12.085 seminar in environmental science spring 2008 for ...€¦ · directly assessing the cause....

18
MIT OpenCourseWare http://ocw.mit.edu 12.085 Seminar in Environmental Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .

Upload: others

Post on 15-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

MIT OpenCourseWare http://ocw.mit.edu 12.085 Seminar in Environmental ScienceSpring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Page 2: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

Jessica Stanley 

12.085 

5/15/08 

Terrestrial Carbon Sequestration 

 

 

INTROD

Terrestrial carbon sequestration is th

UCTION 

 

e practice of storing carbon within 

biomass and soils.  With rising concentrations of CO2 in the atmosphere causing 

increased concern about global warming, techniques to sequester carbon or 

otherwise lower the earth’s temperature are beginning to be considered.  The ideas 

of geoengineering, “the intentional large‐scale manipulation of the environment, 

particularly manipulation that is intended to reduce undesired anthropogenic 

climate change” (Keith, 2000) are being proposed, and the public is beginning to 

consider that such action might be necessary.  

  The types of ideas for geoengineering vary greatly, and include such things as 

fertilizing the ocean with iron to increase carbon uptake, placing mirrors or lenses 

in space to reduce the amount of sunlight incident on the earth, injecting sulfur 

aerosols or dust into the upper atmosphere to increase the albedo of the planet, and 

changing land management strategies to increase terrestrial uptake of carbon 

(Keith, 2000).  Some options seem more drastic than others, and each comes with its 

own set of benefits as well as social, political, and environmental consequences.   

Page 3: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

  Terrestrial sequestration is appealing as an option for several reasons. First, 

it seems like a “greener” or more natural option: by planting trees and making some 

land management changes some of the carbon emissions can be offset. This idea is 

easier to swallow for many people in comparison with some of the other proposed 

solutions that resemble science fiction.  Terrestrial sequestration also deals with the 

problem more directly, by taking CO2 out of the atmosphere, rather than dealing 

with the effects of the CO2 by changing the albedo or incident solar radiation and not 

directly assessing the cause.  The structure to manage land also already exists; in 

many ways humans have been geoengineering for millennia in the form of 

agriculture.  Thus, if land use practices need to be changed or enhanced for 

terrestrial sequestration a network or farmers and forestry workers already exists 

to help put such changes in place.   

  Upon examination of terrestrial carbon sequestration it has several 

downsides too.  The dynamics and controls and the terrestrial carbon sinks, 

especially soil, are not fully understood, which makes using these sinks challenging 

because the magnitude and specific sequestration mechanisms are unknown.  Also 

carbon in these systems is much less fixed than in other systems, so even once 

carbon is sequestered, there is no guarantee another change in land management 

will not release it in to the atmosphere once more. It also is expensive, and gets 

significantly more expensive the more carbon sequestered. 

  This paper will first give a brief overview of the carbon dynamics of the 

earth, and how terrestrial sequestration fits in, then follow with some of the science 

Page 4: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

behind sequestering carbon terrestrially. Then it wiIl give a brief overview of cost

estimates, and the current methods for calculating the amount of carbon

sequestered in different types of soil environments. In conclusion, terrestrial carbon

sequestration by itself is not the complete solution to the climate problem, and the

science is not well enough understood to make accurate estimates for the amount of

carbon stored in terrestrial sinks.

There are five major carbon pools on the planet (Fig. 11. The ocean is the

largest, containing 38,000

Pg, followed by the

geologic with 5,000 Pg,

soils with 2,500, the

atmosphere with 760 Pg, Figure removed due to copyright restrictions.

and biota with 560 Pg

[Lal, 2004). The soil and

biotic pools together

comprise the terrestrial Figure 1. Carbon in each of the major pools. Geologic is broken up into coal (green), oil (red), and gas (blue). Soil is broken into soil inorganic

reservoir. carbon (red) and soil organic carbon (blue).

From 1850 to 1998,270 +/- 30 Pg COZ has been emitted from fossil fuel

combustion and cement production, while 136 +/- 55 Pg has been emitted as a

result of land use change 78 +/- 12 Pg of which was from anthropogenic decrease of

Page 5: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

soil organic content (Lal, 2004).  This means that a significant portion of the carbon 

emitted since the industrial revolution has been from land use changes, and thus 

come from the terrestrial reservoir.  However, since 1980 most emission has been 

from fossil fuels with 10‐30% of emissions from land use change and tropical 

deforestation (Lal, 2004). 

  The carbon budget in the 1990s for emissions: 6.3 +/‐ .6 Pg C/yr emitted by 

fossil fuels, and 1.6 +/‐ .8 Pg C/yr emitted by land use change. For absorption: 3.3 

+/‐ .2 Pg C/yr absorbed by the atmosphere, 2.3 +/‐ .8 Pg C/yr absorbed by the 

ocean, and 2.3 +/‐ 1.3 Pg C/yr absorbed by unknown terrestrial sinks (IPCC 2001). 

The first thing to note is that emissions from land use change is still about 20% of 

emissions. The second thing to note is that the uncertainties on both the emissions 

by land use change and the absorption by terrestrial sinks is quite large, greater 

than 50% uncertainties. Most of the emissions from land use change come from 

tropical deforestation, as in most temperate countries the amount of deforestation is 

at least compensated by new growth (NAS 1992). In the US about 40% of the 

planting is done by the forestry industry (NAS 1992).  

  Estimates for how much impact on the global carbon cycle terrestrial 

sequestration could have vary, but Moulton and Richards (1990), estimate that 

more than 50% of carbon emissions could be compensated by reforestation.   

 

Page 6: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

S

 

OIL C S

Carbon in soils is stored in two forms, soil inorganic carbon (SIC) and soil 

EQUESTRATION

organic carbon (SOC). SOC is more plentiful, easier to manipulate, and shorter lived. 

SIC is mostly carbonate minerals, and composed of two sections, pedogenic and 

lithogenic. The Lithogenic portion is derived from direct weathering of rocks. The 

pedogenic portion forms from the reaction of Ca2+ and Mg2+ with atmospheric CO2, 

and it is the most common form of carbon sequestration in arid and semiarid 

environments (Lal, 2004). 

  The SOC mostly takes the form of humus, which is a dark, amorphous 

material with a high surface area and charge density, which clings to clay sized 

particles and is a mix of plant, animal, and microbial byproducts.  The residence 

time of SOC varies from 0.1 yr to 2200 yr (Lal, 2004).  The SOC content of the soil is 

the easier of the two forms of soil carbon to manipulate with land use practices, so 

land practices which increase SOC are desirable, as well as land use practices which 

increase the residence time for SOC.  Carbon‐content of soil is linked to nitrogen, 

phosphate, and water so perturbations of any of these systems can lead to carbon‐

loss.  Depletion of SOC can come from physical, chemical, and biological processes. 

Physical processes include a decrease in stable aggregates, crusting, compaction, 

and erosion. Chemical processes include acidification, salinization, and changes in 

the elemental balance. Biological processes include reduction of biologic activity and 

change in species diversity (Lal, 2004).  

 

Page 7: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

  Agricultural and land use practices can significantly affect the SOC content of 

soil.  Table 1 shows a list of the different types of practices which are beneficial and  

harmful for carbon storage in the soil. Particularly, deforestation and biomass 

burning, removal of biomass for fuel and foder, tillage, and the drainage of wetlands 

release carbon into the atmosphere.  Biomass burning produces charcoal, which is a 

long‐lived form of carbon, so even though it releases carbon into the atmosphere, it 

helps sequester some carbon for longer (Lal, 2004).  The climate type, soil type, and 

natural vegetation also have a very large impact on the amount of carbon which can 

be stored in the soil, and how much effect different land use practices have on the 

carbon content. 

range of soil types and vegetation !Hendrix et al.1992". Practices that enhance C sequestration in ag-ricultural soils include conservation tillage, mulchfarming, growing cover crops and forages in rotationwith row crops, integrated nutrient management andadopting recommended agricultural practices !Lal1999, 2000, 2001, 2002, 2003a" !Table 2".

Impact of land use and management must be as-sessed on the basis of net C sequestration. This im-plies that the gross C sequestration in terrestrialecosystems must be adjusted for hidden C costs in allinput of fertilizers, pesticides, tillage operations, etc.

Net C sequestration=!gross terrestrial sequestration"! !hidden C costs" !3"

Hidden C costs are high for nitrogenous fertilizers,pesticides, and plow tillage. In addition to hidden Ccosts, some of these mitigation options may also leadto increased emission of N2O and CH4. Applicationof nitrogenous fertilizers may exacerbate emission of

N2O. Similarly, application of manure, compost andother biosolids accentuates emissions of CH4 andN2O !Minami et al. 1994". Therefore, improving use-efficiency of these inputs is important to enhancingnet C sequestration !Schlesinger 1999; Robertson etal. 2000; Smith et al. 2000".

The question of permanence must also be ad-dressed. Once sequestered in soil through adoption ofconservation tillage and other recommended manage-ment practices, how long will the C stay in the soil?On a global scale, the mean residence time !MRT" ofC, as computed by dividing the pool by flux, is morein soil than in trees but less than that in ocean. At thesoil/pedon or farm level, however, the permanence ofC sequestered in soil depends on the continuation ofthe recommended management practices. Once con-verted from plow till, the no-till system of seedbedpreparation must be continued in perpetuity. Reicoskyet al. !1999" showed that even a single plowing candrastically accentuate emission of CO2 from soil be-cause of an increase in the rate of mineralization.

110

Table 1. From Lal (2004) 

Table removed due to copyright restrictions.

Page 8: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

  There is significant erosion of the organic portion of soil when land is 

transitioned from the natural environment to cropland. The first stage of erosion is 

breakup of soil aggregates by kinetic movement by wind or water. Soil aggregates 

are composed of clay, organic matter, and polyvalent cations (Lal, 2001).  The next 

step is transport of detached and entrained particles by fluids, and finally deposition 

of the material in the new locations. There are three main places where the eroded 

material can end up.  It can end up being redistributed over the land surface, which 

leads to decomposition of organic matter, and probably a net emission of carbon, 

estimated at 1.14 PgC/yr. The carbon that is transported by rivers is not well 

understood, but it is thought that this ends up decomposing as well, one estimate is 

that European rivers emit 30‐60 TgC/yr, 5‐10% of Europe’s total carbon emissions 

(Lal, 2001).  Another view is that rivers bring organic matter to the ocean for long‐

term storage (Lal 2004). Soils can also end up being buried in depressions, which is 

thought to enhance aggregation and storage, it is estimated that 0.57‐1 PgC/yr is 

stored this way. However if conditions are anaerobic, burial can lead to the 

production of methane and the release of N2O (Lal, 2001). 

  The types of plants on the land also affect the amount of carbon sequestered 

in the soil. Thus it is important to choose the correct plant type to maximize 

sequestration.  Different traits are more valuable for increasing soil sequestration 

depending on the biome in which the plant resides (De Deyn et al., 2007).  Rapidly 

changing climate could change the biome in a specific location, and have effects on 

the carbon stored in these ecosystems. There are two methods of enhancing carbon 

storage, first by fast input of carbon through high primary productivity, and second 

Page 9: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

by slow output by slow decomposition. De Deyn et al. find that in ecosystems where 

soil nutrients are the limiting factor, slow growth and long litter residence time tend 

to dominate, while in rich‐soil ecosystem where light is the limiting factor the 

opposite is true.  De Deyn et al. also indicate many areas for further research, which 

indicates that this part, as the other parts, of soil sequestration is not fully 

understood.   

 

BIOTIC STORAGE 

  There is also carbon that is stored in biomass itself, thus increasing the 

amount of biomass takes carbon out of the atmosphere.  This leads to the idea of 

reforestation, or planting large plantations of trees.  One of the problems with this 

method though is that it is a relatively short‐term sink, as it is necessary to keep the 

carbon from oxidizing to CO2 after the biomass dies. Lumber, soil and roots are 

longer‐term storage, and one suggestion is to use the biomass to substitute for some 

of the fossil fuel usage (NAS 1992).  It generally takes 20 to 40 years for the biomass 

to mature, and then the plantation no longer acts as a large sink, it reaches steady 

state. Thus this method should be viewed more as a short‐term solution, a fix while 

carbon emissions are reduced in other manners.  

  There are also other side effects of having plantations of trees, and these 

effects differ based on the biome and the soil type, so some areas are much more 

suited for plantations than others. Other aspects include effects on groundwater, 

stream runoff, and soil. A study by Jackson et al. (2005) found that there were 

Page 10: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

dramatic changes in stream flow within the first few years of planting, an average of 

38% decrease, with 13% of streams drying out for at least a year. Climate feedbacks 

of reforestation can sometimes offset these effects by increased transpiration and 

convective rainfalls, but convective rainfalls were only found to occur in Florida and 

southern Georgia.  The increased transpiration made for slightly lower summer 

surface temperatures in some places. Increasing the biomass also changes the soil 

chemistry significantly (Jackson et al., 2005). First most trees have acidic litter (i.e. 

fallen leaves), and this causes a lowering of the pH of the soil, unless the trees are 

growing on a well‐buffered medium like limestone. There is also an increase in Na in 

the soil, which can cause saline ground water. Depending on the soil type and the 

groundwater patterns, planting trees in an area which was not originally forested 

can cause groundwater to become to salty for human use (Jackson et al., 2005). In 

some areas though, for instance southern Australia and places which were once 

forested and now cropland, reforestation can help the water quality by reducing 

dryland salinization and reducing pesticide and fertilizer runoff.  Tree plantations 

are better in some areas than others, and that environmental planning is needed 

before starting large‐scale projects. 

  Keith (2000) also briefly mentions the idea of genetically modifying 

organisms to make capture more efficient, which could be an area of further 

research. 

 

Page 11: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

C

 

OSTS 

There were several estimates of the cost of implementing techniques of 

biological sequestration.  The National Academy of Sciences report (1992) found 

reforestation to be one of the more expensive methods that they explored at $5.80 

to $47.75 per ton carbon, and they state that it gets progressively more expensive 

the more carbon it attempts to store. 

  Spearow et al. (2007) estimated the cost of carbon storage by setting aside 

highly erodable cropland (HEL).  To estimate the marginal costs, they took the profit 

that value of the crop that would be grown on the land and compared it to land 

rental prices. Some of the prices came from the USDA Farm Resource Regions Data. 

The marginal cost could be looked at as a proxy for what farmers would have to be 

paid to adopt the sequestration practices. 

  Carbon storage of the land was estimated using the method outlined by the 

IPCC, which uses native soils as a reference for carbon storage potential. Depending 

on the soil and how long it has been put to agricultural use, it is estimated that the 

agricultural soil has lost 70‐75% of the potential carbon storage. Soil is thought to 

reach equilibrium in about 20 years, when it becomes neither a net source nor a net 

sink.  The soil type and tillage practices also change the amount of carbon 

sequestered, with mud based soils sequestering better than sandy soils (Spearow et 

al., 2007).  

  Cost estimates ranged significantly, from $11 per Mg C for some cotton land 

to $4492 per Mg C for soybeans on sandy soil. Average was $288 per Mg C. Costs 

Page 12: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

were elastic until about $200 per Mg C, after which they became inelastic, meaning 

large costs for small increases. They also estimated the effect on total cost 

production, saying for sorghum it had the most effect, 81% decrease of ending 

stocks, while cotton had the least, with 17% of ending stocks. This would affect the 

price of crops though, which would probably affect the marginal cost of carbon 

sequestration, to make it more expensive (Spearow et al., 2007).  

Page 13: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

  Because terrestrial sequestration gets incrementally more expensive, and is 

relatively expensive anyway, it seems likely that terrestrial sequestration is not 

suitable for a full‐scale geoengineering solution for the climate problem, it is likely 

that is would only be used as an interim solution, or a partial solution. 

 

Q

 

UANTI

The standard method of quantifying the amount of carbon sequestered in 

FYING SEQUESTRATION 

soils and agricultural land is the method outlined by the IPCC in 2006.  This is a 

report on the methodology of calculating the sequestered carbon for individual 

counties. The first step is to choose Tier 1, 2, or 3.  Tier 1 is the most general, using 

only the tables of coefficients from the report, where as Tier 2 and 3 are more 

empirical.  

  The Tier 1 technique is outlined specifically in the report, and worksheets are 

included for the calculations. Generally the calculation is split up into very small 

specific pieces starting with: 

 

Where AFOLU is agriculture, forestry, and other land use; FL is forestry land; CL is 

cropland; WL is wetlands; SL is settlement lands; and OL is other lands.   

$M30*',%"!56"

0%%30."(0&2,%"/*,(;"(+0%#$/"9,&"*+$"$%*'&$"09,.3"/$(*,&"$/*')0*$-"0/"*+$"/3)"

,9"(+0%#$/"'%"0..".0%-43/$"(0*$#,&'$/"

"& $ "& # "& # "& # "& # "& # "&('!") '" &" %" $" #" !"

'

8&,&)'

!"#$%&'()'*+,-.$#/$,&0'1",&2/,3'456'7/8&,'9456':2&'

;<=' ;>>='?@AA'B$-6&#-5&2'C",'D4/-"54#'B,&&58"$2&'B42'?5E&5/",-&2'

!" #$%$&'(")$*+,-,.,#'$/"011.'(02.$"

*,")3.*'1.$".0%-43/$"(0*$#,&'$/"

!56" '%*&,-3(*',%""

F&/8"62' /"'&2/-%4/&'+,&&58"$2&'+42'&%-22-"52'456',&%"E4#2' -5' /8&'*+,-.$#/$,&0'1",&2/,3'456'7/8&,'9456':2&'

G*179:H'I&./",'.45'J&'6-E-6&6'-5/"'/K"'J,"46'.4/&+",-&2)'LH'%&/8"62'/84/'.45'J&'4MM#-&6'-5'4'2-%-#4,'K43'C",'

453'"C'/8&'/3M&2'"C'#456'$2&'G-<&<0'+&5&,-.'%&/8"62'C",'1",&2/'94560'A,"M#4560'B,422#4560'N&/#45620'I&//#&%&5/2'

456'7/8&,'9456HO'456';H'%&/8"62'/84/'"5#3'4MM#3'/"'4'2-5+#&'#456'$2&'",'/84/'4,&'4MM#-&6'/"'4++,&+4/&'64/4'"5'4'

54/-"54#P#&E&#0'K-/8"$/' 2M&.-C3-5+' #456'$2&<' 'A84M/&,';'M,"E-6&2'%4-5#3'6&2.,-M/-"52'"C'+&5&,-.'%&/8"6"#"+-&2'

$56&,'.4/&+",3'GLH'C",'&2/-%4/-5+'&."232/&%'.4,J"5'2/".Q'.845+&2'42'K&##'42'C",'&2/-%4/-5+'5"5PA7;'C#$R&2'C,"%'

C-,&<' S8&2&' %&/8"62' .45' J&' 4MM#-&6' C",' 453' "C' /8&' 2-R' #456P$2&' .4/&+",-&2<' B&5&,-.' -5C",%4/-"5' "5' %&/8"62'

-5.#$6&2)'

!! +&5&,4#'C,4%&K",Q'C",'4MM#3-5+'/8&'%&/8"62'K-/8-5'2M&.-C-.'#456P$2&'.4/&+",-&2O'

!! .8"-.&'"C'%&/8"620'-5.#$6-5+'&T$4/-"52'456'6&C4$#/'E4#$&2'C",'S-&,'L'%&/8"62'C",'&2/-%4/-5+'A'2/".Q'.845+&2'

456'5"5PA7;'&%-22-"52O''

!! +&5&,4#'+$-645.&'"5'$2&'"C'8-+8&,'S-&,'%&/8"62O'

!! $2&'"C'/8&'?@AA'U%-22-"5'14./",'V4/4'W42&'GU1VWHO'456'

!! $5.&,/4-5/3'&2/-%4/-"5<''''

IM&.-C-.'6&/4-#2' 456'+$-645.&'"5' -%M#&%&5/-5+' /8&'%&/8"62' C",' &4.8'"C' /8&' #456P$2&'456' #456P$2&' ."5E&,2-"5'

.4/&+",-&20'-5.#$6-5+'.8""2-5+'&%-22-"5'C4./",20'."%M-#-5+'4./-E-/3'64/4'456'422&22-5+'$5.&,/4-5/30'4,&'+-E&5'-5'

/8&'.84M/&,2'"5'2M&.-C-.'#456P$2&'.4/&+",-&2'G2&&'A84M/&,2'('/"'XH<''B$-645.&'"5'-5E&5/",3'.4#.$#4/-"52'C",'&4.8'

2M&.-C-.'#456'$2&',&C&,2'J4.Q'/"'/8-2'.84M/&,'C",'6&2.,-M/-"5'"C'%&/8"62'K8&,&'/8&3'4,&'+&5&,-.<'

!5!" '%7$%*,&8"9&0)$:,&;""

S8-2'2&./-"5'"$/#-5&2'4'232/&%4/-.'4MM,"4.8'C",'&2/-%4/-5+'.4,J"5'2/".Q'.845+&2'G456'422".-4/&6'&%-22-"52'456'

,&%"E4#2'"C'A7;H'C,"%'J-"%4220'6&46'",+45-.'%4//&,0'456'2"-#20'42'K&##'42'C",'&2/-%4/-5+'5"5PA7;'+,&&58"$2&'

+42'&%-22-"52'C,"%'C-,&<''B&5&,4#'&T$4/-"52',&M,&2&5/-5+'/8&'#&E&#'"C'#456P$2&'.4/&+",-&2'456'2/,4/4'4,&'C"##"K&6'

J3'4'28",/'6&2.,-M/-"5'"C'M,".&22&2'K-/8'%",&'6&/4-#&6'&T$4/-"52'C",'.4,J"5'2/".Q'.845+&2'-5'2M&.-C-.'M""#2'J3'

#456P$2&'.4/&+",3<'@,-5.-M#&2'C",'&2/-%4/-5+'5"5PA7;'&%-22-"52'456'."%%"5'&T$4/-"52'4,&'/8&5'+-E&5<'IM&.-C-.0'

"M&,4/-"54#' &T$4/-"52' /"' &2/-%4/&' &%-22-"52' 456' ,&%"E4#2' J3'M,".&22&2'K-/8-5' 4'M""#' 456'J3' .4/&+",30'K8-.8'

6-,&./#3'.",,&2M"56'/"'K",Q28&&/'.4#.$#4/-"520'4,&'M,"E-6&6'-5'I&./-"52';<Y'456';<(<'''

!5!56" ,<=><?=@"AB"CD>EAF"GHACI"CJDFK="=GH?LDH?AF""

S8&' &%-22-"52' 456' ,&%"E4#2' "C' A7;' C",' /8&' *179:' I&./",0' J42&6' "5' .845+&2' -5' &."232/&%' A' 2/".Q20' 4,&'

&2/-%4/&6' C",' &4.8' #456P$2&' .4/&+",3' G-5.#$6-5+' J"/8' #456' ,&%4-5-5+' -5' 4' #456P$2&' .4/&+",3' 42' K&##' 42' #456'

."5E&,/&6'/"'45"/8&,'#456'$2&H<'A4,J"5'2/".Q'.845+&2'4,&'2$%%4,-Z&6'J3'UT$4/-"5';<L<'

'

N

!A' ['.4,J"5'2/".Q'.845+&'

?56-.&2'6&5"/&'/8&'C"##"K-5+'#456P$2&'.4/&+",-&2)'

*179:' ['*+,-.$#/$,&0'1",&2/,3'456'7/8&,'9456':2&'

19' ['1",&2/'9456'

Page 14: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

  Each of these is farther broken down:  

 

Where LU is the specific land use, AB is above ground biomass, BB is below ground 

biomass, DW is dead wood, LI is litter, SO is soils, and HWP is hard wood products.  

  Each of these categories is further spit up and calculated separately using the 

worksheets in the annex of the report, and example of which is shown in Figure 2. 

There are about 50 worksheets has a column for each value, and tells how to 

calculate the value if it is a calculation, and what table to find a constant if it is a 

constant.  The tables of constants are found in the relevant chapters of the report.  

This is useful, but the accuracy is somewhat questionable, estimating each piece 

separately from generic coefficients may have large errors.  The fact that the 

calculation is parsed up so many times may be a relic of the fact that this not 

completely understood. 

  The tables of coefficients used for calculating the carbon are based on 

relevant portions of the scientific literature.  For instance The table of default carbon 

stocks for mineral soils with native vegetation is based largely on a paper by 

Jabbagy and Jackson (2002) entitled “The Vertical Distribution of Soil Organic 

Carbon and its Relation to Climate and Vegetation”.  In that article they try to 

characterize soil carbon in the top 3 m of soil based on more than 2700 profiles in  

!"#$%&'()*+:)

$((#$,)-$./'()0%'-1)-2$(3!0)4'.)$)0%.$%#8)'4)$),$(56#0!)-$%!3'.7)$0)$)0#8)'4)

-2$(3!0)&()$,,);'',0)

") ) ) ) ) ) )&'

# "21$ "

11$ "

0,$ "

&($ "

./$ "

+,-%

(

"&'&*(

!"#$%&'()*(+&,&'-.(/&%"010203-&4(5$$2-.#62&(%0(/72%-$2&(8#,19:4&(!#%&30'-&4(

);;<(=>!!(+7-1&2-,&4(?0'(@#%-0,#2(+'&&,"074&(+#4(=,A&,%0'-&4( )BC(

!8( D(!'0$2#,1(

+8( D(+'#442#,1(

E8( D(E&%2#,14(

F8( D(F&%%2&G&,%4(

H8( D(H%"&'(8#,1(

(

I0'(&#."(2#,1974&(.#%&30'JK(.#'60,(4%0.L(."#,3&4(#'&(&4%-G#%&1(?0'(#22(!"#$"$(0'(4761-A-4-0,4(0?(2#,1(#'&#(M&B3BK(

.2-G#%&( N0,&K( &.0%J$&K( 40-2( %J$&K( G#,#3&G&,%( '&3-G&( &%.BK( 4&&( !"#$%&'( OP( ."04&,( ?0'( #( 2#,1974&( .#%&30'J(

MQR7#%-0,( )B)PB( ( !#'60,( 4%0.L( ."#,3&4(S-%"-,( #( 4%'#%7G( #'&( &4%-G#%&1( 6J( .0,4-1&'-,3( .#'60,( .J.2&( $'0.&44&4(

6&%S&&,( %"&( ?-A&(.#'60,($0024K(#4(1&?-,&1( -,(T#62&(UBU( -,(!"#$%&'(UB(T"&(3&,&'#2-N&1( ?20S."#'%(0?( %"&(.#'60,(

.J.2&(MI-37'&()BUP(4"0S4(#22(?-A&($0024(#,1(#440.-#%&1(?27V&4(-,.271-,3(-,$7%4(%0(#,1(07%$7%4(?'0G(%"&(4J4%&GK(#4(

S&22(#4(#22($044-62&(%'#,4?&'4(6&%S&&,(%"&($0024B(HA&'#22K(.#'60,(4%0.L(."#,3&4(S-%"-,(#(4%'#%7G(#'&(&4%-G#%&1(6J(

#11-,3(7$(."#,3&4(-,(#22($0024(#4(-,(QR7#%-0,()BOB((I7'%"&'K(.#'60,(4%0.L(."#,3&4(-,(40-2(G#J(6&(1-4#33'&3#%&1(#4(

%0(."#,3&4(-,(!(4%0.L4(-,(G-,&'#2(40-24(#,1(&G-44-0,4(?'0G(0'3#,-.(40-24B(W#'A&4%&1(S001($'017.%4(MWE>P(#'&(

#240(-,.271&1(#4(#,(#11-%-0,#2($002B(

(

!"#$%&'()*+*)

$((#$,)-$./'()0%'-1)-2$(3!0)4'.)$),$(56#0!)-$%!3'.7)$0)$)0#8)'4)-2$(3!0)&()!$-2)

0%.$%#8)9&%2&()%2!)-$%!3'.7)

!"#"%

&'&'(

)) (

E"&'&*(

!!8:((D(.#'60,(4%0.L(."#,3&4(?0'(#(2#,1974&(M8:P(.#%&30'J(#4(1&?-,&1(-,(QR7#%-0,()BUB(

%(( (((D(1&,0%&4(#( 4$&.-?-.( 4%'#%7G(0'( 4761-A-4-0,(S-%"-,( %"&( 2#,1974&(.#%&30'J( M6J(#,J(.0G6-,#%-0,(0?(

4$&.-&4K(.2-G#%-.(N0,&K(&.0%J$&K(G#,#3&G&,%('&3-G&(&%.BK(4&&(!"#$%&'(OPK*%(D(U(%0(,B((

(

E

!!8:%(D(.#'60,(4%0.L(."#,3&4(?0'(#(4%'#%7G(0?(#(2#,1974&(.#%&30'J(

F764.'-$%4(1&,0%&(%"&(?0220S-,3(.#'60,($0024*(

5X( D(#60A&93'07,1(6-0G#44(

XX( D(6&20S93'07,1(6-0G#44(

YE( D(1&#1S001(

8=( D(2-%%&'(

FH( D(40-24(

WE>(D("#'A&4%&1(S001($'017.%4(

(

Q4%-G#%-,3(."#,3&4(-,(.#'60,($0024(#,1(?27V&4(1&$&,14(0,(1#%#(#,1(G01&2(#A#-2#6-2-%JK(#4(S&22(#4('&407'.&4(#,1(

.#$#.-%J(%0(.022&.%(#,1(#,#2JN&(#11-%-0,#2(-,?0'G#%-0,(MF&&(!"#$%&'(UK(F&.%-0,(UBOBO(0,(L&J(.#%&30'J(#,#2J4-4PB((

T#62&(UBU(-,(!"#$%&'(U(07%2-,&4(S"-."($0024(#'&('&2&A#,%(?0'(&#."(2#,1974&(.#%&30'J(?0'(T-&'(U(G&%"014K(-,.271-,3(

.'044( '&?&'&,.&4( %0( '&$0'%-,3( %#62&4B( ( Y&$&,1-,3( 0,( .07,%'J( .-'.7G4%#,.&4( #,1(S"-."( %-&'4( #'&( ."04&,K( 4%0.L(

."#,3&4(G#J(,0%(6&(&4%-G#%&1(?0'(#22($0024(4"0S,(-,(QR7#%-0,()BOB( (X&.#74&(0?( 2-G-%#%-0,4(%0(1&'-A-,3(1&?#72%(

1#%#(4&%4(%0(47$$0'%(&4%-G#%-0,(0?(40G&(4%0.L(."#,3&4K(T-&'(U(G&%"014(-,.271&(4&A&'#2(4-G$2-?J-,3(#447G$%-0,4*(

(

Page 15: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

F

three global databases, paying attention to variables such 

igure 2. Example of a worksheet from the IPPC (2006) Report, Annex 1.

as vegetation type, 

  

climate, and land use.  They found that the plant type affected soil carbon 

significantly, and had more of an affect than the direct effects of precipitation.  

Eve et al., (2001) use the method set out by the IPCC (the 1996 precursor to 

the 2006 version) to calculate the changes in carbon storage in U.S. croplands since 

the 1990 baseline. They find that soil use practice changes have resulted in a net 

sink to mineralized soils of 11.31 million metric tons carbon per year, however the 

organic portion of soils is still a net source of 6.03 million metric tons per year.  The 

warm temperate moist mineral soils are the largest sink, whereas the sub‐tropical 

moist organic soils have the largest emissions.    

  Another method besides the IPCC method was outlined Gross et al., (2001). 

This approach has not been put into practice yet, but involves modeling and 

monitoring carbon storage in U.S. farmland east of the Rockies. This was achieved 

using a model called EPIC‐Erosion/Productivity Impact Calculator, which clusters 

!"#$%&'()'*+,-.$#/$,&0'1",&2/,3'456'7/8&,'9456':2&'

;<<='>?@@'A$-6&#-5&2'B",'C4/-"54#'A,&&58"$2&'A42'>5D&5/",-&2' *EF;;'

'

'

'

'

'

Figure removed due to copyright restrictions.

Page 16: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

soils and climate areas by their characteristics.  The goal of this project is to 

establish a baseline of the 1992 levels of soil carbon sequestration, and monitor 

changes over time. 

  These are all method solely of estimating carbon sequestration.  This is hard 

to measure on the large scale, so it is challenging to tell the accuracy of these 

techniques. 

 

CONCLUSION 

  Terrestrial carbon sequestration is a set processes that involve the 

interaction of soils, biota, and the climate system, and is not fully understood.  It 

could be a part of a multi‐faceted solution for the climate problem, but on it’s own it 

does not represent a full‐scale geoengineering solution.  This is partially because the 

dynamics of carbon sequestration are not understood well enough to be controlled 

and the amount of carbon sequestered accurately calculated. Also biotic and some 

types of soil sequestration are not very long lived, so they are only effective as short‐

term solutions.  In general terrestrial carbon sequestrations merits more research, 

but is not a complete solution. 

 

Page 17: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

R

De Deyn, Gerlinde B., Johannes H. C. Cornelissen, Richard D. Bardgett. 2008. Plant 

EFERENCES 

functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters. 11:xxx‐xxx.  

Eve, M. D., K.Soil Carbon 

Publication number 57.

Emissions and Sequestration in United States Cropland Soils. In Sequestration and the Greenhouse Effect

 Paustian, R. F. Follett, E.T. Elliot. 2001. An Inventory of Carbon 

  ed. by Rattan Lal. SSSA Special 

Gross, D.W., JoaqSoil Carbon Sequestration on Cropland: Description of an Analytical 

uin Sanabria, R.L. Kellogg, J.L.Bere. 2001. A National Assessment of 

Approach. In Rattan Lal. SSSA Special Publication number 57.

Soil Carbon Sequestration and the Greenhouse Effect 

 ed. by 

2006 IPCC Guidelines for National Greenhouse Gas Inventories. Ed. by Simon Eggelston, Leandro Buendia, Kyoko Miwa, Todd Ngara, Kiyoto Tanabe. Institute for Global Environmental Strategies (IGES). http://www.ipccnggip.iges.or.jp/public/2006gl/vol4.htm. Accessed 12 April 2008. 

Intergovernment Panel on Climate Change 2001. Climate Change 2001: The Scientific Basis, Summary for Policy Makers. IPCC, Cambridge, UK: Cambridge University Press. 

Jobbágy EG,its relation to climate and vegetation

 Jackson RB (2000) The Vertical Distribution of Soil Organ

pp. 423. Ecological Applications: Vol. 10, No. 2 

ic Carbon and 

–436. 

Jackson et al. (2005). Trading Water for Carbon with Biological Carbon Sequestration. Science. 310:5756:1944‐7. 

Keith, D. W. (2000). Geoengineering the climate: History and prospect.  25, 245‐284. 

Lal, R. (2004). Agricultural Activities and the Global Carbon Cycle. 

Annual Review of Energy and Environment

Nutrient Cycling in Agroecosystems. 70: 103‐116.  

Lal, R. (2001). Fate of eroded soil carbon: emission or sequestration. In Soil Carbon Sequestration and the Greenhouse EffectPublication number 57. 

 ed. by Rattan Lal. SSSA Special 

Moulton, R. J., and K.R. Richards. (1990). Costs of Sequestering Carbon Through Tree Planting and Forest Management in the UnReport WO‐58. Washington, D. C.: Forest Service, U.S. Department of 

ited States. General Technical 

Agriculture. 

Page 18: 12.085 Seminar in Environmental Science Spring 2008 For ...€¦ · directly assessing the cause. The structure to manage land also already exists; in many ways humans have been geoengineering

Panel on Policy Implications of Greenhouse Warming, National Academy of Sciences, National Academy of Engineering, Institute of Medicine, "Geoen"Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the 

gineering." In 

Science Base," ch. 28, 433‐364 and Appendix Q, 817‐835 (1992) 

Schuman, G. E., D. E. LeCain, J. D. Reeder, J.A. Morgan. (2001). Carbon Dynamics and Sequestration of a Mixed‐ Soil 

Special Publication number 57.Carbon Sequestration and the Greenhouse Effect

Grass Prairie as Influenced by Grazing. In 

  ed. by Rattan Lal. SSSA 

Sperow, M. (2007). The marginal costs of carbon sequestration: Implications of one greenhouse gas mitigation activity.Conservation, 62(6), 367‐375.

 Journal of Soil and Water 

Library Core database. (Document ID:  Retrieved April 7, 2008, from Resear

 1394425011). ch