(14 15) boundary layer theory

Upload: ssheshan-pugazhendhi

Post on 03-Jun-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 (14 15) Boundary Layer Theory

    1/25

    SOLUTION OF BOUNDARY LAYER

    Associate Professor

    IIT Delhi

    E-mail: [email protected]

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    2/25

    Boundary layer ApproximationApplying Newtons 2nd law in the

    y-direction, we get y-momentum

    equation2

    x

    P

    y

    u

    y

    uv

    x

    uu

    2

    2

    =

    +

    X momentum:

    yx

    v

    y

    v

    vx

    v

    u 2 =

    +

    0P=

    )x(PP,Thus =dx

    dP

    x

    P,Hence =

    y

    For a flate plate, since u = U= constant and v = 0 outside

    the boundary layer, X-0

    x

    P=

    momen um equa on g ves

    Therefore,forflowoveraflatplate,thepressureremainsconstantovertheentire

    P.Talukdar/Mech-IITD

    plate(bothinsideandoutsidetheboundarylayer).

  • 8/12/2019 (14 15) Boundary Layer Theory

    3/25

    Boundary layer over a flat plate

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    4/25

    Thecontinuityandmomentumequationswerefirstsolvedin1908bytheGerman

    Blasius (1883 1970) was a

    German Fluid Dynamic

    Engineer. He was one of theeng neer . as us,as u en o .Prandtl.

    Thiswasdonebytransformingthetwo

    first students of Prandtl.

    Born 9August1883

    partialdifferentialequationsintoasingleordinarydifferentialequationbyintroducinganewindependentvariable,

    er n, ermanyDied

    24April1970(aged86)Hamburg,WestGermany .

    Thefindingofsuchavariable,assumingitexists,ismoreofanartthanscience,and

    Fields Fluidmechanicsand

    mechanicalengineeringAlmamater UniversityofGttingen

    itrequirestohaveagoodinsightoftheproblem.

    Doctoraladvisor

    LudwigPrandtl

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    5/25

    The shape of the velocity profile remains the same along the plate.

    Blasius reasoned that the nondimensional velocity profile u/u should

    remain unchanged when plotted against the nondimensional distance

    ,

    given x.

    That is, althou h both and u at a iven var with x, the velocit u ata fixed y/ remains constant

    Blasius was also aware from the work

    of Stokes that is proportional to

    x

    u

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    6/25

    Scale Analysis

    Dividing by x to express the result in dimensionless form gives

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    7/25

    Similarity VariableThe significant variable is y/, and weassume that the velocity may be expressed as a

    function of this variable. We then have

    =

    u

    x/ydefineWe

    /y,makesThis

    Here, is called the similarity variable, and g()is the function we seek as a solution

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    8/25

    Variable TransformationA stream function was defined such that: y

    =

    x

    v

    =

    x

    uy

    = udyd =

    ( ) = fuxux

    udyd

    =

    = d)(g)(fwhere

    ( ) ( )

    =

    = uxuf

    uxuf

    =

    =

    =

    =

    =

    =

    =

    fdfu1

    fudfx

    uv

    ddfu

    xu

    ddf

    uxu

    yyu

    P.Talukdar/Mech-IITD

    dx2xu2xdux

  • 8/12/2019 (14 15) Boundary Layer Theory

    9/25

    Differentiating the previous equation with respect to x and y

    3222

    2

    2

    fduufduu

    ,d

    fd

    x2

    u

    x

    u

    =

    322

    dx

    y

    ,

    dx

    uy

    =

    =

    simplifying, we obtain

    0d

    fd

    fd

    fd

    2 2

    2

    3

    3

    =+

    This is a third-order nonlinear differential equation.

    .

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    10/25

    Blasius Solution0

    d

    fdf

    d

    fd2

    2

    2

    3

    3

    =

    +

    The value of corresponding to u/u = 0.992is 5.0

    xu5

    xuy

    =

    =

    P.Talukdar/Mech-IITD

    Significance

    of u, , xxRe

    x.

    xu

    .=

    =

  • 8/12/2019 (14 15) Boundary Layer Theory

    11/25

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    12/25

    The shear stress at the wall can be

    eterm ne rom:

    2

    2

    wfdu

    uu

    =

    =00y ==

    2u332.0u

    x

    wRex

    u. ==

    21x2

    w

    2

    wx,f Re664.0

    2u2VC

    =

    =

    =

    Note that unlike the boundary layer

    thickness, wall shear stress and the skin

    P.Talukdar/Mech-IITD

    friction coefficient decrease along the plate

    as x-1/2

    .

  • 8/12/2019 (14 15) Boundary Layer Theory

    13/25

    Ener E uationIntroduce a non-dimensional temperature s

    TT

    T)y,x(T)y,x(

    =

    Substitution gives an energy equation of the form:2

    2

    yyv

    xu

    =+

    Temperature profiles for flow over an isothermal flat plate are similar like the

    velocity profiles.

    Thus, we expect a similarity solution for temperature to exist.

    Further, the thickness of the thermal boundary layer is proportional to u/x

    Using the chain rule and substituting the u and v expressions into the energy equationgives

    22

    P.Talukdar/Mech-IITD

    2 ydydf

    dx2xddu

    =

    +

  • 8/12/2019 (14 15) Boundary Layer Theory

    14/25

    Using the chain rule and substituting the u and v expressions into theenergy equation gives

    22ddf

    dfu1ddfu

    =

    +

    Compare

    df/d is replaced by

    fdfd 230d

    fPrd

    22

    =

    +

    For Pr = 1 dd 23 d

    1d

    dfand0d

    df

    == ==( ) ( ) 100 == and

    Thusweconcludethatthevelocityandthermalboundarylayerscoincide,and

    forsteady,incompressible,laminarflowofafluidwithconstantpropertiesandPr=1overanisothermalflatplate

    P.Talukdar/Mech-IITD

    The value of the temperature gradient at the surface (Pr =1) ??

    332.0d

    fddd

    2

    2

    =

    =

  • 8/12/2019 (14 15) Boundary Layer Theory

    15/25

    This eq. is solved for numerous values of Prandtl numbers.

    For Pr > 0.6, the nondimensional temperature gradient at0d

    fPrd

    22

    =

    +

    Pr>0.6the surface is found to be proportional to Pr

    31Pr332.0d

    =

    0=

    s

    s

    TT

    T)y,x(T)y,x(

    =

    x

    uy

    y

    =

    =

    The temperature gradient at the surface is

    ( ) ( )

    u

    ydTT

    yTT

    y

    31

    0y0

    s

    0y

    s

    0y ==

    ==

    =

    =

    P.Talukdar/Mech-IITD

    xr. s

    =

  • 8/12/2019 (14 15) Boundary Layer Theory

    16/25

    P.Talukdar/Mech-IITD

    This solution is given by Pohlhausen

  • 8/12/2019 (14 15) Boundary Layer Theory

    17/25

    The local convection coefficient can be expressed as:

    uy

    Tk

    q 310ys

    = u

    y

    T

    0y

    =

    =

    And the local Nusselt number becomes

    ( ) ( ) x.

    TTTT ssx

    x

    r. s

    21x

    31xx RePr332.0

    k

    xhNu == Pr > 0.6

    Solving the thermal boundary layer equation numerically for the temperature

    profile for different Prandtl numbers, and using the definition of the thermal

    boundar la er it is determined that

    31

    t

    Pr

    P.Talukdar/Mech-IITD x3131t

    RePr

    x0.5

    Pr

    =

    =

  • 8/12/2019 (14 15) Boundary Layer Theory

    18/25

    -0

    vu=

    +

    yx

    puuu 2

    xyyx 2

    22 TTTT

    =

    22p yxy

    vx

    uc

    s

    s*

    2

    *****

    TT

    TTTand

    V

    pp,

    V

    vv,

    V

    uu,

    L

    yy,

    L

    xx

    =

    =====

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    19/25

    ** 0yx ** =

    +

    **2**

    Continuity:

    *2*L** dxyRey

    v

    x

    u

    =

    +

    Momentum:

    2*

    *2

    L*

    **

    *

    **

    y

    T

    PrRe

    1

    y

    Tv

    x

    Tu

    =

    +

    Energy:

    With the boundary conditions:

    ******** ====

    ( ) ( ) ( ) 1,xT,00,xT,1y,0T,,,,,,,

    ****** ===

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    20/25

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    21/25

    Functional forms of Friction and

    onvect on oe c ents

    **2**

    ** dpu1uu

    *2*L** dx

    y

    Reyx

    =

    ,

    can be expressed as L**

    1* Re,y,xfu =

    T en t e s ear stress at t e sur ace ecomes

    ( )L*2**

    0

    s Re,xfL

    V

    y

    u

    L

    V

    y

    u

    *

    =

    =

    ==

    ( ) ( ) ( )L*3L*2L*222s

    x,f Re,xfRe,xf2

    Re,xfLV

    C ==

    =

    =

    P.Talukdar/Mech-IITD

  • 8/12/2019 (14 15) Boundary Layer Theory

    22/25

    *2**

    The solution for T* can be expressed as

    2*L**

    yPrRey

    vx

    u

    =

    +

    Energy:

    Pr,Re,y,xgT L**

    1* =

    Using the definition of T*, the convection heat transfer coefficient becomes

    0y

    **

    0y

    **

    s

    s

    s

    0y

    **yT

    LyT

    )TT(LTTh

    ==

    ==

    =

    =

    usse num er:Pr),Re,x(gyT

    kNu L

    *2

    0y

    **x *

    ====

    Note that the Nusselt number is equivalent to the

    dimensionless temperature gradient at the

    P.Talukdar/Mech-IITD

    ,

    dimensionless heat transfer coefficient

  • 8/12/2019 (14 15) Boundary Layer Theory

    23/25

  • 8/12/2019 (14 15) Boundary Layer Theory

    24/25

    WhenPr=1(approximately the case

    * * =2*

    *2

    L*

    **

    *

    ** u

    Re

    1

    y

    uv

    x

    uu

    =

    +

    . .

    plate)

    2*

    *2

    L*

    *

    **

    *

    *

    yT

    Re1

    yTv

    xTu

    =+

    *ThL

    0y*x

    *yk =

    x*

    *

    s NuL

    Vu

    L

    Vu =

    =

    = ** Tu

    0yy ==

    x2

    x

    2

    sx,f Nu

    2Nu

    L

    V

    C =

    =

    =

    0y*

    0y*

    ** yy == =

    xL

    x,f NuRe

    C = (Pr=1)x

    x,fSt

    2

    C= (Pr=1)

    P.Talukdar/Mech-IITD

    PrRe

    Nu

    Vc

    hSt

    Lp

    =

    =

  • 8/12/2019 (14 15) Boundary Layer Theory

    25/25

    Clinton-Colburn Analogy

    Also called modified Reynolds analogy

    21

    Colburn j-factor

    xx,f e.= xx er.u =

    Taking the ratio between Cf,x and Nux

    Valid for

    31x

    xx,f PrNu

    2

    ReC = H

    32

    p

    xx,f jPrVc

    h

    2

    =

    Although this relation is developed using relations

    for laminar flow over a flat plate (for which

    P*/x* = 0), experimental studies show that it is

    0.6