11.konformasi alkana dan sikloalkana

Upload: satriaramdhani

Post on 02-Jun-2018

242 views

Category:

Documents


3 download

TRANSCRIPT

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    1/25

    1

    Conformations of Alkanes and Cycloalkanes

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    2/25

    2

    I. Conformations of Alkanes

    A. Ethane: torsional strain

    C C

    H

    HH

    H

    HH C C

    H H

    H HH H

    rotate 60

    staggeredconformation

    eclipsedconformation

    in between:skewed

    Chem3D

    Newman projections: sight along C-C bond

    H

    HHH

    HH H

    HH

    H

    HH

    Stereoisomers:

    Isomers with thesame connectivity,

    but different 3-D

    orientation of their

    atoms in space.

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    3/25

    3

    I. Conformations of Alkanes

    A. Ethane: torsional strain

    H

    HHH

    HH H

    HH

    H

    HH

    lower energy higher energy

    DG~ 3 kcal/mol

    K ~ 0.01

    torsional strain

    DG

    0

    3

    H

    HH H

    HHH

    HH H

    HHH

    HH

    H

    HH

    Ea~ 3 kcal/mol

    = barrier to free rotation

    (but at room temp most

    molecules have KE >Easo

    rotation is essentially free)

    krot~ 106s-1

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    4/25

    4

    I. Conformations of Alkanes

    B. Butane: steric repulsions CH3CH2CH2CH3

    CH3

    CH3

    CH3

    H3C

    CH3H3C

    CH3

    CH3 CH3CH3

    CH3

    CH3

    I

    anti

    (180)

    II III

    gauche

    (60)

    IV VIV

    gauche

    (60)

    gauche~ 0.8 kcal higher energy than anti

    - van der Waals repulsions= steric strain

    eclipsed: 3 kcal torsional strain

    + 0.3 kcal each CH3-H eclipse

    + ~ 3 kcal each CH3

    -CH3

    eclipse

    Chem3D

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    5/25

    5

    I. Conformations of Alkanes

    B. Butane: steric repulsions

    I II III IV V VI

    0

    2

    4

    6

    DG

    3.60.8

    ~6

    0.83.6

    CH3

    CH3

    CH3

    H3C

    CH3H3C CH3

    CH3 CH3CH3 CH3

    CH3

    I II III IV VIV

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    6/25

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    7/25

    7

    II. Conformations of Cycloalkanes

    A. Stabilities of cycloalkanesDHcomb

    per CH2

    Total

    ring strain

    166.6 kcal 31.5 kcal

    162.7 26.4

    157.3 7.0

    156.1 0

    157.0 6.3

    157.3 9.6

    156.2 1.2> C12

    small

    normal

    medium

    large

    angle strain and

    torsional strain

    minimal strain

    transannular

    steric strain

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    8/25

    8

    II. Conformations of Cycloalkanes

    A. Stabilities of cycloalkanes

    HH

    HH

    H Hpoor overlap = bond angle strain

    (i.e., 109.5sp3in 60 triangle)

    plus ,

    H

    H

    H

    H

    H

    H

    all Hs eclipsed =

    torsional strain

    Chem3D

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    9/25

    9

    II. Conformations of Cycloalkanes

    A. Stabilities of cycloalkanes

    H

    H

    H

    H

    H

    H

    H

    HH

    H

    H

    H

    HH

    H

    H

    planar, 90but all eclipsed

    puckered, 88slightly more angle strain,

    but less eclipsing strain

    Chem3D

    planar, 108

    but all eclipsed

    envelope

    relieves eclipsing

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    10/25

    10

    II. Conformations of Cycloalkanes

    B. Conformations in cyclohexane

    1. chair and boat conformations

    H

    HH

    H

    H

    H

    HH

    H

    HH

    HH

    H

    H

    H

    H

    H

    HH

    HH

    H

    H

    chair conformation

    - all staggered

    - no eclipsing- no steric strain

    no ring strain

    (99.99% at room temp.)

    boat conformation

    - eclipsing ~ 4 kcal

    - steric strain ~ 3 kcalring strain ~ 7 kcal

    DG~ 7 kcal

    Chem3D

    skewed boat ~ 1.5 kcal

    more stable than boat

    (0.01% at room temp.)

    flagpole interaction

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    11/25

    11

    II. Conformations of Cycloalkanes

    B. Conformations in cyclohexane

    2. equatorial and axial positions

    H

    HH

    H

    H

    H

    HH

    H

    HH

    H

    H

    HH

    H

    H

    H

    HH

    H

    HH

    H

    axialpositions equatorialpositions

    3. chair-chair interconversion

    H

    HH

    H

    H

    H

    HH

    H

    HH

    H

    H

    H H

    H

    H

    H

    H

    HH

    HH

    H

    Ea~ 10 kcal

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    12/25

    12

    II. Conformations of Cycloalkanes

    B. Conformations in cyclohexane

    4. drawing cyclohexane chairs

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    13/25

    13

    II. Conformations of Cycloalkanes

    C. Substituted cyclohexanes

    CH3

    CH3

    H

    H

    H

    CH3

    H

    1,3-diaxial

    repulsions

    equatorial

    (95%)

    no steric strain

    (anti)

    axial

    (5%)

    steric repulsions

    (gauche)

    DG~ 1.8 kcal

    (or 0.9 kcal

    per CH3-H

    repulsion)

    Chem3D

    Ray

    http://web.uccs.edu/danderso/chem331/pp/cyclohexconf.ppthttp://web.uccs.edu/danderso/chem331/pp/cyclohexconf.ppt
  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    14/25

    14

    II. Conformations of Cycloalkanes

    C. Substituted cyclohexanes

    H

    H

    More pronounced effect with larger groups:

    DG~ 5.5 kcal

    (99.99%) (0.01%)

    locked in equatorial conformation

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    15/25

    15

    II. Conformations of Cycloalkanes

    D. Disubstituted cyclohexanes

    CH3

    CH3

    CH3

    CH3trans- cis-1,4-dimethylcyclohexane

    stereoisomers

    *configurational conformational

    (cannot convert from (can be converted fromone to another without to another by rotation

    breaking bonds) about a bond)

    *geometric isomers

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    16/25

    16

    II. Conformations of Cycloalkanes

    D. Disubstituted cyclohexanes

    CH3

    CH3

    CH3CH3

    H

    H

    CH3 H

    CH3

    H

    CH3

    CH3

    DG~ 3.6 kcal

    diequatorial

    no repulsions

    diaxial

    4 1,3-diaxial repulsions

    = 4 x 0.9 = 3.6 kcal

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    17/25

    17

    II. Conformations of Cycloalkanes

    D. Disubstituted cyclohexanes

    CH3

    CH3

    H3C CH3

    CH3

    CH3

    H

    H

    H

    CH3

    CH3

    H

    DG= 0 kcal

    equatorial-axial

    2 x 0.9 = 1.8 kcal

    axial-equatorial

    2 x 0.9 = 1.8 kcal

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    18/25

    18

    II. Conformations of Cycloalkanes

    D. Disubstituted cyclohexanes

    CH3

    CH3

    CH3CH3

    H

    H

    H CH3

    CH3

    H

    1gaucheinteraction

    = 0.9 kcal

    4 1,3-diaxial repulsions

    = 4 x 0.9 = 3.6 kcal

    DG~ 2.7 kcal

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    19/25

    19

    II. Conformations of Cycloalkanes

    D. Disubstituted cyclohexanes

    CH3

    CH3

    CH3H3C

    H CH3CH3

    DG~ 5.4 kcal

    no repulsions 2 1,3-diaxial CH3-H = 1.8 kcal

    1 1,3-diaxial CH3-CH3= 3.6 kcal

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    20/25

    20

    II. Conformations of Cycloalkanes

    D. Disubstituted cyclohexanes

    Larger groups predominate in determining conformation:

    CH3

    CH3

    tBu

    CH3

    DG~ 3.7 kcal

    1.8 kcal5.5 kcal

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    21/25

    21

    II. Conformations of Cycloalkanes

    D. Disubstituted cyclohexanes

    Question 3-1. Draw the most stable chair form of the following compounds.

    Explain. Click on the arrow to check your answers.

    CheckAnswer

    CH3

    CH3CH3CH3

    CH(CH3)2

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    22/25

    22

    II. Conformations of Cycloalkanes

    D. Disubstituted cyclohexanes

    Answer 3-1. Draw the most stable chair form of the following compounds.

    Explain. Click on the arrow to check your answers.

    CH3

    CH3CH3

    CH3CH3

    CH3CH3

    CH(CH3)2

    All groups can be equatorial. This

    chair form is more stable than the

    other, where all are axial.

    Isopropyl is bigger than a methyl

    group, so more stable chair is where

    larger group is equatorial.

    CH3

    CH(CH3)2

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    23/25

    23

    III. Polycyclic Rings

    OHdecalin borneol adamantane prismane

    bicyclic tricyclic tetracyclic

    Bicycloalkanes:

    bicyclo[x.y.z]alkane (x y z)

    numbering starts at a bridgehead,proceeds around the largest bridge first,

    then around successively smaller

    bridges

    C

    C

    Cz

    Cy

    Cx

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    24/25

    24

    III. Polycyclic Rings

    bicyclo[4.0]decane

    bicyclo[2.2.1.]heptane

    bicyclo[4.1.0]heptane

    bicyclo[3.2.1]octane

  • 8/10/2019 11.Konformasi Alkana Dan Sikloalkana

    25/25

    25

    IV. Heterocyclic Compounds

    O

    O

    O

    O

    N

    H

    NH

    ethylene oxide

    oxiraneoxacyclopropane

    oxetane

    oxacyclobutane

    tetrahydrofuran

    oxacyclopentane

    tetrahydropyran

    oxacyclohexane

    pyrrolidine

    azacyclopentane

    piperidine

    azacyclohexane

    O O

    furan pyran