12.1 plastic behavior in simple tension and compression (单轴拉伸下材料的塑性行为)...

21
12.1 Plastic behavior in simple tension and compression 单单单单单单单单单单单单单 () Chapter Page Theory of Elasticity P A 0 l 0 P 0 A P l l l 0 o A B C D E p p limit of proportionality( 单单 单单 ) e e elastic limits ( 单单单 单) s s initial yield stress 单单单单单单单 () b b strength limit 单单单单单 () ' s '' s subsequent yield stress 单单单单单单单 () ' s Bauschinger Effect Bauschinger 单单s s s 12 3 e p

Upload: clarissa-claudia-raynor

Post on 14-Dec-2015

313 views

Category:

Documents


1 download

TRANSCRIPT

12.1 Plastic behavior in simple tension and compression (单轴拉伸下材料的塑性行为)

Chapter Page

Th

eory

of

Ela

sti

cit

y

PA0

l0

P

0A

P

l

ll 0

o

A

B

C

D

Ep

p limit of proportionality( 比例极限 )

e

e elastic limits ( 弹性极限 )

s

s initial yield stress (初始屈服应力)

b

b strength limit (强度极限)

's

''ssubsequent yield stress (后继屈服应力)'s Bauschinger Effect

( Bauschinger 效应)

sss

12 3

ep

12.1 Plastic behavior in simple tension and compression( 单轴拉伸下材料的塑性行为)

Chapter Page

Th

eory

of

Ela

stic

ity

Loading, unloading and reloading( 加载,卸载,再加载 )

Loading (加载) :

0d

Unloading (卸载) :

0d

12 4

12.1 Plastic behavior in simple tension and compression( 单轴拉伸下材料的塑性行为)

Chapter Page

Th

eory

of

Ela

stic

ity

Definition of large plastic strains ( 对数、自然应变 Ludwik, 1909)

L

dld )(

00l

lIn

L

dld

l

l

True strainNatural strain( 对数,自然应变 )

Definition of true stress (真实应力)

A

P

_

Assume the materials is incompressible (假设材料不可压缩)

00lAAl el

l

A

P

00

)1()(0

Inl

lIn .....

!32

32

For small deformations,

512

12.1 Plastic behavior in simple tension and compression( 单轴拉伸下材料的塑性行为)

Chapter Page

Th

eory

of

Ela

stic

ity

Example 1

A bar o length l0 is stretched to a final length of 2 l0. Values of the engineering and true strain? If the bar is compressed again to its very initial length , compute the engineering and true strains.

0.12

0

00

l

ll

693.0)2

(0

0 l

lIn

5.02

2

0

00

l

ll

693.0)2

(0

0 l

lIn

The natural strain yields the same magnitude while the engineering strain magnitude is different

0

0

2

20.1

l

lL

0L

Physically impossible

真实应变关于原点对称。

612

12.1 Plastic behavior in simple tension and compression( 单轴拉伸下材料的塑性行为)

Chapter Page

Th

eory

of

Ela

stic

ity

Example 2 A bar of 100 mm initial length is elongated to a length of 200 mm by drawing in three stages. The length after each stage are 120, 150 and 200mm, respectively: a) Calculate the engineering strain for each stage separately and compare the sum with the total overall value of ε b) Repeat (a) for the true strain

33.0150

50,25.0

120

30,2.0

100

20321 Solution:

78.0321 sum But 0.1100

100200

overall

29.0)150

200(,22.0)

120

150(,18.0)

100

120( 321 InInIn

69.0321 sum 69.0)100/200( InoverallThis illustrates the additive property of true strain.( 对数应变可加 )

712

12.2 Modeling of uniaxial behavior in plasticity

Chapter Page

Th

eory

of

Ela

stic

ity

Idealized stress-strain curves (1) (理想应力-应变曲线)

s

s

E

E1

Elastic linear strain-hardening( 弹、线性强化 )

sss

s

E

E

)(1

812

12.2 Modeling of uniaxial behavior in plasticity

Chapter Page

Th

eory

of

Ela

stic

ity

Idealized stress-strain curves (2) (理想应力-应变曲线)

s

s

Elastic perfectly-plastic( 理想弹塑性 )

ss

sE

912

12.2 Modeling of uniaxial behavior in plasticity

Chapter Page

Th

eory

of

Ela

stic

ity

Idealized stress-strain curves (3) (理想应力-应变曲线)

Rigid-perfectly plastic(理想刚塑性 )

Rigid-linear strain-hardening( 刚、线性强化 )

Exponential hardening(幂次强化模型 )

1012

12.2 Modeling of uniaxial behavior in plasticity

Chapter Page

Th

eory

of

Ela

stic

ity

Strain hardening / Working hardening (强化现象)

The effect of the material being able to withstand a greater stress after plastic deformation (塑性变形后,材料的承载能力提高)

Strain softening (软化)

1112

12.2 Modeling of uniaxial behavior in plasticity

Hardening rules(强化模型 )

Chapter Page

Th

eory

of

Ela

stic

ity

Isotropic hardening( 等向强化 )

*||

|||'| BCCB

The reversed compressive yield stress is assumed equal to the tensile yield stress. (反向压缩屈服应力等于拉伸屈服应力)

1212

12.2 Modeling of uniaxial behavior in plasticity

Chapter Page

Th

eory

of

Ela

stic

ity

Hardening rules(强化模型 )

Kinematic hardening( 随动强化 )

The elastic range is assumed to be unchanged during hardening.

|'||'| AABB The center of elastic region is moved along the straight line aa’

1312

12.2 Modeling of uniaxial behavior in plasticity

Chapter Page

Th

eory

of

Ela

stic

ity

Hardening rules(强化模型 )

Mixed hardening( 组合强化 )

1412

A combination of kinematic and isotropic hardening (Hodge, 1957)

Kinematic hardening( 随动强化 )

Isotropic hardening 等向强化

Mixed hardening 组合强化

12.3 Basics of Yield Criteria (屈服准则概述)

Chapter Page

Th

eory

of

Ela

stic

ity

O

N

P

Q

平面

H-W stress space(H-W 应力空间 )

Principal stress space (主应力空间)A possible stress state:P ( 1 、 2 、 3 )

Orientation of the stress state is ignored(忽略主应力方向)

Hydrostatic axis (静水压力轴)Pass through the origin and making the same angle with each of the coordinate axes. (过原点和三个坐标轴夹角相等。)Deviatoric plane

Perpendicular to ON

ON3321

π- plane 0321

12 15

12.3 Basics of Yield Criteria (屈服准则概述)

O

N

P

Q

平面

OQONOP ),,(),,( 000 pppON

pI

nOPON

33

)3

1,

3

1,

3

1(),,(

1

321

),,(

)](),(),[(

),,(),,(

),,(

321

321

321

321

sss

ppp

ppp

ONOQ

822/12

32

22

1 32)( JsssOQ

Division of stress state of a point

Chapter Page

Th

eory

of

Ela

stic

ity

12 16

12.3 Basics of Yield Criteria (屈服准则概述)

Chapter Page

Th

eory

of

Ela

stic

ity

Yield criterion (屈服准则)

Defines the elastic limits of a material under combined states of stress.(在复杂应力状态下,材料的弹性极限)

Yield criterion of Simple states of stress (简单应力状态下的屈服准则)

s

s

Uniaxial tension or compression(单轴拉伸或压缩)

Pure shear (纯剪切)

f (ij,k1,K2,K3,….) = 0 Kn are material constants

General Yield criterion (通常情况下的屈服准则)

12 17

12.3 Basics of Yield Criteria (屈服准则概述)

General Yield criterion (通常情况下的屈服准则)

f (ij,k1,K2,K3,….) = 0 Kn are material constants

Isotropic, Orientation of principal stress is immaterial

f (1 、 2 、 3 、 1 、 2 、 3,k1,K2,K3,….) = 0

f (1 , 2 , 3, k1,K2,K3,…. )=0

1 , 2 , 3, can be expressed in terms of I1,J2,J3

f (I1 , J2 , J3 , k1,K2,K3,…. )=0

Experimental results: hydrostatic pressure not appreciable

f(J2 , J3 , k1,K2,K3,…. )= 0

Chapter Page

Th

eory

of

Ela

stic

ity

12 18

12.3 Basics of Yield Criteria (屈服准则概述)

Respresention of yield criteria( 屈服准则的表达 )

平面

屈服面

Since hydrostastic pressure has no effect, the yield surface in stress space is a cylinder. 静水压力不影响屈服,则屈服面在应力空间为柱形。

f(J2 , J3 , k1,K2,K3,…. )= 0

3D case

Chapter Page

Th

eory

of

Ela

stic

ity

12 19

12.3 Basics of Yield Criteria (屈服准则概述)

Chapter Page

Th

eory

of

Ela

stic

ity

Tresca yield criterion ( Tresca 屈服准则)

f (ij) = 02

131

k

x= (s1 s3) = (1 3) = k1 22

22

2

π- plane: A straight line

12 = 2k1

13 = 2k1

23 = 2k1

e' e'

e'

平面

屈服面

1864,Tresca, first yield creterion

12 20

12.3 Basics of Yield Criteria (屈服准则概述)

Chapter Page

Th

eory

of

Ela

stic

ity

Determination of the material constant (材料常数的确定)

Simple tension, 1 =s , 2 =3 =0

f (ij) = 02

131

k k1= s/2

Pure shear, =s 1= s , 2=0 , 3= s,

f (ij) = 02

131

k k1= s

s=2s

e' e'

e'

12 21

12.3 Basics of Yield Criteria (屈服准则概述)

Chapter Page

Th

eory

of

Ela

stic

ity

Von-mises yield criterion ( Von-mises 屈服准则)

1913, Von mises

0222 kJf (ij) =

r= k2 =const , 22 2 J

e' e'

e' 2D case (π- plane)

平面

屈服面

3D case

Yielding begins when the octahedral shearing stress reaches a critical value k

22 3

2

3

2kJoct

J2, an invariant of the stress deviator tensor

22

213

232

221 6k

In terms of principal stresses

12 22

12.3 Basics of Yield Criteria (屈服准则概述)

Chapter Page

Th

eory

of

Ela

stic

ity

Determination of the material constant (材料常数的确定)

Simple tension, 1 =s , 2 =3 =0

Pure shear, =s 1= s , 2=0 , 3= s,

22

2

23

kJ s

sk 3

12

J2= k2 k2 = s

ss 3

12 23