1.3.gia tri lon nhat - nho nhat cua ham so

22
Bài 3. Giá trị lớn nhất, nhỏ nhất của hàm số BÀI 3. GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT CỦA HÀM SỐ A. GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT CỦA HÀM SỐ I. TÓM TẮT LÝ THUYẾT 1. Bài toán chung: Tìm giá trị nhỏ nhất hoặc lớn nhất của hàm số Bước 1: Dự đoán và chứng minh Bước 2: Chỉ ra 1 điều kiện đủ để 2. Các phương pháp thường sử dụng Phương pháp 1: Biến đổi thành tổng các bình phương Phương pháp 2: Tam thức bậc hai. Phương pháp 3: Sử dụng bất đẳng thức cổ điển: Côsi; Bunhiacôpski Phương pháp 4: Sử dụng đạo hàm. Phương pháp 5: Sử dụng đổi biến lượng giác. Phương pháp 6: Sử dụng phương pháp véctơ và hệ tọa độ Phương pháp 7: Sử dụng phương pháp hình học và hệ tọa độ. II. CÁC BÀI TẬP MẪU MINH HỌA: Bài 1. Tìm giá trị nhỏ nhất của P(x, y) = x 2 + 11y 2 6xy + 8x 28y + 21 Giải. Biến đổi biểu thức dưới dạng P(x, y) = (x 3y + 4) 2 + 2(y 1) 2 + 3 3 Từ đó suy ra MinP(x, y) = 3 1

Upload: thaingochieu

Post on 06-Nov-2015

15 views

Category:

Documents


2 download

DESCRIPTION

Tìm giá trị lớn nhât, nhỏ nhất của hàm số

TRANSCRIPT

1

Chng I. Hm s Trn PhngBi 3. Gi tr ln nht, nh nht ca hm s

BI 3. GI TR LN NHT, NH NHT CA HM S

A. GI TR LN NHT, NH NHT CA HM S I. TM TT L THUYT

1. Bi ton chung: Tm gi tr nh nht hoc ln nht ca hm s

Bc 1: D on v chng minh

Bc 2: Ch ra 1 iu kin

2. Cc phng php thng s dng

Phng php 1: Bin i thnh tng cc bnh phng

Phng php 2: Tam thc bc hai.

Phng php 3: S dng bt ng thc c in: Csi; Bunhiacpski

Phng php 4: S dng o hm.

Phng php 5: S dng i bin lng gic.

Phng php 6: S dng phng php vct v h ta

Phng php 7: S dng phng php hnh hc v h ta .II. CC BI TP MU MINH HA:

Bi 1. Tm gi tr nh nht ca P(x, y) = x2 + 11y2 ( 6xy + 8x ( 28y + 21 Gii. Bin i biu thc di dng P(x, y) = (x ( 3y + 4)2 + 2(y ( 1)2 + 3 ( 3

T suy ra MinP(x, y) = 3 (

Bi 2. Cho x, y > 0. Tm gi tr nh nht ca: S =

Gii.

S

S .

Vi x = y > 0 th MinS = 2

Bi 3. Tm gi tr ln nht ca hm s

Gii . =

S

S. Vi , (k(() th Bi 4. Tm gi tr nh nht ca biu thc

Gii.

Vi , th

Bi 5. Cho . Tm gi tr nh nht ca biu thc:

S = 19x2+ 54y2 +16z2 (16xz ( 24y +36xyGii. Bin i S ( f(x) = 19x2 ( 2(8z (18y)x + 54y2 +16z2 ( 24y

Ta c ((x = g(y) = (8z (18y)2 ( (54y2 +16z2 ( 24y) = (702y2 +168zy ( 240z2

( ((y = (84z)2 ( 702.240z2 = (161424z2 ( 0 (z(R ( g(y) ( 0 (y, z(R

Suy ra ((x ( 0 (y, z(R ( f(x) ( 0. Vi th

Bi 6. Cho x2 + xy + y2 = 3. Tm gi tr ln nht v nh nht ca biu thc: S = x2 ( xy + y2Gii Xt y = 0 ( x2 = 3 ( S = 3 l 1 gi tr ca hm s. Xt y ( 0, khi bin i biu thc di dng sau y

vi

( u(t2 + t + 1) = t2 ( t + 1 ( (u ( 1)t2 + (u + 1)t + (u ( 1) = 0 (*)

+ Nu u = 1, th t = 0 ( x = 0, y = ( u = 1 l 1 gi tr ca hm s+ Nu u ( 1, th u thuc tp gi tr hm s ( phng trnh (*) c nghim t ( ( = (3u ( 1)(3 ( u) ( 0 ( .

Vy tp gi tr ca u l ( ; Max u = 3

Min S = 1 ( ( t = 1 (

Max S = 9 ( Maxu = 3 ( t = (1 (

Bi 7. Cho x,y(R tha mn iu kin

Tm gi tr ln nht, nh nht ca biu thc S=

Gii. Bin i

( (

Do (4x2 ( 0 nn (

Vi x = 0, y = , th . Vi x = 0, y = , th

Bi 8. Tm gi tr nh nht ca hm s

Gii. Gi y0 l 1 gi tr ca hm f(x) ( tn ti x0 sao cho y0 =

(

( g(x0) = . Ta c g(x) = 0 c nghim x0

( (( = =

Do y0 = nn

(( ( 0 ( 2y0 ( 1 ( 0 ( . Vi x = th Minf(x) =

Bi 9. Cho Tm cc gi tr ca m sao cho

Gii. Ta c

Gi (P) l th ca y = f(x) ( (P) = (P1) ( (P2) khi (P) c 1 trong cc hnh dng th sau y

Honh ca cc im c bit trong th (P): Honh giao im (P1), (P2) xA = 1; xB = 4 ; Honh nh (P1): .

Nhn vo th ta xt cc kh nng sau:

( Nu xC ([xA, xB] ( m([ (3, 3] th Minf(x) = Min(f(1), f(4)(.

Khi Minf(x) > 1 ( ( 1 < m ( 3 (1)( Nu xC ([xA, xB] ( m([ (3, 3] th Minf(x) = =

Khi Minf(x) > 1 ( (2)

( Kt lun: T (1) v (2) suy ra Minf(x) > 1 (

Bi 10. ( thi TSH 2005 khi A)

Cho ;. Tm Min ca S

Gii: S dng bt ng thc Csi cho cc s a, b, c, d > 0 ta c:

Bi 11. ( thi TSH 2007 khi B)

Cho . Tm Min ca S

Gii: S dng bt ng thc Csi cho 9 s ta c

S

Bi 12. Cho Tm gi tr nh nht ca S =

Gii:

Mt khc, S = = =

Suy ra 2S ( ( ( ( MinS =.

Bi 13. Cho x, y, z > 0. Tm Max ca: S =

Gii: S dng bt ng thc Csi v BunhiaCpski ta c 3 nh gi sau:

;. T suy ra

Bi 14. ( thi TSH 2003 khi B)

Tm gi tr ln nht, nh nht ca hm s

Cch 1: Tp xc nh ;

(

Cch 2: t

(;

Bi 15. ( d b TSH 2003 khi B) Tm gi tr ln nht, nh nht ca trn on

Cch 1. t . Ta c

Nhn bng bin thin ta c

Cch 2. t .

Vi th. S dng bt ng thc Csi ta c:

. Vi Bi 16. a) Lp bng bin thin v tm gi tr ln nht ca hm s

b) Cho . Chng minh rng:

Gii. a) TX: ;

.

Suy ra . Nhn BBTta c

b) Theo phn a) th ( . c bit ha bt ng thc ny ti cc gi tr ta c:

(

Cch 2. Trn mt phng ta Oxy t

.

Khi .

Do

T suy ra

Bi 17. ( 33 III.2, B thi TSH 1987 1995) Cho . Tm Max, Min ca A ( .

Gii. 1. Tm MaxA: S dng bt ng thc BunhiaCpski ta c A (. Vi th Max A (

2. Tm MinA: Xt 2 trng hp sau y Trng hp 1: Nu, xt 2 kh nng sau:

+) Nu th A>0 (

+) Nu x ( 0, y ( 0 th (A( ( =

T 2 kh nng xt suy ra vi th Min A = (1

Trng hp 2: Xt : t ( (

(

(

Ta c:

Th vo phn d ca chia cho (.

Nhn bng bin thin suy ra:

suy ra

xy ra ( ;

( x, y l nghim ca (

Kt lun: Max A (;

Bi 18. Cho tho mn iu kin: .

Tm Max, Min ca biu thc:

Gii. Do nn . V hm s nghch bin trn nn bi ton tr thnh.

1. Tm MaxS hay tm Min

.Vi th MaxS =

2. Tm MinS hay tm Max

Cch 1: Phng php tam thc bc hai:

Khng mt tnh tng qut gi s . Bin i v nh gi a v tam thc bc hai bin z

Do th hm y = f(z) l mt parabol quay b lm ln trn nn ta c: .

Vi th MinS =

Cch 2: Phng php hnh hc

Xt h ta cc vung gc Oxyz. Tp hp cc im tho mn iu kin nm trong hnh lp phng ABCDA(B(C(O cnh 1 vi A(0, 1, 1); B(1, 1, 1); C(1, 0, 1); D(0, 0, 1); A((0, 1, 0); B((1, 1, 0); C((1, 0, 0).Mt khc do nn nm trn mt phng (P):

Vy tp hp cc im tho mn iu kin gi thit nm trn thit din EIJKLN vi cc im E, I, J, K, L, N l trung im cc cnh hnh lp phng. Gi O( l hnh chiu ca O ln EIJKLN th O( l tm ca hnh lp phng v cng l tm ca lc gic u EIJKLN. Ta c O(M l hnh chiu ca OM ln EIJKLN. Do OM2 = nn OM ln nht ( O(M ln nht

( M trng vi 1 trong 6 nh E, I, J, K, L, N.

T suy ra:

Vi th MinS =

Bi 19. Cho tha mn iu kin

Tm gi tr nh nht ca

Gii. Sai lm thng gp:

( Nguyn nhn:

mu thun vi gi thit

( Phn tch v tm ti li gii :

Do S l mt biu thc i xng vi a, b, c nn d on Min S t ti

( S im ri:

( ( (

( Cch 1: Bin i v s dng bt ng thc Csi ta c

. Vi th

( Cch 2: Bin i v s dng bt ng thc BunhiaCpski ta c

(

EMBED Equation.DSMT4

. Vi th

( Cch 3: t

Do nn suy ra :

(

(

( (

( . Vi th

B. CC NG DNG GTLN, GTNN CA HM S

I. NG DNG TRONG PHNG TRNH, BT PHNG TRNH

Bi 1. Gii phng trnh:

Gii. t vi

Nhn BBT suy ra:

( Phng trnh c nghim duy nht x ( 3

Bi 2. Gii phng trnh:

Gii. PT ( . Ta c:

( ( (((x) ng bin

Mt khc (((x) lin tc v

,

( Phng trnh (((x) ( 0 c ng 1 nghim x0

Nhn bng bin thin suy ra:

Phng trnh c khng qu 2 nghim.

M nn phng trnh (1) c ng 2 nghim v

Bi 3. Tm m BPT: c nghim ng

Gii. ( (

Ta c: ( 0 (

;

Nhn BBT ta c ,

Bi 4. Tm m PT: (1) c nghim

Gii. Do ( nn t

( ; . Khi (1) (

( (2)

Ta c: ( Bng bin thin

Nhn bng bin thin suy ra:

(2) c nghim

th

( . Vy (1) c nghim th .

Bi 5. Tm m h BPT: (1) c nghim.Gii. (1) ( (2).

Ta c: ;

(((x) ( 0 ( . Nhn BBTsuy ra:

(2) c nghim th ( ( (3 ( m ( 7 Bi 6. Tm m ( 0 h: (1) c nghim.

Gii

(1) ( ( (2)

Xt . Ta c:

Nhn BBT suy ra: ((m) ( ((2) ( 1,(m ( 0

kt hp vi suy ra h (2) c nghim th m ( 2, khi h (2) tr thnh:

c nghim. Vy (1) c nghim m ( 2.

II. NG DNG GTLN, GTNN CHNG MINH BT NG THC

Bi 1. Chng minh rng: ,

BT (

Ta c:

( Bng bin thin.

Nhn bng bin thin suy ra:

( (pcm)

Bi 2. Cho CMR: T (

Ta c: T ( .

Xt hm s vi x > 0

Ta c .

Nhn bng bin thin ( .

Khi :

ng thc xy ra .Bi 3. Cho 3 ( n l. Chng minh rng: (x ( 0 ta c:

t .

Ta cn chng minh < 1

Ta c:

(

(

Do 3 ( n l nn (((x) cng du vi ((2x)

Nhn bng bin thin suy ra:

( (pcm)

Bi 4. Chng minh rng: (a, b > 0.

Xt f(t) = vi

f((t) =

EMBED Equation.DSMT4 f((t) = 0 ( t = 1 ( Bng bin thin ca f(t)

T BBT ( ( f(t) < 1 (t > 0 ( ( .

Du bng xy ra ( a = b > 0.

III. BI TP V NH

Bi 1. Cho (ABC c . Tm gi tr nh nht ca hm s:

Bi 2. Tm Max, Min ca: y (

Bi 3. Cho ab (0. Tm Min ca

Bi 4. Cho . Tm Max, Min ca

Bi 5. Gi s phng trnh c nghim x1, x2.

Tm p ( 0 sao cho nh nht.

Bi 6. Tm Min ca

Bi 7. Cho x, y ( 0 v . Tm Max, Min ca .

Bi 8. Cho . Tm Max, Min ca .

Bi 9. Tm m PT: c nghim.

Bi 10 Tm m PT: c nghim.

Bi 11 Tm m PT: c 4 nghim phn bit.

Bi 12 Tm m PT: c nghim duy nht.

Bi 13 Tm m PT: c nghim .

Bi 14 Tm m PT: c ng 2 nghim .

Bi 15 Tm m h BPT: c nghim.

Bi 16 a. Tm m : c 2 nghim phn bit.

b. Cho . CMR:

Bi 17 Chng minh: ,

x234(( (0((2

O(

1

3/ 2

N

L

I

x

z

M

J

3/ 2

K

1

1

E

O

3/ 2

y

t(1t1t21(((0(0((1 EMBED Equation.DSMT4 EMBED Equation.DSMT4 1

y

1

x

t01+(f((0+f1

EMBED Equation.3 1

x((0((f ((0(f1

x(( EMBED Equation.DSMT4 ((f ((0(f EMBED Equation.DSMT4

x((0((f ( (0(f

0

x0 EMBED Equation.DSMT4 23f ((0(( f0CT821

m02(((( (0((171((

t(1 EMBED Equation.DSMT4 1(((t) (0(((t)4

04

x(((66((f ((0+0(

(

EMBED Equation.DSMT4

EMBED Equation.DSMT4 EMBED Equation.DSMT4 EMBED Equation.DSMT4

x(( 0x0 1((f ( (0(f

((x0)

O

3

2

1

B

A

C

a+b+c

a+b

a

x EMBED Equation.DSMT4 1/3 EMBED Equation.DSMT4 y ( +0(0y(1 EMBED Equation.DSMT4 1

x( 2 EMBED Equation.DSMT4 2y ( +0(0y(2 EMBED Equation.DSMT4 2

x0 EMBED Equation.DSMT4 1y (0 (0(0y4

EMBED Equation.DSMT4 1

P2

P1

C

B

A

P1

P2

C

B

A

P1

P2

C

B

A

1413

_1211613695.unknown

_1272980857.unknown

_1296375804.unknown

_1296377804.unknown

_1296380382.unknown

_1296381260.unknown

_1296384590.unknown

_1296384690.unknown

_1296385321.unknown

_1296385439.unknown

_1296385192.unknown

_1296384673.unknown

_1296384514.unknown

_1296380934.unknown

_1296380945.unknown

_1296380629.unknown

_1296378643.unknown

_1296379650.unknown

_1296379929.unknown

_1296378745.unknown

_1296378130.unknown

_1296378367.unknown

_1296377864.unknown

_1296376549.unknown

_1296377770.unknown

_1296376490.unknown

_1296376514.unknown

_1296376132.unknown

_1286087934.unknown

_1295947763.unknown

_1295948537.unknown

_1295948654.unknown

_1295949270.unknown

_1296375619.unknown

_1295949296.unknown

_1295949266.unknown

_1295948561.unknown

_1295948488.unknown

_1295948522.unknown

_1295947778.unknown

_1295947662.unknown

_1295947708.unknown

_1295947717.unknown

_1295947690.unknown

_1286088275.unknown

_1295247321.unknown

_1295247522.unknown

_1286088787.unknown

_1295247303.unknown

_1286088776.unknown

_1286088257.unknown

_1273987585.unknown

_1274515303.unknown

_1279456688.unknown

_1279602833.unknown

_1279605269.unknown

_1279459071.unknown

_1274515403.unknown

_1274515449.unknown

_1274515482.unknown

_1274515427.unknown

_1274515331.unknown

_1273987684.unknown

_1274515181.unknown

_1273987675.unknown

_1273330530.unknown

_1273331790.unknown

_1273333030.unknown

_1273333924.unknown

_1273331830.unknown

_1273332333.unknown

_1273330737.unknown

_1273331761.unknown

_1273330664.unknown

_1273330711.unknown

_1272981255.unknown

_1272981483.unknown

_1272981144.unknown

_1272878018.unknown

_1272879145.unknown

_1272884508.unknown

_1272884707.unknown

_1272884813.unknown

_1272980284.unknown

_1272884826.unknown

_1272884719.unknown

_1272884771.unknown

_1272884645.unknown

_1272884669.unknown

_1272884537.unknown

_1272884463.unknown

_1272884486.unknown

_1272879285.unknown

_1272879342.unknown

_1272879265.unknown

_1272879025.unknown

_1272879082.unknown

_1272879105.unknown

_1272879051.unknown

_1272878366.unknown

_1272878588.unknown

_1272878638.unknown

_1272878434.unknown

_1272878457.unknown

_1272878468.unknown

_1272878374.unknown

_1272878129.unknown

_1272878076.unknown

_1272878092.unknown

_1211823265.unknown

_1272876575.unknown

_1272876744.unknown

_1272876922.unknown

_1272877171.unknown

_1272876854.unknown

_1272876636.unknown

_1211826261.unknown

_1218275992.unknown

_1218276067.unknown

_1218274860.unknown

_1218274848.unknown

_1211823947.unknown

_1211823969.unknown

_1211823455.unknown

_1211823657.unknown

_1211627704.unknown

_1211823205.unknown

_1211823224.unknown

_1211822697.unknown

_1211823180.unknown

_1211822645.unknown

_1211627645.unknown

_1211627655.unknown

_1211627477.unknown

_1198669544.unknown

_1210840118.unknown

_1210847469.unknown

_1211297059.unknown

_1211299115.unknown

_1211450308.unknown

_1211607226.unknown

_1211609836.unknown

_1211609911.unknown

_1211609899.unknown

_1211609288.unknown

_1211609813.unknown

_1211453334.unknown

_1211455484.unknown

_1211455502.unknown

_1211455480.unknown

_1211453225.unknown

_1211453105.unknown

_1211299941.unknown

_1211449931.unknown

_1211450062.unknown

_1211450167.unknown

_1211450217.unknown

_1211450047.unknown

_1211306109.unknown

_1211306510.unknown

_1211306636.unknown

_1211449907.unknown

_1211306591.unknown

_1211306174.unknown

_1211300200.unknown

_1211306090.unknown

_1211305221.unknown

_1211300118.unknown

_1211299803.unknown

_1211299883.unknown

_1211299777.unknown

_1211299487.unknown

_1211297707.unknown

_1211298585.unknown

_1211299096.unknown

_1211297899.unknown

_1211298122.unknown

_1211298425.unknown

_1211297888.unknown

_1211297310.unknown

_1211297704.unknown

_1211297172.unknown

_1211295796.unknown

_1211296028.unknown

_1211296962.unknown

_1211296985.unknown

_1211296709.unknown

_1211296762.unknown

_1211295881.unknown

_1211295970.unknown

_1211295850.unknown

_1211291505.unknown

_1211293115.unknown

_1211294133.unknown

_1211292387.unknown

_1210848239.unknown

_1210848588.unknown

_1210848657.unknown

_1210848676.unknown

_1210848587.unknown

_1210847929.unknown

_1210848054.unknown

_1210847649.unknown

_1210840797.unknown

_1210841044.unknown

_1210847400.unknown

_1210847464.unknown

_1210847442.unknown

_1210841049.unknown

_1210840978.unknown

_1210841018.unknown

_1210840967.unknown

_1210840438.unknown

_1210840760.unknown

_1210840767.unknown

_1210840552.unknown

_1210840713.unknown

_1210840158.unknown

_1210840385.unknown

_1210840144.unknown

_1199133412.unknown

_1199133649.unknown

_1210793969.unknown

_1210832649.unknown

_1210832907.unknown

_1210833534.unknown

_1210833535.unknown

_1210833239.unknown

_1210833256.unknown

_1210832747.unknown

_1210832801.unknown

_1210832701.unknown

_1210796573.unknown

_1210796831.unknown

_1210797260.unknown

_1210797293.unknown

_1210796967.unknown

_1210796730.unknown

_1210794551.unknown

_1210794582.unknown

_1210794965.unknown

_1210795001.unknown

_1210794573.unknown

_1210794038.unknown

_1210794076.unknown

_1210794015.unknown

_1199133898.unknown

_1199133927.unknown

_1199133937.unknown

_1199133907.unknown

_1199133916.unknown

_1199133828.unknown

_1199133866.unknown

_1199133891.unknown

_1199133850.unknown

_1199133847.unknown

_1199133662.unknown

_1199133539.unknown

_1199133618.unknown

_1199133638.unknown

_1199133571.unknown

_1199133444.unknown

_1199133495.unknown

_1199133434.unknown

_1198669761.unknown

_1198744482.unknown

_1199133382.unknown

_1199133390.unknown

_1199133124.unknown

_1198670410.unknown

_1198670673.unknown

_1198670032.unknown

_1198669774.unknown

_1198669596.unknown

_1198669605.unknown

_1198669754.unknown

_1198669601.unknown

_1198669550.unknown

_1198669556.unknown

_1198669547.unknown

_1198614085.unknown

_1198649999.unknown

_1198650009.unknown

_1198653758.unknown

_1198669527.unknown

_1198669539.unknown

_1198669316.unknown

_1198653791.unknown

_1198650022.unknown

_1198653741.unknown

_1198650012.unknown

_1198650004.unknown

_1198650007.unknown

_1198650002.unknown

_1198614422.unknown

_1198649983.unknown

_1198649985.unknown

_1198614441.unknown

_1198614115.unknown

_1198614299.unknown

_1198614410.unknown

_1198614296.unknown

_1198614098.unknown

_1197498712.unknown

_1197874742.unknown

_1198613759.unknown

_1198614060.unknown

_1198614067.unknown

_1198614053.unknown

_1198613739.unknown

_1198613750.unknown

_1197874789.unknown

_1198613540.unknown

_1197874793.unknown

_1197874785.unknown

_1197498739.unknown

_1197874719.unknown

_1197874728.unknown

_1197874732.unknown

_1197498741.unknown

_1197498718.unknown

_1197498731.unknown

_1197498716.unknown

_1197493856.unknown

_1197495387.unknown

_1197498658.unknown

_1197498692.unknown

_1197498654.unknown

_1197495469.unknown

_1197495364.unknown

_1197495372.unknown

_1197495318.unknown

_1197493843.unknown

_1197493850.unknown

_1197493852.unknown

_1197493846.unknown

_1197126401.unknown

_1197126433.unknown

_1197126438.unknown

_1197126441.unknown

_1197126419.unknown

_1197126369.unknown

_1197126374.unknown

_1109745778.unknown

_1142232425.unknown