16 pres

Upload: vschronos

Post on 04-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 16 Pres

    1/56

    Class-S Power Amplifier Concept for Mobile

    Communications in Rural Areas with ConcurrentTransmission at 450 MHz and 900 MHz

    Martin Schmidt, Johannes Digel, Manfred Berroth

    Institute of Electrical and Optical Communications Engineering

    University of Stuttgart

    Stuttgart, Germany

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    1

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    2/56

    Outline

    MotivationChallenges for basestation suppliersClass-S principle

    ArchitectureModulator lowpass prototypeMulti path transform5 path transform spectrum and SNR

    Concurrent Transmission in both Frequency BandsOutput spectrumComparison of notches of both frequency bands

    StabilityStability vs. input amplitudesExplanation of stability limit

    Coding EfficiencyTotal output power and signal output powerSingle tone coding efficiency and combined coding efficiency

    Conclusion

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    2

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    3/56

    Motivation

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    3

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    4/56

    Motivation: Flexibility is Key

    Challenges: High requirements . . .

    Increasing number of standards,

    (GSM, UMTS, CDMA2000, LTE, . . . )

    frequency bands(450 MHz, 900 MHz, 2.1 GHz)

    and use cases(coverage vs. data rate)

    in different markets.(Europe, North America, China, . . . )

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    4

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    5/56

    Motivation: Flexibility is Key

    Challenges: High requirements . . .

    Increasing number of standards,

    (GSM, UMTS, CDMA2000, LTE, . . . )

    frequency bands(450 MHz, 900 MHz, 2.1 GHz)

    and use cases(coverage vs. data rate)

    in different markets.(Europe, North America, China, . . . )

    . . . and high design efforts and costs.

    Analog properties in advanced CMOStechnologies deteriorate

    Development in advanced CMOSnodes is expensive

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    4

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    6/56

    Motivation: Flexibility is Key

    Challenges: High requirements . . .

    Increasing number of standards,

    (GSM, UMTS, CDMA2000, LTE, . . . )

    frequency bands(450 MHz, 900 MHz, 2.1 GHz)

    and use cases(coverage vs. data rate)

    in different markets.(Europe, North America, China, . . . )

    Need for flexibility

    . . . and high design efforts and costs.

    Analog properties in advanced CMOStechnologies deteriorate

    Development in advanced CMOSnodes is expensive

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    4

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    7/56

    Motivation: Flexibility is Key

    Challenges: High requirements . . .

    Increasing number of standards,

    (GSM, UMTS, CDMA2000, LTE, . . . )

    frequency bands(450 MHz, 900 MHz, 2.1 GHz)

    and use cases(coverage vs. data rate)

    in different markets.(Europe, North America, China, . . . )

    Need for flexibility

    . . . and high design efforts and costs.

    Analog properties in advanced CMOStechnologies deteriorate

    Development in advanced CMOSnodes is expensive

    and better designs /

    less design cycles

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    4

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    8/56

    Motivation: Class-S Amplifier

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    5

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    9/56

    Motivation: Class-S Amplifier

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    5

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    10/56

    Motivation: Class-S Amplifier

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    5

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    11/56

    Motivation: Class-S Amplifier

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    5

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    12/56

    Motivation: Class-S Amplifier

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    5

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    13/56

    Motivation: Class-S Amplifier

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    5

    2011 c M. Schmidt/INT

    M i i Cl S A lifi

    http://find/http://goback/
  • 7/31/2019 16 Pres

    14/56

    Motivation: Class-S Amplifier

    The class-S amplifier concept is a Software Defined Radio solution.In general it

    offers flexibility,

    low design effort,

    low power consumption and

    reduces number of analog components.

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    5

    2011 c M. Schmidt/INT

    M ti ti Cl S A lifi

    http://find/http://goback/
  • 7/31/2019 16 Pres

    15/56

    Motivation: Class-S Amplifier

    This presentation is about a special system for concurrent transmission in

    the 450 MHz and the 900 MHz band. Main benefit: One solution for different use cases - coverage vs. data rate

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    5

    2011 c M. Schmidt/INT

    M ti ti Cl S A lifi

    http://find/http://goback/
  • 7/31/2019 16 Pres

    16/56

    Motivation: Class-S Amplifier

    This presentation is about a special system for concurrent transmission in

    the 450 MHz and the 900 MHz band. Main benefit: One solution for different use cases - coverage vs. data rate

    Only Bandpass Delta Sigma Modulator is treated here

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    5

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    17/56

    Modulator Architecture

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    6

    2011 c M. Schmidt/INT

    Modulator Lowpass Prototype

    http://find/http://goback/
  • 7/31/2019 16 Pres

    18/56

    Modulator Lowpass Prototype

    z1

    1/16 1/4

    X Y

    z1

    z1

    1/2

    1/32

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    7

    2011 c M. Schmidt/INT

    Lowpass Prototype Output Spectrum

    http://find/http://goback/
  • 7/31/2019 16 Pres

    19/56

    Lowpass Prototype Output Spectrum

    0 0.2 0.4 0.6 0.8 1140

    120

    100

    80

    60

    40

    20

    0

    Normalized Frequency / fs

    Outputp

    ower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    8

    2011 c M. Schmidt/INT

    Modulator Architecture

    http://find/http://goback/
  • 7/31/2019 16 Pres

    20/56

    Modulator Architecture

    z1

    1/16 1/4

    X Y

    z1

    z1

    1/2

    1/32

    transform z1 zn

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    9

    2011 c M. Schmidt/INT

    Modulator Architecture

    http://find/http://goback/
  • 7/31/2019 16 Pres

    21/56

    Modulator Architecture

    z 1

    1/16 1/4

    X Y

    z 1

    z 1

    1/2

    1/32

    z n

    1/16 1/4

    X Y

    z n

    z n

    1/2

    1/32

    transform z 1 z n

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    9

    2011 c M. Schmidt/INT

    Modulator Architecture

    http://find/http://goback/
  • 7/31/2019 16 Pres

    22/56

    Modulator Architecture

    z n

    1/16 1/4

    X Y

    z n

    z n

    1/2

    1/32

    X Y

    LPDSM

    LPDSM

    LPDSM

    1:nDEMU

    X

    n:1MUX

    equivalent

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    9

    2011 c M. Schmidt/INT

    Modulator Architecture

    http://find/http://goback/
  • 7/31/2019 16 Pres

    23/56

    Modulator Architecture

    0 0.2 0.4 0.6 0.8 1140

    120

    100

    80

    60

    40

    20

    0

    Normalized Frequency / fs

    Outputpower[d

    B]

    0 0.2 0.4 0.6 0.8 1140

    120

    100

    80

    60

    40

    20

    0

    Normalized Frequency / fs

    Outputpower[d

    B]

    0 0.2 0.4 0.6 0.8 1140

    120

    100

    80

    60

    40

    20

    0

    Normalized Frequency / fs

    Outputpower[dB]

    0 0.2 0.4 0.6 0.8 1140

    120

    100

    80

    60

    40

    20

    0

    Normalized Frequency / fs

    Outputpower[dB]

    n=2 n=3

    n=4 n=5

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    10

    2011 c M. Schmidt/INT

    Output Spectrum for Transform with n=5

    http://find/http://goback/
  • 7/31/2019 16 Pres

    24/56

    Output Spectrum for Transform with n=5

    0 0.5 1 1.5 2

    120

    100

    80

    60

    40

    20

    0

    Frequency [GHz]

    Outputp

    ower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    11

    2011 c M. Schmidt/INT

    Output Spectrum for Transform with n=5

    http://find/http://goback/
  • 7/31/2019 16 Pres

    25/56

    Output Spectrum for Transform with n 5

    0 0.5 1 1.5 2

    120

    100

    80

    60

    40

    20

    0

    Frequency [GHz]

    Outputp

    ower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    11

    2011 c M. Schmidt/INT

    Signal-to-Noise-Ratio of Single Sinusoids in Both Frequency Bands

    http://find/http://goback/
  • 7/31/2019 16 Pres

    26/56

    g g q y

    0 10 20 30 40 50 6035

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    Bandwidth [MHz]

    SNR[

    dB]

    SNR @ 450 MHz

    SNR @ 900 MHz

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    12

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    27/56

    Concurrent Transmission in Frequency Bands

    at 450 MHz and at 900 MHz

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    13

    2011 c M. Schmidt/INT

    Output Spectrum for Concurrent Transmission

    http://find/http://goback/
  • 7/31/2019 16 Pres

    28/56

    p p

    0 0.5 1 1.5 2

    120

    100

    80

    60

    40

    20

    0

    Frequency [GHz]

    Outputpower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    14

    2011 c M. Schmidt/INT

    Output Spectrum for Concurrent Transmission

    http://find/http://goback/
  • 7/31/2019 16 Pres

    29/56

    0 0.5 1 1.5 2

    120

    100

    80

    60

    40

    20

    0

    Frequency [GHz]

    Outputpower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    14

    2011 c M. Schmidt/INT

    Output Spectrum for Concurrent Transmission

    http://find/http://goback/
  • 7/31/2019 16 Pres

    30/56

    0 0.5 1 1.5 2

    120

    100

    80

    60

    40

    20

    0

    Frequency [GHz]

    Outputpower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    14

    2011 c M. Schmidt/INT

    Output Spectrum for Concurrent Transmission

    http://find/http://goback/
  • 7/31/2019 16 Pres

    31/56

    0 0.5 1 1.5 2

    120

    100

    80

    60

    40

    20

    0

    Frequency [GHz]

    Outputpower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    14

    2011 c M. Schmidt/INT

    Output Spectrum for Concurrent Transmission

    http://find/http://goback/
  • 7/31/2019 16 Pres

    32/56

    0 0.5 1 1.5 2

    120

    100

    80

    60

    40

    20

    0

    Frequency [GHz]

    Outputpower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    142011 c M. Schmidt/INT

    Output Spectrum for Concurrent Transmission

    http://find/http://goback/
  • 7/31/2019 16 Pres

    33/56

    0 0.5 1 1.5 2

    120

    100

    80

    60

    40

    20

    0

    Frequency [GHz]

    Outputpower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    142011 c M. Schmidt/INT

    Output Spectrum for Concurrent Transmission

    http://find/http://goback/
  • 7/31/2019 16 Pres

    34/56

    0 0.5 1 1.5 2

    120

    100

    80

    60

    40

    20

    0

    Frequency [GHz]

    Outputpower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    14

    2011 c M. Schmidt/INT

    Zoom into Output Spectrum for Frequency Bands @1/5, 2/5fs

    http://find/http://goback/
  • 7/31/2019 16 Pres

    35/56

    455.6 458.6 461.7 464.7 467.7 470.7 473.8 476.8 479.8 482.9 485.9 488.9

    100

    80

    60

    40

    20

    0

    Frequency 460MHz .. 467MHzband [MHz]

    928 931 934 937.1 940.1 943.1 946.2 949.2 952.2 955.2 958.3 961.3

    100

    80

    60

    40

    20

    0

    Frequency 935MHz .. 960MHzband [MHz]

    NormalizedOutpu

    tPower[dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    15

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    36/56

    Stability

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    16

    2011 c M. Schmidt/INT

    Area of Stability: Definition

    http://find/http://goback/
  • 7/31/2019 16 Pres

    37/56

    0 10 20 30 40 50 6035

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    Bandwidth [MHz]

    SNR[

    dB

    ]

    SNR @ Amplitudein

    =3300 Modulator is consideredstable until SNR@bandwidth20 MHzdrops by 3dB frommaximum SNR at this

    point

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    17

    2011 c M. Schmidt/INT

    Area of Stability: Definition

    http://find/http://goback/
  • 7/31/2019 16 Pres

    38/56

    0 10 20 30 40 50 6035

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    Bandwidth [MHz]

    SNR[

    dB

    ]

    SNR @ Amplitudein

    =3300

    SNR @ Amplitudein

    =3400

    Modulator is consideredstable until SNR@bandwidth20 MHzdrops by 3dB frommaximum SNR at this

    point Here:

    SNR(3400)+3 dB>SNR(3300)

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    17

    2011 c M. Schmidt/INT

    Area of Stability: Definition

    http://find/http://goback/
  • 7/31/2019 16 Pres

    39/56

    0 10 20 30 40 50 6035

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    Bandwidth [MHz]

    SNR[

    dB

    ]

    SNR @ Amplitudein

    =3300

    SNR @ Amplitudein

    =3400

    SNR @ Amplitudein

    =3500

    Modulator is consideredstable until SNR@bandwidth20 MHzdrops by 3dB frommaximum SNR at this

    point Here:

    SNR(3400)+3 dB>SNR(3300)SNR(3500)+3 dB>SNR(3400)

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    17

    2011 c M. Schmidt/INT

    Area of Stability: Definition

    http://find/http://goback/
  • 7/31/2019 16 Pres

    40/56

    0 10 20 30 40 50 6035

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    Bandwidth [MHz]

    SNR[

    dB]

    SNR @ Amplitudein

    =3300

    SNR @ Amplitudein

    =3400

    SNR @ Amplitudein

    =3500

    SNR @ Amplitudein

    =3600

    Modulator is consideredstable until SNR@bandwidth20 MHzdrops by 3dB frommaximum SNR at this

    point Here:

    SNR(3400)+3 dB>SNR(3300)SNR(3500)+3 dB>SNR(3400)SNR(3600)+3 dB

  • 7/31/2019 16 Pres

    41/56

    0 500 1000 1500 2000 2500 3000 3500 40000

    500

    1000

    1500

    2000

    2500

    3000

    3500

    Amplitude @f=1/5fs

    Amplitud

    e@f=2/5fs

    Stability limit for signal @f=1/5fs

    Stability limit for signal @f=2/5fs

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    18

    2011 c M. Schmidt/INT

    Explanation of Stability Limit

    http://find/http://goback/
  • 7/31/2019 16 Pres

    42/56

    0 2 4 6 8 10

    1

    0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Discrete Time

    Normaliz

    edAmplitude

    sinusoid @f=1/5fs

    sinusoid @f=2/5fs

    combination of sinusoids

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    19

    2011 c M. Schmidt/INT

    Explanation of Stability Limit

    http://find/http://goback/
  • 7/31/2019 16 Pres

    43/56

    0 2 4 6 8 10

    1

    0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Discrete Time

    Normaliz

    edAmplitude

    sinusoid @f=1/5fs

    sinusoid @f=2/5fs

    combination of sinusoids

    Sampling instants ofone lowpass modulator

    X Y

    LPDSM

    LPDSM

    LPDSM

    LPDSM

    LPDSM

    1:5DE

    MUX

    5:1M

    UX

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    19

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    44/56

    Coding Efficiency

    University of Stuttgart

    Institute of Electrical and Optical Communications EngineeringProf. Dr.-Ing. Manfred Berroth

    20

    2011 c M. Schmidt/INT

    Total Output Power and Signal Power (Separate & Combined)

    http://find/http://goback/
  • 7/31/2019 16 Pres

    45/56

    Power spectral density

    SDT(k) =

    1NFFTNFFT1

    n=0 x(n)ej2NFFT

    nk

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    21

    2011 c M. Schmidt/INT

    Total Output Power and Signal Power (Separate & Combined)

    http://find/http://goback/
  • 7/31/2019 16 Pres

    46/56

    (0,0) (1,0) (0,1) (0,0)0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Normalized Amplitude (@f=1/5fs,@f=2/5f

    s)

    NormalizedPower

    Normalized total output power

    Normalized signal output power

    Normalized single tone output powerTotal output power

    SDT(k) =

    1NFFTNFFT1

    n=0 x(n)ej2NFFT

    nk

    Ptot =NFFT1

    n=0 x2(n) =

    NFFT1k=0 S

    2DT(k)

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    21

    2011 c M. Schmidt/INT

    Total Output Power and Signal Power (Separate & Combined)

    http://find/http://goback/
  • 7/31/2019 16 Pres

    47/56

    (0,0) (1,0) (0,1) (0,0)0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Normalized Amplitude (@f=1/5fs,@f=2/5f

    s)

    NormalizedPower

    Normalized total output power

    Normalized signal output power

    Normalized single tone output powerSignal output power

    SDT(k) =

    1NFFTNFFT1

    n=0 x(n)ej2NFFT

    nk

    Ptot =NFFT1

    n=0 x2(n) =

    NFFT1k=0 S

    2DT(k)

    SCT(k) = sinc k

    NFFTSDT(k)

    Psig = S2CT(k1) + S

    2CT(k2)

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    21

    2011 c M. Schmidt/INT

    Coding Efficiency

    http://find/http://goback/
  • 7/31/2019 16 Pres

    48/56

    (0,0) (1,0) (0,1) (0,0)0

    5

    10

    15

    20

    25

    30

    35

    Normalized Amplitude (@f=1/5fs,@f=2/5f

    s)

    CodingEfficiency[%]

    Combined output power

    single tone output power Coding efficiency

    SDT(k) =

    1NFFTNFFT1

    n=0 x(n)ej2NFFT

    nk

    Ptot =NFFT1

    n=0 x2(n) =

    NFFT1k=0 S

    2DT(k)

    SCT(k) = sinc k

    NFFTSDT(k)

    Psig = S2CT(k1) + S

    2CT(k2)

    c =PsigPtot

    =S2CT(k1)+S

    2CT(k2)

    NFFT1

    n=0

    x2(n)

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    22

    2011 c M. Schmidt/INT

    Coding Efficiency vs. Input Amplitudes

    http://find/http://goback/
  • 7/31/2019 16 Pres

    49/56

    00.2

    0.40.6

    0.81

    0

    0.5

    10

    10

    20

    30

    40

    NormalizedAmplitude @f=2/5f

    s

    NormalizedAmplitude @f=1/5f

    s

    Codin

    gEfficiency[%]

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    23

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    50/56

    Conclusion

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    24

    2011 c M. Schmidt/INT

    Conclusion

    Summary

    http://find/http://goback/
  • 7/31/2019 16 Pres

    51/56

    Summary

    Class-S transmitter offers high flexibility and low design effort

    For single tone transmission 60 dB SNR in 30 MHz bandwidth possible inboth frequency bands

    Concurrent transmission in the two important frequency bands 450 MHzand 900 MHz

    Stability depends on sum of input amplitudes

    due to positive interference at one of the five low pass modulators Combined coding efficiency is better than coding efficiency for single tone

    excitation

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    25

    2011 c M. Schmidt/INT

    Conclusion

    Summary

    http://find/http://goback/
  • 7/31/2019 16 Pres

    52/56

    Summary

    Class-S transmitter offers high flexibility and low design effort

    For single tone transmission 60 dB SNR in 30 MHz bandwidth possible inboth frequency bands

    Concurrent transmission in the two important frequency bands 450 MHzand 900 MHz

    Stability depends on sum of input amplitudes

    due to positive interference at one of the five low pass modulators Combined coding efficiency is better than coding efficiency for single tone

    excitation

    Outlook

    Analysis of linearity Probability density function of output pulse widths (memory effect in

    power amplifier)

    Average transition frequency (switching losses in power amplifier)University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    25

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    53/56

    Thank you for your attention

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    26

    2011 c M. Schmidt/INT

    http://find/http://goback/
  • 7/31/2019 16 Pres

    54/56

    Backup

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    27

    2011 c M. Schmidt/INT

    SNR @ 450 MHz 3d Plot vs. Input Amplitudes

    http://find/http://goback/
  • 7/31/2019 16 Pres

    55/56

    00.2

    0.40.6

    0.8

    1

    0

    0.5

    130

    35

    40

    45

    50

    55

    60

    NormalizedAmplitude @f=2/5f

    s

    NormalizedAmplitude @f=1/5f

    s

    SN

    R[

    dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    28

    2011 c M. Schmidt/INT

    SNR @ 900 MHz 3d Plot vs. Input Amplitudes

    http://find/http://goback/
  • 7/31/2019 16 Pres

    56/56

    00.2

    0.40.6

    0.81

    0

    0.5

    130

    35

    40

    45

    50

    55

    60

    NormalizedAmplitude @f=2/5f

    s

    NormalizedAmplitude @f=1/5f

    s

    SNR[

    dB]

    University of Stuttgart

    Institute of Electrical and Optical Communications Engineering

    Prof. Dr.-Ing. Manfred Berroth

    29

    2011 c M. Schmidt/INT

    http://find/http://goback/