systems Groundbreaking Research, in:

Hobson, J. (Ed.). Department of Trade and Industry

Dobong (2012) Commercial catalogue. Dobong concrete Co., Dobong concrete Co.

Mirai (2012) Commercial catalogue. Mirai.

Shinan (2012) Commercial catalogue. Shinan Cast Iorn Co., South Korea.

Venkatesh G, Hammervold J, Brattebo H (2009) Combined MFA-LCA for Analysis of

Wastewater Pipeline Networks Case Study of Oslo, Norway. J Ind Ecol 13:532-550

S11