197-413-1-sm (1).pdf

Upload: daniel-hernan-munoz-robles

Post on 03-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 197-413-1-SM (1).pdf

    1/24

    Cien. Inv. Agr. 36(3):329-352. 2009

    www.rcia.puc.cl

    LITERATURE REVIEW

    Phytostabilization of massive mine wastes with native phytogenetic

    resources: potential for sustainable use and conservation of the nativeflora in north-central Chile

    Cristina Orchard1, Pedro Len-Lobos2, and Rosanna Ginocchio1,31Facultad de Agronoma e Ingeniera Forestal, Pontificia Universidad Catlica de Chile, Av. Vicua

    Mackenna 4860, Macul, Santiago, Chile.2Instituto de Investigaciones Agropecuarias, INIA-Intihuasi, Colina San Joaqun s/n, La Serena, Chile.

    3Centro de Investigacin Minera y Metalrgica, CIMM, Av. Parque Antonio Rabat 6500, Vitacura,Santiago, Chile.

    Abstract

    C. Orchard, P. Len-Lobos, and R. Ginocchio. 2009. Phytostabilization of massive mine

    wastes with native phytogenetic resources: potential for sustainable use and conservation

    of the native flora in north-central Chile. Cien. Inv. Agr. 36(3):329-352. The mining industryhas left an important legacy of inadequately abandoned tailing storage facilities (TSFs) in thenorth-central area of Chile, and they may pose environmental risks. The Chilean government hasrecently established new regulations governing the closure of TSFs, and these regulations favor theuse of environmentally sustainable technologies. Among these technologies is phytostabilization,which can use native plant species that may also have economic and/or subsistence value.Phytostabilization programs based on sustainably maintained native species could also contribute

    to the conservation of both local flora and regional ecosystems in north-central Chile. The mainobjective of this study was to use the Coquimbo Region as a case study area to look for addedeconomic value from native plant species that have spontaneously colonized abandoned TSFsand to look for other species that, given their ecological characteristics, may be established on

    post-operational TSFs by phytostabilization. A review of technical, scientific and ethnobotanicliterature on traditional uses and recently discovered uses of selected plant species was performed.The results showed that 68 spontaneously colonizing phytostabilization species have at least oneknown use, while 420 species with potential for use in phytostabilization (28% of the regionalnative flora) have various uses. Ornamentation, cattle forage, mellipherous, medicine, crafts and

    phytochemicals are the main uses identified for the local native flora. Most of the identified speciesare endemic to Chile (69%). These species are therefore a very valuable phytogenetic resourcethat can be used in the rehabilitation of massive mine wastes. This unique resource could be lostif these species are not identified and studied in the near future.

    Key words: Mine tailings, mining, natural resources, rehabilitation, sustainable management,valuation of natural resources.

    Introduction

    Mining is an important industrial activity forthe Chilean economy, but it poses risks for the

    Received 05 September 2008. Accepted 27November 2008.Corresponding author: [email protected]

    environment, the silvoagropecuarian sector andhuman health, resulting mainly from the produc-tion of massive quantities of solid waste. Miningoperations may affect water, soil, air, topogra-

    phy, flora and fauna, and they range from smallmodifications to large ecosystemic degradations(Bell, 1999; Snchez, 2002; Ginocchio, 2004;Martin and Ruby, 2004). The current growingworld demand for metals and the consequent

  • 8/12/2019 197-413-1-SM (1).pdf

    2/24

    CIENCIA E INVESTIGACIN AGRARIA330

    loss of biodiversity are threatening the continu-ity of the ecosystems that we all depend on, es-

    pecially the poorest rural communities (ICMM,2006).

    The mining industry has had a considerableimpact during the 19th century in Norte Chi-co, Chile. The copper industry consumed hugeamounts of firewood in furnaces and therebyset in motion a sustained process of vegetativedecay that changed the local landscape irrevers-ibly (Folchi, 2001; Brown et al. 2003). More-over, from 1938 until 1975 the tailings from thePotrerillos mine (III Region of Atacama) werereleased into Ro Salado and the Chaaral Bay.

    This resulted in the accumulation of tailingsmore than 10 meters thick covering a surface ofaround 4 km2and the displacement of the coast-line by approximately 1 km. Since then, thezone has been exposed, and eolic transportationof the contaminating material has occurred, re-sulting in one of the most serious cases of con-tamination in the Pacific Ocean (Dold, 2007).

    Among the residuals generated by the miningactivity, the tailings represent 50% of the solid

    waste of the extractive process, and they are re-sponsible for most of the environmental prob-lems generated by mining activities in Chile(Espinoza et al., 1991; Lpez et al., 2003). From1970, tailings have been compulsorily accruedin artificial dams where suspended solids pre-cipitate, as expressed in the Supreme Decree N86 of the Ministry of Mining of Chile (Rubio,2007). However, the lack of environmental leg-islation concerning the post-operations stageof tailing deposits resulted in the inappropri-

    ate neglect of a large number of deposits in thesemiarid north-central zone of the country (Gi-nocchio, 2004). Once the tailing dams reach theend of their service life, they begin to dehydratedue to the semiarid Mediterranean climate con-ditions predominant in central Chile, and thisexposes the fine particles to dispersion agentssuch as wind and rain. Additionally, they mayreact with water and oxygen to generate aciddrainage and metal lixiviation, thereby contam-inating nearby water courses and soils (Good-man, 1974; Bell, 1999; Santibez, 2006). Nev-ertheless, the current regulations are intendedto rehabilitate the area (Ministry of Mining,2004, 2007). In addition to highlighting the use

    of environmentally sustainable technologies,these regulations prevent the dispersion of met-als and toxic metalloids into the environment bydemanding that mining operations be closed insuch a way that tailing deposits are stabilized

    before they are abandoned.

    The rehabilitation of areas degraded by min-ing has been implemented in various developedcountries as an important instrument of public

    politics in the environmental area. For example,in the United States, France, Italy, Russia, andCanada, the rehabilitation of areas degraded bymining activities is compulsory, and method-ologies where environmental stability and sus-

    tainability is effectively guaranteed are favored.In the case of South America, mandatory reha-bilitation has been increasingly considered inthe legal regulations of countries such as Chile,Brazil, Argentina, Peru, Colombia and Uru-guay. Even though such legislation is not a pub-lic priority in most countries, the inclusion ofdegraded area rehabilitation among the instru-ments of environmental management applicableto the mining industry has been growing due tointernational standardization of environmental

    regulations in the business sector (InternationalOrganization for Standardization, ISO) (Yaz-

    bek, 2002).

    Among the emerging technologies for the reha-bilitation of degraded areas, phytostabilizationhas proven to be an efficient, environmentallyappropriate and relatively low cost approach(Berti and Cunningham, 2000; Petrisor et al.,2004). In relation to mining wastes, phytosta-

    bilization consists of setting out metallophyte

    plants, applying appropriate substrate amend-ments. Plants that can tolerate the high metalconcentrations of the substrate are part of a

    program of ecological rehabilitation that physi-cally, chemically and biologically stabilizesthe substrate and the tailings toxicity. Thistechnology reduces metal dispersion in the en-vironment, reduces the metal bioavailabilityfor living beings, and returns the substrate toan acceptable ecological condition for diversefuture uses (Berti and Cunningham, 2000;Dietz and Schnoor, 2001; Martin and Ruby,2004; Ginocchio and Len-Lobos, 2007). Un-like other existing methods, phytostabilizationmay be applied over larger areas and presents

  • 8/12/2019 197-413-1-SM (1).pdf

    3/24

    331VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    a favorable cost-benefit ratio. This ratio may befurther improved by using metallophyte plantswith other uses (added value), which could also

    benefit the economic development of local com-munities (Ginocchio, 2004; Petrisor et al., 2004;SONAMI, 2006).

    Using native/endemic plants that are adaptedto the climatic, geographical and metallogenicconditions of the zone could add value to phy-tostabilization programs and place this tech-nology ahead of other existing technologies.Many of the native and endemic vegetal speciesof north central Chile have been traditionallyused to meet the needs of rural communities.

    Local plant species serve as foods, medicinesand construction materials, among other things,and they constitute a biological heritage that isstrategically situated for rural economical de-velopment (Montenegro, 2000; Len-Lobos etal., 2007). However, most of these resources arealmost unknown and they have not been usedat productive scales. Assessment of the Chileanflora, whether by its intrinsic biological value or

    by the benefit that it may provide, will contrib-ute to its conservation. Just as the sustainable

    management of wild fauna has promoted thesurvival of these species, the sustainable man-agement of wild flora may promote the conser-vation of species of interest and the biologicalcommunities they belong to (Primack et al.,2001). Sustainable management that conserves

    biodiversity can also address economic and sub-sistence needs. The sustainable use of biodiver-sity and conservation based on the community(acknowledging the importance of involving thelocal communities in the conservation schemes)

    are two contemporaneous conservation toolsthat are intended to include the socio-economi-cal development of local communities and theirdirect participation in the politics of wildlifeconservation (Campbell, 2000).

    In addition to alleviating the impacts generatedby mining wastes, the use of vegetal native/en-demic species in phytostabilization programswould promote conservation of the flora andecosystems of north-central Chile (Whiting etal., 2004) through the incorporation of nativeand endemic species, especially those that arevulnerable or endangered. Therefore, ecologi-cal rehabilitation is expected to make an impor-

    tant contribution to biodiversity conservation(Dobson et al., 1997; Young, 2000). Good prac-tices, collaboration among the different sectorsinvolved and innovative thinking should con-tribute to biodiversity conservation, ensure re-sponsible mining production and minimize theconflicts of interest (IUCN and ICMM, 2004).

    In this context, the objective of this study was toidentify (through a bibliographical review) na-tive vegetal species of the Region of Coquimbothat could be used in the phytostabilization of

    post-operative mining tailing deposits, with thegoal of promoting this technology over otherexisting technologies. Although the native flora

    of the Region of Coquimbo represents a studycase, most of the species identified have a dis-tribution range covering other regions of thecountry where the stabilization of mining tail-ing deposits is also an urgent need; therefore,the application of this study could be extendedto north-central Chile. In addition, the impor-tance of including native/endemic species thatmay provide added value to the phytostabiliza-tion programs for the conservation of the nativeflora is still under discussion.

    Rehabilitation of tailing storage facilities

    in the Region of Coquimbo through

    phytostabilization

    Metallic mining has consistently contributed tothe economic growth of the Region of Coquim-

    bo, Chile, which, since the beginning, has main-tained constant production levels. Currently it

    accounts for 23% of the gross domestic product(GDP) and 80% of regional exports, with copperand iron the most relevant metals (INE, 2008).Villages completely involved in mining, likeAndacollo, have historically maintained whole

    populations deeply linked to the extraction andprocessing of minerals (Brown et al., 2003).However, the large volume of past and currentwastes generated by this industry has resulted ina legacy of around 360 tailing storage facilitiesdistributed throughout the region. Fully 98% of

    these are located in the coastal strip, in the mid-elevation mountain area and transverse valleys(SERNAGEOMIN, 1990), which coincides withareas of human occupation. Due to the proxim-

  • 8/12/2019 197-413-1-SM (1).pdf

    4/24

    CIENCIA E INVESTIGACIN AGRARIA332

    ity of important agricultural, cattle, residentialand ecological sectors to tailing deposits in theRegion of Coquimbo, and how disastrous con-tamination of the scarce water resources would

    be, it is essential that the tailing deposits pres-ent in the region be stabilized effectively in theshort and in the long term to protect the substratefrom water and eolic erosion that carries toxicmaterial. It is also important to develop naturalenvironmentally sustainable systems that allowthe recolonization of native species and that canserve as shelter for the fauna (Vega, 1999).

    The various techniques used in tailing stabiliza-tion are intended to mitigate either the environ-

    mental or visual impacts, and some techniquesare more efficient than others. For example,some mining companies in Brazil have respond-ed to the demands for environmental mitigationof waste deposits and exploited areas with refor-estation programs based on a few fast-growingexotic species. Specifically, the use of eucalyp-tus (Eucalyptus spp) has been promoted, eventhough long-term studies have shown that these

    programs would provoke a successional blockdue to the negative allelopathic effects of these

    vegetal species that reduce biodiversity in com-parison with natural regeneration or replantingwith native species (Primack and Massardo,2001). This situation is not unknown in Chile,where rehabilitation based on the transplanta-tion of exotic trees such as Australian eucalyptusand acacias have been used as the main tool forstabilizing the massive mining residues in theclosure stage. However, the traditional methodof forestation has not proven to be a long-termsustainable mechanism that ensures the physical

    and chemical stabilization of the residues andthe integral functionality of the ecosystem. Theconstant addition of chemical fertilizers is nec-essary to ensure tree growth. Additionally, theenvironmental impacts have even been magni-fied via the mobilization of metals and metal-loids through the food chain (Ginocchio, 2004).

    Among the technologies used by industrializedcountries to treat substrate enriched with metalsare: 1) the excavation and disposal of dangerouswastes in landfills; 2) the retaining alternatives(such as cementing and vitrification); 3) chemi-cal extraction; and 4) electrokinetics (Glass,2000; Martin and Ruby, 2004). However, these

    techniques are extremely expensive, environ-mentally invasive and they result in a substratealtered in its physical, chemical and biological

    properties. These techniques further restrictthe usefulness of the substrate, and further-more, they are generally disapproved of by thelocal community (Ginocchio and Len-Lobos,2007). The need to apply these treatments may

    be avoided if the original soil has been removedbefore the mining activities and is used to re-cover the degraded area, as is required for sur-face mining in many developed countries (Dob-son et al., 1997).

    Alternatively, phytostabilization is a tech-

    nology that reduces the risk of contaminationcaused by deposits of massive mining wastesby including plants able to tolerate the highconcentrations of metals and the appropriatesubstrate amendments. By this technology, the

    bioavailable metals are precipitated, absorbedand/or adsorbed by the materials added to thesubstrate, by plant roots and by microorgan-isms, where they accrue in innocuous forms(Berti and Cunningham, 2000; Dietz andSchnoor, 2001; Ginocchio and Len-Lobos,

    2007). The implementation of a radicular sys-tem and a vegetal cover on the substrate alsoallows its physical stabilization, and this hin-ders the eolic/water dispersion of the particu-lated material rich in metals towards nearbywater courses and soils. In addition, it helps tocontrol the oxygen diffusion and the water per-colating through tailings, as it creates a demand

    by plants, reducing the risk of acid drainageand metal lixiviation (Miller, 1996; Berti andCunningham, 2000; Martin and Ruby, 2004;

    Santibez, 2006). This technology helps toaccelerate the processes of vegetal repopula-tion (succession) that normally occur in termsof hundreds or thousand of years. Therefore, itaccelerates the rebuilding of a natural autosus-tainable functional system that is integrated tothe rest of the environment (Piha et al., 1995).

    In addition to being tolerant of high concentra-tions of metals, the plants chosen for phytosta-

    bilization should be deficient in their transloca-tion towards aerial tissues. This excluder met-allophyte plants avoids the introduction of con-taminants into local food chains that could havetoxic effects on other living beings (Berti and

  • 8/12/2019 197-413-1-SM (1).pdf

    5/24

    333VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    Cunningham, 2000; Ginocchio, 2004). Normallevels of metals in aerial vegetal tissues reducethe need to treat harvested structures as danger-ous wastes, which reduces costs and simplifies

    program management (Miller, 1996; Prasad andFreitas, 2003). In addition, the plants shouldtolerate other adverse conditions presented bytailing deposits, such as scarce nutrients, salin-ity and the lack of substrate structure, amongother things. The plants should be easily set andcared for, fast-growing, and able to develop adense radicular system so as to generate vegeta-tion cover as fast as possible (Berti and Cun-ningham, 2000).

    Phytostabilization programs developed in Eu-rope and the United States have preferred theuse of native/endemic metallophyte plantsadapted to the local conditions over exotic spe-cies. Exotic species are often invading speciesthat alter the dynamics of wild biological com-munities and/or agriculture near the work site,and they are not always appropriate to the cli-matic and geographical conditions of the site,which may increase maintenance costs in thelong term (Ginocchio, 2004; Conesa et al.,2007;

    Mahmud et al.,2008). Metallophyte species aretypically endemic to their metallic native ar-eas; therefore, considering that the mineralizedsubstrates where these species develop are thematerial of interest, they are susceptible to highrates of population decline and even extinction(Whiting et al., 2004).

    Although the vegetation that spontaneously col-onizes mining zones has been studied in otherarid and semiarid regions of the world (Conesaet al., 2007), knowledge of the metallophytespecies of north-central Chile is virtually non-existent. This lack of knowledge contrasts withthe potential richness of metallophyte speciesin an area where the native and endemic Medi-terranean flora have developed naturally andevolved for millions of years in the presenceof numerous mineral deposits (Ginocchio andBaker, 2004). However, recent investigations inthe Region of Coquimbo have identified vegetalspecies able to spontaneously colonize aban-doned tailing deposits as well as species toler-ant to high copper concentrations (Ginocchio etal., 2007). On the other hand, it is possible thatother species present in the region are also ap-

    propriate for planting on mining tailings in thecontext of phytostabilization technology. Somespecies have seed dispersion mechanisms thatcould be hindering their colonization of aban-doned tailing dams, which may be currentlylimited to species dispersed by wind. Birds orother animals scattering seeds probably haveavoided these dams due to the lack of hangersto land on or to the inhospitable conditions thatthese dams sustain. Additionally, even if theseeds reach the tailings, the environmental con-ditions could inhibit germination.

    The Region of Coquimbo harbors the richest col-lection of vascular plants in the country (Squeo

    et al., 2001a). Among these local plants, manymight be appropriate for inclusion in phytostabi-lization programs for abandoned post-operativetailing storage facilities of the region, including

    plants with the correct ecological features, thecorrect adaptability patterns (tolerance to highsolar radiation, scarce water and limited nutri-tional resources) and plants phylogeneticallyrelated to metallophyte species from other aridregions of the world (i.e., belonging to the samefamily or genus). Therefore, the species spon-

    taneously colonizing tailing deposits and thespecies potentially usable in phytostabilization

    programs represent valuable phytogenetic re-sources for the rehabilitation of massive min-ing wastes, and they could offer productive andsupport uses, thereby fostering the conservationof these species and the local ecosystems.

    Native flora of the Region of Coquimbo:

    Diversity, state of conservation and alternative

    uses

    Located in the transitional zone between thesemiarid Mediterranean region and the desertareas to the north, the Region of Coquimbogathers a wide range of biogeographical ele-ments, including numerous genera that have ex-

    perienced significant developmental radiations,as well as relict communities containing speciesmore typical of the temperate southern forests.

    On the other hand, many species in the regionare at their latitudinal limit of distribution; 628species reach their northern distribution limit inthe region while 288 species reach their south-ern limit (as a whole, 62% of the native regional

  • 8/12/2019 197-413-1-SM (1).pdf

    6/24

    CIENCIA E INVESTIGACIN AGRARIA334

    species). This phenomenon may be explainedby the transitional environmental conditions,which are characterized by a semiarid Mediter-ranean type climate. The wide range of biogeo-graphical elements present is consistent withthe high level of regional endemism and the

    presence of many species susceptible to habi-tat reduction (Squeo and Arroyo, 2001). CentralChile has been included within the 25 WorldBiodiversity Hotspots for Conservation Prior-ity due to the concentration of endemic speciesand their exposure to high threat levels (Myerset al., 2000). Within this area of high biodiver-sity, the Region de Coquimbo represents thenorthern limit.

    The native and naturalized flora inhabiting theRegion of Coquimbo is composed of 1,727 spe-cies, 1,478 of which are native to Chile and 140are endemic to the region (Marticorena et al.,2001). The hemicryptophyte species are pre-dominant in the native regional flora, followed

    by the phanerophyte species. Fifty percent ofthe native species of the region belong to only9 families: Asteraceae (277 species), Poaceae(104), Fabaceae (96), Brassicaceae (50), Api-

    aceae (43), Boraginaceae (42), Portulacaceae(42), Scrophulariaceae, (42) and Solanaceae (40)(Squeo et al. 2001a).

    According to the state of conservation catego-ries of the Red Book of Native Flora and Prior-ity Sites for Conservation: Region of Coquim-

    bo (Squeo et al.,2001b), 14% of the native floraare found in the Endangered (36 species) or Vul-nerable (171 species) categories. However, the

    proportion of species in these categories could

    increase as more becomes known about the spe-cies in the categories Insufficiently Known and

    Non-Evaluated. It is noteworthy that there are127 species (8.6% of the native regional flora)in the category Insufficiently Known (Extinct),as these species are under suspicion of beingextinct. Considering that there are 23 endemicspecies of the region that are unregistered in thelast 50 years, in spite of being one of the regionswith a great number of collections in Chile,the number of species currently extinct in theRegion of Coquimbo could reach 25, which isalmost 18% of the endemic flora of the region(Squeo et al.,2001b).

    Among the main factors explaining the currentstate of degradation of the native vegetation arethe mining activity of the 19th century (whichoverexploited the vegetal cover to feed the fur-naces), agropecuarian activity, urban expansionand the displacement of the native vegetation

    by exotic species (Folchi, 2001; Jorquera, 2001;Brown et al., 2003). On the other hand, the hu-man agricultural communities occupying therural areas of the region have caused significantdamage to the ecosystems. These damages in-clude overgrazing (especially from goats), dry-land cultivation of steep slopes, and high ratesof firewood and vegetal coal consumption asfuel (Brown et al., 2003). This unplanned use of

    the natural resources causes a reduction in thevegetal cover, which partly explains the decaypresent in the scenery and the degree of deser-tification in the region (Lyon, 1991; Novoa andLpez, 2001). The non-existent communication

    between these communities facing precarioussubsistence conditions and the rest of the coun-try, or even within the same region, is a block toovercoming the problems that these communi-ties are facing. In this context, the generation ofenvironmentally sustainable activities that pro-

    vide economic benefits is fundamental (Busta-mante, 1994).

    In addition to providing numerous ecosystemicservices and helping to strengthen and expandlocal economies, biodiversity provides a varietyof goods that human beings depend on. Suchgoods include foods, medicines, fibers, wood,valuable species in floriculture and horticulture,raw materials for numerous industries of eco-nomic importance such as the pharmaceutical

    and textile industries, among others. The floraand fauna species of a region, in turn, impacttheir ecosystems, in part by determining thevery characteristic and frequently unique land-scapes, which becomes relevant in economiessupported by conventional tourism and eco-tourism, as in the case of Chile (Squeo and Ar-royo, 2001).

    It is possible to confirm that most of the ver-nacular names of the plants in north and north-central Chile refer to the natural attributes ofthe species, including the plants use. The foragevalue of several species is illustrated in names

  • 8/12/2019 197-413-1-SM (1).pdf

    7/24

    335VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    such as paja vizcachera (vizcacha hay) andpasto de cabra (goat grass). Medicinal value isexpressed in names referring to their properties,such as pingopingo (healthy). Other uses areexpressed in names such as candela or keri,referring to fuel properties and paja alma, aritual plant used in the separation of souls andlinked with funeral ceremonies (Romo et al.,1999).

    Diverse uses have been traditionally assignedto the native flora of the Region of Coquimbo,where the main beneficiaries are the local com-munities. For the first American inhabitantsof desert and semidesertic zones, cactaceae

    played an important role in sustenance and inthe cultural manifestations of nomadic tribes.They were used as food, drink, medicine, rawmaterial for house construction, elaboration ofrustic clothing items (shawls), and the makingof hunting and fishing weapons as well as othertools. Cactaceae species acquired such impor-tance that in some cultures they became deities.The use of different parts of cactaceae, livingor dead, is scarce in the Region of Coquimbo;they are mostly used for crafts, construction

    of living fences, firewood and food for cattle(Bustamante, 1996). In the case of chaguales(Puya spp), their dry floral stems were used inlight construction, such as roof and wall coat-ing. Chaguales is also used by fishermen to fab-ricate net floaters (cardones). In addition, ropescan be made with their fibers (Riedemann et al.,2006).

    In addition to these traditional uses, numerouschanging industries and markets are now gen-

    erating new demand for products found in theChilean flora, both directly and indirectly. Thisis the case for tara (Caesalpinia spinosa Kuntze),which is a legume from which hydrocolloidsand tannins are extracted for use in the food,

    pharmaceutical and cosmetic industries, amongothers (Pastor et al. 1997). Sesquiterpenes withanticarcinogenic activity against lymphocyticleukemia and human nasopharyngeal carcino-ma (Silva and Bittner, 1992) have been identi-fied in mitique (Podanthus ovatifolius Lag.),which is a medicinal plant whose aromatic infu-sion is recommended for gonorrhea and urinarytract infections (Wilhelm de Msbach, 1992).

    The country has phytogenetic resources of highstrategic value in terms of competitiveness and

    potential for development of new products. Re-gardless of the above-mentioned uses, the nativeflora of Chile has still not been systematicallysearched for bioactive compounds, although it iswidely used by local and indigenous communi-ties (Len-Lobos et al., 2007).

    The species native to the Region of Coquimbomay be used to satisfy various human needs,and they represent a strategic biological re-source for the benefit and development of thelocal communities. However, the number of

    plants currently used is a small percentage of

    the total number of known species used in thepast. Lack of awareness of the economic andecological potential of native plants, along witha lack of scientific and technical information,explains why inquires on their cultivation havenot been conducted (Lyon, 1991; Montenegro,2000). Therefore, planting native vegetal spe-cies with alternative uses as a component of therehabilitation of mining tailings could generatea new business for the local communities. Sucha business based on non-traditional cultivation

    of Chilean metallophyte species could benefitand reward small rural villages that have beenaffected by mining activities while contribut-ing to the sustainability of local mining and theconservation of the native flora.

    Native flora of the Region of Coquimbo with

    potential for phytostabilization programs and

    alternative uses

    Through a review of the scientific, technical andethnobotanical literature on the uses tradition-ally given and possibly given to the native spe-cies of the Region of Coquimbo, potential uses ofthe species spontaneously colonizing deposits ofabandoned tailings and of species that, due to theirecological features, might establish and grow indeposits of conditioned tailings through the phy-tostabilization technology were identified.

    Among the 73 native species of the region foundcolonizing deposits of mining tailings (Ginoc-chioet al., 2007), 68 (93%) have at least one usedescribed (Table 1), with the main uses being or-

  • 8/12/2019 197-413-1-SM (1).pdf

    8/24

    CIENCIA E INVESTIGACIN AGRARIA336

    namental, forage, medicinal, mellipherous, andchemical (Figure 1). Many of these species havemore than one use described for them, with up tonine potential uses as in the case of Echinopsischiloensis Friedrich et G.D. Rowley, a columnarendemic cactacea of Chile. Among these native

    tailing deposits colonizing species presentingsome additional benefit, the family Asteraceae isthe most represented, with 21 species. The mostfrequent lifestyles are phanerophyte (with 41species, 11 trees), followed by hemicryptophyte(11 species) and chamaephyte (10 species).

    43

    37

    2521 20

    68

    0

    20

    40

    60

    80

    Numberofspecies

    Ornamental Cat tle forage Medic inal Chemical

    principle

    Mellipherous Total species

    Figure 1. Number of native species of the Coquimbo Region, Chile identified as spontaneous colonizers of abandoned

    tailing storage facilities and their main uses. Species may have more than one known use. Uses as follow: Alimentary,some of their structures has the property to feed the human; Cattle forage, some of their structures has the property to feedcattle; Medicinal, some of their structures has the power to mitigate a disease in human; Phytochemical, having a substanceor active ingredient that alters or modifies the functioning of organs and systems of the human body, which, in turn, can havea medicinal value; Timber/construction, provides raw materials, mainly wood, to build facilities of various kinds, includinghomes, warehouses or hut; Fuel, used to produce energy as heat, in this case usually wood or coal used to generate heat;Crafts, supply raw materials (fiber, wood, pigments, seeds) for the development works (baskets, hats, figures, etc.) with littleintervention of machinery; Soil conservation, its establishment enables the protection of soil resources against physical,chemical and biological degradation; Mellipherous, flora as source of nectar and pollen to Apis melliphera (honeybee);Ornamental, species with the potential to be cultivated for their beauty or their incorporation into green areas.

    A search of literature regarding the native flora

    of the Region of Coquimbo identified 420 species(28% of the native regional flora) with potentialfor use in mining tailing phytostabilization pro-grams that could provide an additional benefitconsidering their possible anthropic uses (Table2). The criteria used to select these vegetal spe-cies were their general ecological features, their

    patterns of adaptability and their relation withother species (such as belonging to the samefamily). Among the patterns of adaptability, theability to tolerate high radiation, scarce water

    and limited nutritional resources were consid-ered. Among the main uses identified for thesespecies are ornamental, mellipherous, forage,medicinal, chemical and artisanal (Figure 2).

    Although 62% of these species have only one

    use described for them, others have been identi-fied with more than one use, even reaching nine

    potential uses as in the case of Puya chilensisMolina, an endemic bromeliaceous of Chile.The main families composing this group of spe-cies are: Asteraceae (65 species), Cactaceae (30species), Scrophulariaceae (29 species) and Fa-

    baceae (28 species). On the other hand, the mostnumerous lifestyle corresponds to phanerophyte(159 species from which 17 correspond to t rees),followed by hemicryptophyte (83 species) and

    chamaephyte (63 species).

    Ornamental value, which was identified as themain use in both groups of species, may be es-

  • 8/12/2019 197-413-1-SM (1).pdf

    9/24

    337VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    Table 1.Native plant species of the Coquimbo Region, Chile spontaneously colonizing tailing storage facilities and theiruses.

    Scientific name Family Origin1Conservationstatus2 Uses3

    Acacia caven Mimosaceae N FP 2,3,4,5,6,7,9,10Adesmia argentea Papilionaceae E FP 2,8,9,10Adesmia confusa Papilionaceae E IC (V?) 2,9Adesmia microphylla Papilionaceae E FP 2,9Atriplex repanda Chenopodiaceae E FP 2Baccharis linearis Asteraceae N FP 2,4,8,10Baccharis marginalis Asteraceae E FP 3,4,9Baccharis pingraea Asteraceae N FP 3,4,9Bromus berterianus Poaceae N FP 1,2Bromus catharticus Poaceae N FP 1,2,3Carpobrotus aequilaterus Aizoaceae N V 1,3,10Cestrum parqui Solanaceae N FP 3,4,6,7Chenopodium ambrosioides Chenopodiaceae N FP 2,3,4,7Chorizanthe glabrescens Polygonaceae E IC (E?) 7Cistanthe arenaria Portulacaceae N FP 10Cordia decandra Boraginaceae E FP 1,2,4,6,7,9,10Cortaderia rudiuscula Poaceae N IC (V?) 10Cristaria glaucophylla Malvaceae E FP 2,10Distichlis spicata Poaceae N FP 2,3Echinopsis chiloensis Cactaceae E FP 1,2,3,4,5,6,7,9,10Encelia canescens Asteraceae N FP 2,9,10Ephedra gracilis Ephedraceae E FP 3,4,10Equisetum bogotense Equisetaceae N FP 3,4,7,10Equisetum giganteum Equisetaceae N FP 3,10Frankenia chilensis Frankeniaceae N FP 2,10Gymnophyton robustum Umbelliferae E FP 10Haplopappus angustifolius Asteraceae E FP 2,3Haplopappus bezanillanus Asteraceae E V 2Haplopappus cerberoanus Asteraceae E FP 2Haplopappus chrysanthemifolius Asteraceae E V 2Haplopappus macraeanus Asteraceae E IC (E?) 2Haplopappus parvifolius Asteraceae E FP 2Haplopappus reticulatus Asteraceae E FP 2Haplopappus saxatilis Asteraceae E IC (FP?) 2Heliotropium stenophyllum Boraginaceae E FP 2,4,10Lithrea caustica Anacardiaceae E FP 1,3,4,6,7,8,9Lycium chilense Solanaceae N FP 10Malesherbia linearifolia Malesherbiaceae E FP 10Maytenus boaria Celastraceae N V 1,2,3,4,5,7,9,10Mentzelia albescens Loaseceae N FP 10Muehlenbeckia hastulata Polygonaceae N FP 1,2,3,7,9,10Nolana albescens Nolanaceae E IC (V?) 10Nolana crassulifolia Nolanaceae E FP 10Nolana sedifolia Nolanaceae E FP 10Ophryosporus paradoxus Asteraceae E FP 10Ophryosporus triangularis Asteraceae E FP 10Otholobium glandulosum Papilionaceae N FP 1,10Plantago hispidula Plantaginaceae E FP 2Pleocarphus revolutus Asteraceae E FP 3,4,10Polypogon australis Poaceae N FP 2Prosopis chilensis Mimosaceae N V 1,2,5,6,7,8,9,10Proustia ilicifolia Asteraceae E FP 3,4,5,8,10Quillaja saponaria Rosaceae E V 3,4,5,9,10Salix humboldtiana Salicaceae N FP 2,3,7,10Sarcocornia fruticosa Chenopodiaceae N FP 10Schinus latifolia Anacardiaceae E FP 1,2,3,4,5,7,9,10Schinus molle Anacardiaceae N FP 3,4,5,6,7,10Schinus polygama Anacardiaceae N FP 1,2,3,4,5,7,10Scirpus asper Cyperaceae N FP 2,5,7Scirpus pungens Cyperaceae N V 2Senecio adenotrichius Asteraceae E FP 9,10Senecio bridgesii Asteraceae E FP 9,10Senecio cerberoanus Asteraceae E V 9,10Senecio murinus Asteraceae E FP 9,10Senna cumingii Caesalpiniaceae E FP 2,7,9,10Solanum pinnatum Solanaceae E FP 4,10Tessaria absinthioides Asteraceae N FP 1,2,3,4,5,10Typha angustifolia Typhaceae N FP 2,3,5,7

    1E, endemic to Chile, N: native to Chile.2FP, out of danger, IC(E?): insufficiently known (extinct?), IC(FP?): insufficiently known (out of danger?), IC(V?): insufficiently known(vulnerable?), V: vulnerable31: alimentary, 2: cattle forage, 3: medicinal, 4: phytochemical, 5: timber/construction, 6: fuel, 7: crafts, 8: soil conservation, 9: mellipherous,10: ornamental.

  • 8/12/2019 197-413-1-SM (1).pdf

    10/24

    CIENCIA E INVESTIGACIN AGRARIA338

    timated when these species are cultivated forcommercial purposes or are incorporated into

    projects of public and private spaces. Species ofornamental value could certainly embellish thevegetal community developing on mining tail-ing deposits, but if the landscape esthetics are

    not valued, this would be useless, unless the in-dividuals are transplanted to places where theyare really appreciated, which would damagethe stabilization of the mentioned substrate. Onthe other hand, for many of the species identi-fied with an ornamental use, this relates to theirflowering. It is noteworthy that the plants grow-ing in adverse conditions possibly do not flowerdue to the high concentrations of metals and thelack of essential nutrients for the developmentof reproductive structures. Excluding orna-mental use as an additional benefit, the numbernative species found spontaneously colonizingabandoned tailing storage facilities with someadditional use is 56, or 77% of the registered

    species. On the other hand, the number of na-tive species not growing in tailing deposits but(due to their ecological aspects) potentially us-able in phytostabilization programs that presentinteresting additional uses is 237, or 16% of thenative regional flora.

    Among the uses identified, some of these de-mand direct intake of vegetal structures by hu-man beings or animals, as with food, medicineand forage. Bearing in mind that the speciesgrowing in deposits of mining tailings couldmobilize metals towards aerial structures to beconsumed, thereby generating toxic effects onother living beings and introducing contami-nants into the food chain (Berti and Cunning-ham, 2000; Ginocchio, 2004), it is essential thatthe vertical movement of metals in the speciesto be included in phytostabilization programs beevaluated. This consideration is also applicablein the case of the mellipherous use, considering

    Total species

    329

    98

    81 7870

    50

    420

    0

    60

    120

    180

    240

    300

    360

    420

    Craft

    Numberofspecies

    Ornamental Mellipherous Cattle forage Medicinal Chemical

    principle

    Figure 2. Number of native species of the Coquimbo Region, Chile, with potential for use in tailing storage facilityphytostabilization projects according to their known primary uses. Species may have more than one known use. Uses asfollow: Alimentary, some of their structures has the property to feed the human; Cattle forage, some of their structures hasthe property to feed cattle; Medicinal, some of their structures has the power to mitigate a disease in human; Phytochemical,having a substance or active ingredient that alters or modifies the functioning of organs and systems of the human body,which, in turn, can have a medicinal value; Timber/construction, provides raw materials, mainly wood, to build facilitiesof various kinds, including homes, warehouses or hut; Fuel, used to produce energy as heat, in this case usually wood orcoal used to generate heat; Crafts , supply raw materials (fiber, wood, pigments, seeds) for the development works (baskets,hats, figures, etc.) with little intervention of machinery; Soil conservation, its establishment enables the protection of soilresources against physical, chemical and biological degradation; Mellipherous,flora as source of nectar and pollen toApismelliphera(honeybee); Ornamental, species with the potential to be cultivated for their beauty or their incorporation intogreen areas.

  • 8/12/2019 197-413-1-SM (1).pdf

    11/24

    339VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    that nectar may be a way for metals to enter thebeehive, and therefore a source of honey con-tamination (Fernndez et al., 1994).

    Special attention was paid to species describedin the reviewed literature as relevant to soil con-servation as that could grow on degraded ter-rains and help retain soil. In total, 28 specieshave been identified for replanting degradedterrains, mainly phanerophytes. For example,cactaceae are an excellent means of soil pro-tection due to their wide and superficial radicalsystems, their adaptability to thin and degradedsoils, and their resistance to climatic factors(Bustamante, 1996). On the other hand, species

    belonging to the Fabales order are also notewor-thy because of their ability to fix atmosphericnitrogen through a symbiosis with bacteria ofthe genusRhizobium. Among the species foundcolonizing deposits of mining tailings with ad-ditional uses, three species of the order Fabalesare found (one of the Caesalpiniaceae familyand two of the Mimosaceae family; Table 1).Among the species with potential for phytosta-

    bilization and with uses described in the litera-ture, 35 species of the Fabales order are found

    (four of the Caesalpiniaceae family, 28 of theFabaceae family and three of the Mimosaceaefamily; Table 2). Due to scarce nitrogen in tail-ings, these species could be crucial to the gener-ation of functional and autosustainable ecosys-tems for the phytostabilization of post-operativetailing deposits. It is noteworthy that species

    belonging to the genera Acacia and Prosopishave been reported to be successful colonizersof mining tailings in the western United States(Mendez and Maier, 2008).

    As in the case of species spontaneously colo-nizing abandoned tailing deposits, among thespecies with potential for phytostabilization

    programs and with identified uses, the familyAsteraceae is the most represented. Coincident-ly, this family is the most numerous in the na-tive flora of the Region of Coquimbo. Therefore,it is impossible to infer that the Asteraceae fam-ily gathers species that are more rustic, plasticor tolerant to metals, nor that the species of thisfamily are the most used.

    On the other hand, in both groups of species(species found on tailings and species with po-

    tential for phytostabilization programs), phan-erophytes are the most represented life form.This fact becomes relevant when consideringwhich tree and bush-like species could simplifythe management of an ecological rehabilitationsite, as these are perennial species not requir-ing annual germination like terophyte species.It is not impossible that species able to grow inmanaged mining tailings could not generate vi-able seeds, or that germination is hindered whenfacing adverse tailing conditions. In any case,

    planting other life forms, which is essential insuccessional processes, represents a fundamen-tal aspect of successful phytostabilization of

    post-operative tailing deposits.

    Among the native species spontaneously colo-nizing tailing deposits presenting some addi-tional benefit, 56% (38 species) are endemic toChile (Marticorena et al., 2001), which is rel-evant as they are a valuable genetic resource forrelieving environmental problems related to themining sector, and they could be lost if they arenot identified or studied in time (Ginocchio andBaker, 2004). Only two of these are endemic tothe Region of Coquimbo; Haplopappus beza-

    nillanus Reiche and Chorizanthe glabrescensBenth. However, ecotypes from the remaining36 endemic species (as well as from the othernative species) able to tolerate high metal con-centrations could have possibly developed in theregion, and they could be absent in other regionsof the country. It is worth highlighting the high

    percentage of endemism among the species withpotential for phytostabilization programs iden-tified by their ecological aspects. Seventy-one

    percent (297 species) are endemic to Chile, and

    33% are endemic to the region (Marticorena etal. 2001). As with the species spontaneously col-onizing abandoned tailing deposits, these spe-cies are a unique resource for the country (andthe region), with ecological features and identi-fied uses that make them a valuable resource for

    phytostabilization programs. Therefore, there isan urgent need for further studies.

    Most of the species growing in tailing storagefacilities with identified uses are not endan-gered, with eight species in the category of vul-nerable and six insufficiently known (Table 1).In the case of the species that, according to theirecological features, could grow in managed tail-

  • 8/12/2019 197-413-1-SM (1).pdf

    12/24

    CIENCIA E INVESTIGACIN AGRARIA340

    Table 2.Native plant species of the Coquimbo Region, Chile with potential for use in mine tailing storage facilityphytostabilization projects and their uses

    Scientific name Family Origin1 Conservation status2 Uses3

    Adenopeltis serrata Euphorbiaceae E V 3,8,10

    Adesmia bedwellii Fabaceae E FP 2,5,8,9,10

    Adesmia littoralis Fabaceae E EP 2,8,9,10Alona coelestis Nolanaceae E FP 4

    Alonafilifolia Nolanaceae E FP 4

    Alona rostrata Nolanaceae E FP 4

    Alonsoa meridionalis Scrophulariaceae N FP 10

    Alstroemeria angustifolia Alstroemeriaceae E IC (EP?) 10

    Alstroemeria crispata Alstroemeriaceae E FP 10

    Alstroemeria diluta Alstroemeriaceae E FP 10

    Alstroemeria hookeri Alstroemeriaceae E V 10

    Alstroemeria kingii Alstroemeriaceae E FP 10

    Alstroemeria leporina Alstroemeriaceae E V 10

    Alstroemeria magenta Alstroemeriaceae E FP 10

    Alstroemeria magna Alstroemeriaceae E IC (V?) 10Alstroemeria magnifica Alstroemeriaceae E FP 10

    Alstroemeria modesta Alstroemeriaceae E IC (V?) 10

    Alstroemeria pallida Alstroemeriaceae E IC (FP?) 10

    Alstroemeria pelegrina Alstroemeriaceae N V 10

    Alstroemeria pulchra Alstroemeriaceae E IC (V?) 10

    Alstroemeria schizanthoides Alstroemeriaceae E FP 10

    Alstroemeria spathulata Alstroemeriaceae E IC (V?) 10

    Alstroemeria spectabilis Alstroemeriaceae E IC 10

    Alstroemeria umbellata Alstroemeriaceae E IC (E?) 10

    Alstroemeria werdemnnii Alstroemeriaceae E IC 10

    Anisomeria coriacea Phytolaccaceae E V 3,4,10

    Anisomeria littoralis Phytolaccaceae E FP 10Argemone hunnemannii Papaveraceae N FP 10

    Argemone rosea Papaveraceae E FP 10

    Argemone subfusiformis Papaveraceae N FP 3,10

    Argylia adscendens Bignoniaceae E FP 3,4

    Argylia farnesiana Bignoniaceae E IC (V?) 4

    Argylia geranioides Bignoniaceae E FP 4

    Argylia potentillifolia Bignoniaceae E FP 4

    Argylia radiata Bignoniaceae N FP 3,4,10

    Aristolochia bridgesii Aristolochiaceae E FP 3,10

    Aristolochia chilensis Aristolochiaceae E FP 3,4,10

    Armeria maritima Plumbaginaceae N V 10

    Astephanus geminiflorus Asclepiadaceae E FP 3,10

    Astragalus amatus Fabaceae E V 9

    Astragalus arnottianus Fabaceae N FP 9

    Astragalus bellus Fabaceae N IC (E?) 9

    Astragalus berterianus Fabaceae E IC (FP?) 9

    Astragalus berteroi Fabaceae E IC (V?) 9

    Astragalus bustillosii Fabaceae N FP 9

    Astragalus chamissonis Fabaceae N IC (FP?) 9

    Astragalus coquimbensis Fabaceae E IC (FP?) 9

    Astragalus cruckshanksii Fabaceae N FP 9

    Astragalus curvicaulis Fabaceae E IC (E?) 9

    Astragalus dodtii Fabaceae E IC (E?) 9

    Astragalus edmonstonei Fabaceae E IC (V?) 9

    Astragalus limariensis Fabaceae E FP 9

    Astragalus looseri Fabaceae N FP 9

    Astragalus nudus Fabaceae E FP 9

    (continues next page)

  • 8/12/2019 197-413-1-SM (1).pdf

    13/24

    341VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    Scientific name Family Origin1 Conservation status2 Uses3

    Astragalus paposanus Fabaceae E IC (E?) 9

    Astragalus pehuenches Fabaceae N IC (E?) 9

    Astragalus pissisii Fabaceae E IC 9

    Astragalus schinetorum Fabaceae E IC (EP?) 9

    Astragalus vagus Fabaceae N IC (V?) 9Astragalus vesiculosus Fabaceae N FP 9

    Atriplex coquimbana Chenopodiaceae E EP 2

    Atriplex costellata Chenopodiaceae E IC 2

    Atriplex deserticola Chenopodiaceae N FP 2,8,10

    Atriplex leuca Chenopodiaceae E NE 2

    Atriplex mucronata Chenopodiaceae E IC 2

    Atriplex oreophila Chenopodiaceae N FP 2

    Atriplex vallenarensis Chenopodiaceae E IC (E?) 2

    Azara celastrina Flacourtiaceae E V 5,9,10

    Azara dentata Flacourtiaceae E IC (V?) 4,5,9,10

    Azara petiolaris Flacourtiaceae E FP 5,9,10

    Azara serrata Flacourtiaceae E IC 5,9,10

    Baccharis confertifolia Asteraceae E FP 4,7

    Baccharis juncea Asteraceae N FP 2

    Baccharis macraei Asteraceae E IC (V?) 4

    Baccharis paniculata Asteraceae E FP 4

    Baccharis rhomboidalis Asteraceae N IC 4

    Baccharis salicifolia Asteraceae N FP 10

    Bahia ambrosioides Asteraceae E FP 2,3,4,9,10

    Balsamocarpon brevifolium Caesalpiniaceae E EP 3,4,7,10

    Berberis actinacantha Berberidaceae E FP 1,4,7,10

    Berberis chilensis Berberidaceae E FP 1,4,7,10

    Berberis empetrifolia Berberidaceae N FP 1,4,7,10

    Berberis glomerata Berberidaceae E FP 1,4,7,10

    Bromus cebadilla Poaceae N FP 2

    Bromus setifolius Poaceae N FP 2

    Buddleja globosa Buddlejaceae N FP 3,4,7,10

    Bulnesia chilensis Zygophyllaceae E FP 7,8,10

    Caesalpinia angulata Caesalpiniaceae E V 3,8,10

    Caesalpinia spinosa Caesalpiniaceae N EP 1,2,3,4,5,7,8,10

    Calandrinia cachinalensis Portulacaceae E FP 10

    Calandrinia lamprosperma Portulacaceae E IC 10

    Calandrinia litoralis Portulacaceae E V 3,10

    Calceolaria abscondita Scrophulariaceae E IC (V?) 10

    Calceolaria ambigua Scrophulariaceae E IC (V?) 10Calceolaria andina Scrophulariaceae E FP 10

    Calceolaria arachnoidea Scrophulariaceae E FP 7,10

    Calceolaria biflora Scrophulariaceae N FP 10

    Calceolaria cana Scrophulariaceae E FP 10

    Calceolaria collina Scrophulariaceae E IC (E?) 10

    Calceolaria corymbosa Scrophulariaceae E V 9,10

    Calceolaria densifolia Scrophulariaceae E IC (E?) 10

    Calceolariafilicaulis Scrophulariaceae N NE 10

    Calceolaria glandulifera Scrophulariaceae E V 10

    Calceolaria glandulosa Scrophulariaceae E FP 4,10

    Calceolaria hypericina Scrophulariaceae N FP 4,10

    Calceolaria integrifolia Scrophulariaceae N FP 10Calceolaria kingii Scrophulariaceae E IC (V?) 4,10

    Calceolaria latifolia Scrophulariaceae E IC (E?) 4,10

    Calceolaria lepida Scrophulariaceae E FP 4,10

    Calceolaria montana Scrophulariaceae N IC (V?) 10

    (continues next page)

  • 8/12/2019 197-413-1-SM (1).pdf

    14/24

    CIENCIA E INVESTIGACIN AGRARIA342

    Scientific name Family Origin1 Conservation status2 Uses3

    Calceolaria morisii Scrophulariaceae E V 10

    Calceolaria paposana Scrophulariaceae E IC 10

    Calceolaria petioalaris Scrophulariaceae E FP 10

    Calceolaria picta Scrophulariaceae E EP 10

    Calceolaria pinifolia Scrophulariaceae N FP 10Calceolaria polifolia Scrophulariaceae E FP 4,10

    Calceolaria pubescens Scrophulariaceae E IC (E?) 10

    Calceolaria quadriradiata Scrophulariaceae E IC (E?) 10

    Calceolaria robusta Scrophulariaceae E EP 10

    Calliandra chilensis Mimosaceae E FP 10

    Calydorea xiphioides Iridaceae E IC (FP?) 1,10

    Centaurea cachinalensis Asteraceae E FP 3,4,9,10

    Centaurea chilensis Asteraceae E FP 2,3,4,9,10

    Centaureafloccosa Asteraceae E V 2,3,4,9,10

    Chaetanthera chilensis Asteraceae E IC (V?) 10

    Chaetanthera glabrata Asteraceae E FP 10

    Chaetanthera microphylla Asteraceae N V 10

    Chenopodium chilense Chenopodiaceae N IC (V?) 3

    Chenopodium frigidum Chenopodiaceae N FP 3

    Chenopodium macrospermum Chenopodiaceae N IC (E?) 3

    Chenopodium petiolare Chenopodiaceae N FP 3

    Chorizanthe commissuralis Polygonaceae N FP 7

    Chorizanthe dasyantha Polygonaceae E IC (E?) 7

    Chorizanthe frankenioides Polygonaceae E EP 7

    Chorizanthe kingii Polygonaceae E V 7

    Chorizanthe paniculata Polygonaceae E V 7

    Chorizanthe peduncularis Polygonaceae E V 7

    Chorizanthe vaginata Polygonaceae E IC (E?) 3,7,10

    Chorizanthe viridis Polygonaceae E FP 7

    Chuquiraga oppositifolia Asteraceae N FP 2,10

    Chuquiraga ulicina Asteraceae E FP 10

    Cissus striata Vitaceae N FP 3,5,10

    Cistanthe amarantoides Portulacaceae E IC 10

    Cistanthe coquimbensis Portulacaceae E FP 10

    Cistanthe grandiflora Portulacaceae E FP 3,10

    Cistanthe longiscapa Portulacaceae E FP 10

    Cistanthe salsoloides Portulacaceae N FP 10

    Clarkia tenella Onagraceae N FP 10

    Colletia hystrix Rhamnaceae N FP 4,10

    Colletia ulicina Rhamnaceae E NE 10Colliguaja dombeyana Euphorbiaceae E FP 2,3

    Colliguaja integerrima Euphorbiaceae N FP 2,3,7,8,9

    Colliguaja odorifera Euphorbiaceae E FP 2,3,7,8,9,10

    Colliguaja salicifolia Euphorbiaceae E IC (FP?) 2,3,7,8,9

    Convolvulus chilensis Convolvulaceae E FP 2

    Copiapoa coquimbana Cactaceae E FP 9,10

    Copiapoa pendulina Cactaceae E IC (E?) 9,10

    Copiapoa pseudocoquimbana Cactaceae E IC 9,10

    Cristaria argyliifolia Malvaceae E IC 10

    Cristaria aspera Malvaceae E V 10

    Cristaria cyanea Malvaceae E IC 10

    Cristaria dissecta Malvaceae N FP 10Cristaria gracilis Malvaceae E IC 10

    Cristaria multiflora Malvaceae E FP 10

    Cruckshanksia hymenodon Rubiaceae N FP 10

    Cruckshanksia montiana Rubiaceae E V 10(continues next page)

  • 8/12/2019 197-413-1-SM (1).pdf

    15/24

    343VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    Scientific name Family Origin1 Conservation status2 Uses3

    Cruckshanksia pumila Rubiaceae E FP 10

    Cuscuta chilensis Cuscutaceae N FP 3,9

    Cynanchum boerhaviifolium Asclepiadaceae E FP 10

    Cynanchum viride Asclepiadaceae E FP 10

    Dinemagonum gayanum Malpighiaceae E V 10Dioscorea bryoniifolia Dioscoreaceae E V 10

    Dioscorea fastigiata Dioscoreaceae E IC 1,4,10

    Diostea juncea Verbenaceae N IC (FP?) 10

    Diplolepis menziesii Asclepiadaceae E IC (V?) 10

    Dodonaea viscosa Sapindaceae N V 3,10

    Echinopsis coquimbana Cactaceae E FP 1,3,5,6,7,9,10

    Echinopsis litoralis Cactaceae E V 1,3,5,6,9,10

    Echinopsis nigripilis Cactaceae E IC (E?) 3,5,6,9,10

    Echinopsis skottsbergii Cactaceae E FP 2,3,4,5,6,9,10

    Echinopsis spinibarbis Cactaceae E IC (EP?) 3,5,6,9,10

    Ephedra breana Ephedraceae N FP 1,2,3,6,8,10

    Ephedra chilensis Ephedraceae N FP 10

    Erigeron fasciculatus Asteraceae E V 2

    Eriosyce aurata Cactaceae E V 9,10

    Eriosyce chilensis Cactaceae E V 9,10

    Eriosyce curvispina Cactaceae E FP 9,10

    Eriosyce heinrichiana Cactaceae E V 9,10

    Eriosyce ihotzkyana Cactaceae E IC 9,10

    Eriosyce kunzei Cactaceae E EP 9,10

    Eriosyce lapampaensis Cactaceae E IC 9,10

    Eriosyce limariensis Cactaceae E IC (V?) 9,10

    Eriosyce senilis Cactaceae E IC (V?) 9,10

    Eriosyce subgibbosa Cactaceae E FP 9,10

    Eriosyce tenebrica Cactaceae E IC (V?) 9,10

    Eriosyce villosa Cactaceae E IC (V?) 9,10

    Errazurizia multifoliolata Fabaceae E FP 10

    Eryngium paniculatum Apiaceae N FP 8,10

    Escallonia pulverulenta Escalloniaceae E FP 3,5,9,10

    Eulychnia acida Cactaceae E FP 1,2,3,5,6,7,9,10

    Eulychnia breviflora Cactaceae E EP 2,5,6,7,9,10

    Eulychnia castanea Cactaceae E FP 1,5,9,10

    Fabiana imbricata Solanaceae N FP 3,4,10

    Fabiana viscosa Solanaceae E FP 2,3,10

    Fagonia chilensis Zygophyllaceae N FP 10

    Flourensia thurifera Asteraceae E FP 2,10Fuchsia lycioides Onagraceae E FP 2,3,7,9,10

    Geoffroea decorticans Fabaceae N V 1,3,5,7,9,10

    Geranium core-core Geraniaceae N FP 3,9,10

    Glandularia origenes Verbenaceae N FP 3

    Glandularia porrigens Verbenaceae E IC (V?) 10

    Glandularia sulphurea Verbenaceae N FP 10

    Gnaphalium viravira Asteraceae N FP 3,4,10

    Gochnatia foliolosa Asteraceae E FP 4,9,10

    Guindilia trinervis Sapindaceae N FP 10

    Gutierrezia gayana Asteraceae E FP 10

    Gutierrezia resinosa Asteraceae E FP 2,3,4

    Haplopappus arbutoides Asteraceae N FP 2Haplopappus baylahuen Asteraceae N FP 2,3,4

    Haplopappus decurrens Asteraceae E IC (FP?) 2

    Haplopappus deserticola Asteraceae E IC (V?) 2,4

    Haplopappus elatus Asteraceae E IC (E?) 2(continues next page)

  • 8/12/2019 197-413-1-SM (1).pdf

    16/24

    CIENCIA E INVESTIGACIN AGRARIA344

    Scientific name Family Origin1 Conservation status2 Uses3

    Haplopappus foliosus Asteraceae E FP 2,3,4,6,9,10

    Haplopappus hirtellus Asteraceae E FP 2

    Haplopappus illinitus Asteraceae E IC (E?) 2

    Haplopappus integerrimus Asteraceae E EP 2,10

    Haplopappus ischnos Asteraceae E IC (V?) 2Haplopappus linifolius Asteraceae E FP 2

    Haplopappus litoralis Asteraceae E V 2

    Haplopappus meyenii Asteraceae E EP 2

    Haplopappus paucidentatus Asteraceae N IC 2

    Haplopappus philippii Asteraceae E NE 2

    Haplopappus phyllophorus Asteraceae E IC 2

    Haplopappus pinea Asteraceae E IC (FP?) 2

    Haplopappus platylepis Asteraceae E V 2

    Haplopappus pulchellus Asteraceae E FP 2

    Haplopappus reicheanus Asteraceae E IC (FP?) 2

    Haplopappus remyanus Asteraceae E FP 2

    Haplopappus rengifoanus Asteraceae E V 2

    Haplopappus rigidus Asteraceae N IC 2,3

    Haplopappus scrobiculatus Asteraceae N FP 2

    Haplopappus stelliger Asteraceae E NE 2

    Haplopappus uncinatus Asteraceae E IC (V?) 2

    Haplopappus velutinus Asteraceae E FP 2,4

    Helenium aromaticum Asteraceae N FP 3,10

    Heliotropium chenopodiaceum Boraginaceae E FP 10

    Heliotropium curassavicum Boraginaceae N FP 10

    Heliotropium geissei Boraginaceae E IC (E?) 10

    Heliotropium longistylum Boraginaceae E IC (V?) 10

    Heliotropium megalanthum Boraginaceae E IC (V?) 10

    Heliotropium myosotifolium Boraginaceae E IC (V?) 10

    Heliotropium paronychioides Boraginaceae N FP 10

    Heliotropium sinuatum Boraginaceae E FP 10

    Homalocarpus dichotomus Apiaceae E FP 10

    Hypochaeris scorzonerae Asteraceae E FP 10

    Jubaea chilensis Palmae E EP 1,5,7,10

    Junellia selaginoides Verbenaceae E FP 10

    Junellia spathulata Verbenaceae N IC (V?) 10

    Kageneckia angustifolia Rosaceae E EP 5,6,9,10

    Kageneckia oblonga Rosaceae E V 3,4,5,6,7,9,10

    Krameria cistoidea Krameriaceae E FP 1,2,3,4,7,10

    Larrea nitida Zygophyllaceae N FP 3,4,7,10Leucheria cerberoana Asteraceae E FP 10

    Leucocoryne coquimbensis Alliaceae E FP 10

    Leucocoryne dimorphopetala Alliaceae E V 10

    Leucocoryne ixioides Alliaceae E V 10

    Leucocoryne purpurea Alliaceae E V 2,10

    Leucocoryne violacescens Alliaceae E IC (V?) 10

    Llagunoa glandulosa Sapindaceae E FP 2,7,10

    Lobelia excelsa Campanulaceae E FP 4,10

    Lobelia oligophylla Campanulaceae N FP 10

    Lobelia polyphylla Campanulaceae E FP 4,10

    Lomatia hirsuta Proteaceae N IC (EP?) 3,5,7,10

    Lupinus microcarpus Fabaceae N FP 9,10Lycium stenophyllum Solanaceae N IC (V?) 10

    Maihueniopsis grandiflora Cactaceae E IC (V?) 2,9,10

    Maihueniopsis wagenknechtii Cactaceae E V 2,9,10

    Malesherbia fasciculata Malesherbiaceae E FP 9,10

    (continues next page)

  • 8/12/2019 197-413-1-SM (1).pdf

    17/24

    345VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    Scientific name Family Origin1 Conservation status2 Uses3

    Malesherbia humilis Malesherbiaceae N FP 10

    Margyricarpus pinnatus Rosaceae N FP 1,3,4,7,10

    Menonvillea linearis Brassicaceae E V 10

    Mentzelia bartonioides Loasaceae N FP 10

    Mentzelia chilensis Loasaceae E FP 3,10Mentzelia ignea Loasaceae N IC (V?) 10

    Mentzelia pinnatifida Loasaceae E FP 10

    Mirabilis elegans Nyctaginaceae N IC (V?) 10

    Montiopsis sericea Portulacaceae E FP 10

    Monttea chilensis Scrophulariaceae E EP 2,7,8,9,10

    Mutisia rosea Asteraceae E IC (V?) 3,10

    Mutisia sinuata Asteraceae N FP 3,10

    Myrceugenia obtusa Myrtaceae E IC (E?) 10

    Myrceugenia rufa Myrtaceae E V 10

    Nicotiana acuminata Solanaceae N FP 10

    Nicotiana solanifolia Solanaceae E IC 10

    Nolana acuminata Nolanaceae E V 10

    Nolana baccata Nolanaceae E IC (FP?) 10

    Nolana divaricata Nolanaceae E FP 10

    Nolana glauca Nolanaceae E IC 10

    Nolana paradoxa Nolanaceae E FP 10

    Nolana rupicola Nolanaceae EE V 10

    Nolana salsoloides Nolanaceae E IC (E?) 10

    Ochagavia carnea Bromeliaceae E IC (V?) 10

    Oenothera acaulis Onagraceae N FP 3,10

    Oenothera affinis Onagraceae N V 10

    Oenothera coquimbensis Onagraceae E FP 10

    Oenothera stricta Onagraceae N FP 10

    Olsynium junceum Iridaceae N IC (E?) 10

    Olsynium philippii Iridaceae E FP 10

    Olsynium scirpoideum Iridaceae N FP 10

    Opuntia berteri Cactaceae N FP 2,9,10

    Opuntia glomerata Cactaceae N V 2,9,10

    Opuntia miquelii Cactaceae E FP 2,9,10

    Opuntia ovata Cactaceae N FP 2,4,9,10

    Opuntia tunicata Cactaceae N NE 2,9,10

    Oxalis arenaria Oxalidaceae N IC 10

    Oxalis briquetii Oxalidaceae E NE 10

    Oxalis compacta Oxalidaceae N FP 10

    Oxalis coquimbana Oxalidaceae E IC (V?) 10Oxalis erythrorhiza Oxalidaceae N IC (E?) 10

    Oxalis gaudichaudii Oxalidaceae E IC 10

    Oxalis gigantea Oxalidaceae E FP 2,7,10

    Oxalis glutinosa Oxalidaceae E IC (V?) 10

    Oxalis illapelina Oxalidaceae E IC (V?) 10

    Oxalis laxa Oxalidaceae N FP 10

    Oxalis maritima Oxalidaceae E V 7,10

    Oxalis micrantha Oxalidaceae N FP 10

    Oxalis ovalleana Oxalidaceae E IC 10

    Oxalis paniculata Oxalidaceae E IC (E?) 10

    Oxalis perdicaria Oxalidaceae N FP 10

    Oxalis rosea Oxalidaceae E FP 1,2,7,10Oxalis san-romanii Oxalidaceae N FP 10

    Oxalis squarrosa Oxalidaceae E FP 10

    Oxalis succulenta Oxalidaceae E IC 10

    Oxalis tarapacana Oxalidaceae E IC 10

    (continues next page)

  • 8/12/2019 197-413-1-SM (1).pdf

    18/24

    CIENCIA E INVESTIGACIN AGRARIA346

    Scientific name Family Origin1 Conservation status2 Uses3

    Oxalis tortuosa Oxalidaceae E FP 10

    Oziroe biflora Hyacinthaceae N FP 10

    Pasithea caerulea Hemerocallidaceae N FP 10

    Perezia carthamoides Asteraceae N FP 3,4,10

    Perityle emoryi Asteraceae N IC (V?) 3,4,10Peumus boldus Monimiaceae E V 1,3,4,6,7,9,10

    Phacelia brachyantha Hydrophyllaceae N V 10

    Phacelia secunda Hydrophyllaceae N FP 10

    Phrodus microphyllus Solanaceae E FP 10

    Pleurophora pungens Lythraceae E FP 10

    Plumbago caerulea Plumbaginaceae N FP 10

    Podanthus mitiqui Asteraceae E FP 2,3,4,10

    Polyachyrus carduoides Asteraceae E FP 2

    Polyachyrus fuscus Asteraceae N FP 4,10

    Polyachyrus poeppigii Asteraceae E FP 10

    Porlieria chilensis Zygophyllaceae E V 2,4,5,7,10

    Pouteria splendens Sapotaceae E EP 10

    Prosopisflexuosa Mimosaceae N EP 8,9,10

    Prosopis strombulifera Mimosaceae N FP 7,8,9,10

    Proustia cuneifolia Asteraceae E FP 3,4,8,10

    Proustia pyrifolia Asteraceae E EP 5,6,10

    Pteromonnina pterocarpa Polygalaceae N V 10

    Puya alpestris Bromeliaceae N IC (E?) 5,7,8,9,10

    Puya berteroniana Bromeliaceae E FP 1,3,5,6,7,8,9,10

    Puya chilensis Bromeliaceae E FP 1,2,3,4,5,7,8,9,10

    Puya coerulea Bromeliaceae E NE 5,7,8,9,10

    Puya gilmartiniae Bromeliaceae E IC (E?) 5,7,8,9,10

    Puya venusta Bromeliaceae E FP 5,7,8,9,10

    Quinchamalium chilense Santalaceae N FP 3,4,10

    Ranunculus peduncularis Ranunculaceae N IC (V?) 3,10

    Retanilla trinervia Rhamnaceae E FP 2,3,4,6,9,10

    Satureja gilliesii Labiatae E FP 3,4,9,10

    Schizopetalon bipinnatifidum Brassicaceae E FP 10

    Schizopetalon maritimum Brassicaceae E FP 10

    Schizopetalon walkeri Brassicaceae E V 10

    Senecio eruciformis Asteraceae N FP 3,9,10

    Senecio murorum Asteraceae E FP 4,9,10

    Senna candolleana Caesalpiniaceae E FP 3,5,10

    Sicyos baderoa Cucurbitaceae N FP 10

    Sisyrinchium arenarium Iridaceae N FP 10Sisyrinchium graminifolium Iridaceae N V 7,10

    Sisyrinchium striatum Iridaceae N V 3,10

    Skytanthus acutus Apocynaceae E EP 2,4,9,10

    Solanum heterantherum Solanaceae E FP 10

    Solanum ligustrinum Solanaceae N FP 3,4,10

    Solanum remyanum Solanaceae E IC (V?) 10

    Sophora macrocarpa Fabaceae E EP 4,7,10

    Sphacele chamaedryoides Labiatae E IC (E?) 10

    Sphacele salviae Labiatae E FP 3,7,9,10

    Sphaeralcea obtusiloba Malvaceae E FP 2,3,10

    Stachys eremicola Labiatae E V 9

    Stachys grandidentata Labiatae E FP 9,10Stachys pannosa Labiatae E IC (V?) 9

    Stachys philippiana Labiatae E IC (V?) 9,10

    Suaeda foliosa Chenopodiaceae N FP 10

    Tecophilaea violiflora Tecophilaeaceae E FP 10

    (continues next page)

  • 8/12/2019 197-413-1-SM (1).pdf

    19/24

    347VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    Scientific name Family Origin1 Conservation status2 Uses3

    Tetraglochin alatum Rosaceae N FP 10

    Tetragonia angustifolia Aizoaceae E IC 10

    Tetragonia maritima Aizoaceae E FP 10

    Tetragonia ovata Aizoaceae E IC (V?) 10

    Teucrium bicolor Labiatae E FP 3,4,10Teucrium nudicaule Labiatae E FP 10

    Tillandsia capillaris Bromeliaceae N FP 10

    Tillandsia geissei Bromeliaceae E IC (EP?) 10

    Tillandsia landbeckii Bromeliaceae N FP 10

    Trevoa quinquenervia Rhamnaceae E V 2,4,6,8,9,10

    Trichopetalum plumosum Lomandraceae E FP 10

    Triptilion gibbosum Asteraceae E FP 10

    Triptilion spinosum Asteraceae E IC 4,10

    Tristerix verticillatus Loranthaceae N FP 4,7,9

    Tropaeolum azureum Tropaeolaceae E FP 10

    Tropaeolum brachyceras Tropaeolaceae E V 10

    Tropaeolum hookerianum Tropaeolaceae E V 10

    Tropaeolum jilesii Tropaeolaceae E IC (E?) 10

    Tropaeolum kingii Tropaeolaceae E FP 10

    Tropaeolum looseri Tropaeolaceae E FP 10

    Tropaeolum polyphyllum Tropaeolaceae N FP 10

    Tropaeolum sessilifolium Tropaeolaceae E FP 10

    Tropaeolum tricolor Tropaeolaceae E FP 10

    Tweedia birostrata Asclepiadaceae E FP 10

    Tweedia stipitata Asclepiadaceae E FP 10

    Vicia vicina Fabaceae E IC (V?) 2,10

    Viola polypoda Violaceae E V 10

    Viviania crenata Vivianiaceae E FP 2,10

    Viviania marifolia Vivianiaceae N FP 2,3,10

    Zephyra elegans Tecophilaeaceae E FP 101E, endemic to Chile; N, native to Chile.2FP: out of danger, IC(E?): insufficiently known (extinct?), IC(FP?): insufficiently known (out of danger?), IC(V?): insufficiently known(vulnerable?), V: vulnerable.31: alimentary, 2: cattle forage, 3: medicinal, 4: phytochemical, 5: timber/construction, 6: fuel, 7: crafts, 8: soil conservation, 9: mellipherous,10: ornamental.

    ing deposits and that have additional uses, 19are in danger of extinction, 56 are in a state ofvulnerability and 120 are insufficiently known

    (Table 2). It is noteworthy that in these twogroups of species, 31 species have been cata-loged as insufficiently known and are suspectedof being extinct (Marticorena et al., 2001), asthis reduces the number of species potentiallyutilizable in phytostabilization projects. The in-clusion of endangered and vulnerable species in

    phytostabilization programs could undoubtedlyaid their conservation, as long as sustainablemanagement is carried out.

    It is worth mentioning that the main objectiveis the stabilization of mining tailings, and thatthe additional use of the species for another

    purpose should not interfere with that goal.Within the uses proposed for the flora to be

    used in phytostabilization of mining tailings,there are several involving the use of vegetativestructures that are important or essential for the

    plants survival, such as food, forage, medicine,phytochemicals, timber/construction, fuel andhandicrafts. In these cases, it becomes crucialto provide a sustainable plan for harvesting thestructures of interest, so that the utilization ofthe species does not detract from the stabiliza-tion of the mining wastes.

    Final considerations

    Even though many of the uses described for thevegetal species of the Region of Coquimbo arerestricted to disappearing indigenous culturesor rural local subsistence communities, there isreal potential for the use of the native regional

  • 8/12/2019 197-413-1-SM (1).pdf

    20/24

    CIENCIA E INVESTIGACIN AGRARIA348

    flora. Ongoing study of the plants has made evi-dent the existence of high-value chemical com-

    pounds. This potentiates the generation of newmarkets where the flora traditionally used by in-digenous cultures and local communities reachconsumers at commercial levels. In this way,sustainably managed native flora could contrib-ute to their own conservation by creating value.It is worth noting that even though there may besignificant economic and subsistence benefitsto conserving the native flora, if those benefitsare not sensed or valued as significant by localusers, support for the conservation of that re-source will be absent (Campbell, 2000).

    The added value provided to a phytostabiliza-tion program by a sustainably managed nativevegetal species with additional uses would fa-vor this technology over other methods used tostabilize mining wastes. Using such a program

    to rehabilitate areas contaminated by miningactivities and to restore local ecosystems mightalso preserve and enhance biodiversity. How-ever, more extensive studies are required be-fore the potential uses we identified can be de-veloped to a productive level. Additionally, toselect the best species for use in post-operativemining tailing phytostabilization programs,the tolerances and metal accumulation capaci-ties of these species must be determined with

    biotests.

    In order to enrich the quality of life of the ruralpopulation of the region, as well as to enhancebiodiversity and ecosystem productivity, it is

    necessary to attempt to alleviate the environ-mental problems generated by mining activi-ties. Mining rehabilitation through phytostabi-lization presents an opportunity to address allthese aspects as a whole.

    Resumen

    C. Orchard, P. Len-Lobos y R. Ginocchio. 2009. Fitoestabilizacin de desechos mineros

    masivos con recursosfi

    togenticos nativos: Potencial para el uso sustentable y laconservacin de la flora nativa de la zona centro-norte de Chile. Cien. Inv. Agr. 36(3):329-

    352. La minera metlica ha dejado una gran cantidad de depsitos de relaves en la zona centro-norte de Chile inadecuadamente abandonados, significando un riesgo para el ambiente. Porello, la actual normativa minera chilena enfatiza la estabilizacin de estos depsitos para suadecuado cierre, favoreciendo el uso de tecnologas ambientalmente sustentables. Entre ellasse encuentra la fitoestabilizacin, tecnologa que puede ser favorecida al incorporar especiesque proporcionen usos econmicos y de subsistencia. La incorporacin de especies nativas en

    programas de fitoestabilizacin y su aprovechamiento sustentable podran aportar, tambin,en la conservacin de la flora nativa y de los ecosistemas de la zona centro-norte de Chile. Enesta investigacin, se indag sobre los usos alternativos que podran tener las especies nativas

    que han colonizando espontneamente depsitos de relaves abandonados y de otras especiesque, dadas sus caractersticas ecolgicas, podran establecerse sobre tranques de relaves post-operativos en el marco de la tecnologa de fitoestabilizacin, tomando la Regin de Coquimbocomo caso de estudio. Se realiz una revisin de la literatura cientfica, tcnica y etnobotnicasobre los usos tradicionales y aquellos que se han descubierto recientemente de las especiesnativas de la Regin. Los resultados indicaron que 68 especies colonizadoras espontneastienen al menos un uso conocido, mientras que 420 especies con potencial de utilizacin en

    programas de fitoestabilizacin, un 28% de la flora nativa regional, presentan posibles usos quebrindaran un beneficio adicional a la estabilizacin de estos depsitos. Entre los principalesusos identificados se encuentran el ornamental, forrajero, apcola, medicinal, principio qumicoy artesanal. Un 69% de estas especies son endmicas de Chile, constituyendo un valioso recursofitogentico en la mitigacin de problemas ambientales relacionados con el sector minero, que

    podran perderse si no se identifican y estudian a tiempo.

    Palabras clave: Manejo sustentable, minera, rehabilitacin, tranques de relaves, valoracinde recursos naturales.

  • 8/12/2019 197-413-1-SM (1).pdf

    21/24

    349VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    References

    Bell, L.C. 1999. A multidisciplinary approach to pro-ducing solutions for sustainable mine rehabilita-tion the role of the australian centre for minesite rehabilitation research. Pages 3-11.In: M.H.Wong, J.W.C. Wong, and A.M.J. Baker (eds.).Remediation and Management of DegradedLands. CRC Press LLC. Florida, USA.

    Berti, W. R. and S.D. Cunninghan. 2000. Phytostabi-lization of metals. Pages 71-88.In: I. Raskin andB.D. Ensley (eds.). Phytoremediation of ToxicMetals: Using Plants to Clean up the Environ-ment. Wiley Inter-Science. NY, USA.

    Brown, G., P. Jara-Seguel, F. J. Lpez-Corts, and J.M. Viada. 2003. Texto regional de educacin am-biental. Cuarta Regin de Coquimbo, de mar acordillera. Comisin Nacional del Medio Ambi-ente y Ministerio de Educacin. Santiago, Chile.178 p.

    Bustamante, W. 1994. Anlisis de propuestas tec-nolgicas para el mejoramiento de las condi-ciones socioambientales en comunidades agrco-las de Coquimbo (IV Regin-Chile). DocumentoTcnico N 17. Pontificia Universidad de Chile.

    Facultad de Ingeniera. Escuela de ConstruccinCivil. Santiago, Chile. 96 p.

    Bustamante, R.A. 1996. Distribucin, estado deconservacin y uso de las cactceas columnaresen la Regin de Coquimbo. Tesis IngenieroAgrnomo, Facultad de Agronoma, Universidadde Chile, Santiago, Chile. 143 p.

    Campbell, L.M. 2000. Human need in rural devel-oping areas: perceptions of wildlife conservationexperts. The Canadian Geographer/Le Gographecanadien 44:167-181.

    Conesa, H. M., R. Schulin, and B. Nowack. 2007.A laboratory study on revegetation and metaluptake in native plant species from neutral minetailings. Water, Air and Soil Pollution 183:201-212.

    Dietz, A.C., and J.L. Schnoor. 2001. Advances inphytoremediation. Environmental Health Per-spectives 109: 163-168.

    Dobson, A. P., A. D. Bradshaw, and A.J.M. Baker.1997. Hopes for the future: restoration ecologyand conservation biology. Science 277:515-522.

    Dold, B. 2007. Biogeochemical processes in minetailings with special focus on marine shore tail-ings deposits and their remediation. AdvancedMaterials Research 20-21:177-185.

    Espinoza, G., P. Gross, and E.R. Hajek. 1991. Prob-lemas Ambientales de la Regin de Coquimbo(IV Regin). Comisin Nacional del Medio Am-

    biente (CONAMA). Secretara Tcnica y Ad-ministrativa, Santiago, Chile.

    Fernndez, M.C., E. Subr, and A. Ortiz. 1994. Lamiel, indicador ambiental. Pginas 37-46. En:Prcticas Ecolgicas para una Agricultura deCalidad. I Congreso de la Sociedad Espaola deAgricultura Ecolgica (Proceedings). Toledo.Espaa.

    Folchi, M. 2001. La insustentabilidad de la industriadel cobre en Chile: los hornos y los bosques du-rante el siglo XIX. Mapocho 49:149-175.

    Ginocchio, R. 2004. Nueva tecnologa: fitoestabili-

    zacin para cierres de faenas mineras. Susten-tare, Minera Chilena 21:1-4.Ginocchio, R. 2008. Uso de recursos fitogenticos

    nativos para la fitoestabilizacin de relaves mine-ros en la Regin de Coquimbo. Informe TcnicoFinal, Proyecto Innova Chile de CORFO N04CR9IXD-01. Centro de Investigacin Mineray Metalrgica, CIMM. Santiago, Chile.

    Ginocchio, R., and A.J. Baker. 2004. Metallophytesin Latin America: a remarkable biological andgenetic resource scarcely known and studied in

    the region. Revista Chilena de Historia Natural77:185-194.

    Ginocchio, R., and P. Len-Lobos. 2007. Recursosgenticos para la fitoestabilizacin: plantas quereducen la contaminacin por desechos mineros.Tierra Adentro 75:20-23.

    Ginocchio, R., Santibez, C., Len-Lobos, P.,Brown, S., Baker, A.J.M. 2007. Sustainable re-habilitation of copper mine tailings in Chilethrough phytostabilization: more than plants.Pages 465-474. In: A. Fourie, M. Tibbet, and J.

    Wiertz (eds.). Mine Closure 2007. Proceedingsof the Second International Seminar on MineClosure. Australian Centre for Geomechanics.Perth, Australia.

    Glass, D.J. 2000. Economic potential of phytore-mediation. Pages 5-31.In: I. Raskin, and B.D.Ensley (eds.). Phytoremediation of toxic metals:using plants to clean up the environment. WileyInter-Science. NY, USA.

    Goodman, G.T. 1974. Ecology and the problems ofrehabilitating wastes from mineral extraction.Proceedings of the Royal Society A 339:373-387.

    ICMM. 2006. Gua de Buenas Prcticas para la Min-era y la Biodiversidad. International Council on

  • 8/12/2019 197-413-1-SM (1).pdf

    22/24

    CIENCIA E INVESTIGACIN AGRARIA350

    Mining and Metals. Londres, Reino Unido. 166p.

    INE. 2008. Informe Econmico Regional Enero-Marzo de 2008. Instituto Nacional de Estadsti-cas (INE). Santiago, Chile. 76 p.

    IUCN, and ICMM. 2004. Integrating mining and bio-diversity conservation: case studies from aroundthe world. International Union for Conservationof Nature and Natural Resources and Internation-al Council on Mining and Metals. 48 p.

    Jorquera, C. 2001. La agricultura regional y el de-terioro de la vegetacin nativa: una visin ac-tualizada. Pginas 239-251. En: F.A. Squeo, G.Arancio y J.R. Gutirrez (eds.). Libro Rojo de laFlora Nativa y de los Sitios Prioritarios para su

    Conservacin: Regin de Coquimbo. EdicionesUniversidad de La Serena. La Serena, Chile.Len-Lobos, P., G. Tapia, and C. Ortiz. 2007. Recur-

    sos fitogenticos. Pilares de la innovacin biotec-nolgica en Chile. Tierra Adentro 75:14-17.

    Lpez, P., S. Ainza, C. Zolezzi, and P. Vasconi.2003. La Minera y Su Pasivo Ambiental. Pub-licaciones Terram. Anlisis de Polticas Pblicas(AAP) 24. Santiago, Chile.

    Lyon, G.L. 1991. Bases Biolgicas para la Regen-eracin in vitrodeAlstroemeria. Tesis Ingeniero

    Agrnomo, Facultad de Agronoma e Ingeni-era Forestal, Pontificia Universidad Catlica deChile, Santiago, Chile. 114 p.

    Mahmud, R., N. Inouse, S. Kasajima, and R. Sha-heen. 2008. Assessment of potential indigenous

    plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh. InternationalJournal of Phytoremediation 10:119-132.

    Marticorena, C., F. A. Squeo, G. Arancio, and M.Muoz. 2001. Catlogo de la flora vascular de laIV Regin de Coquimbo. Pginas 105-142. En:

    F.A. Squeo, G. Arancio y J.R. Gutirrez (eds.).Libro rojo de la Flora Nativa y de los Sitios Pri-oritarios para su Conservacin: Regin de Co-quimbo. Ediciones Universidad de La Serena. LaSerena, Chile.

    Martin, T.A., and M.V. Ruby. 2004. Review of in situremediation technologies for lead, zinc, and cad-mium in soil.Remediation Journal 14:35-53.

    Mendez, M.O., and R.M. Maier. 2008. Phytostabili-zation of mine tailings in arid and semiarid envi-ronments an emerging remediation technology.Environmental Health Perspectives 116:278-283.

    Miller, R.R. 1996. Phytoremediation. Ground-Wa-ter Remediation Technologies Analysis Center,

    GWRTAC, O Series Reports, TO-96-03.Ministerio de Minera. 2004. Reglamento de seguri-

    dad minera. Decreto Supremo N 132. Gobiernode Chile, Santiago, Chile.

    Ministerio de Minera. 2007. Reglamento para laaprobacin de proyectos de diseo, construccin,operacin y cierre de los depsitos de relaves.Decreto Supremo N 248. Gobierno de Chile,Santiago, Chile.

    Montenegro, G. 2000. Chile nuestra flora til. Edi-ciones Universidad Catlica de Chile. Santiago,Chile. 267pp.

    Myers, N.,R.A. Mittermeier, C.G. Mittermeier,G.A.B. da Fonseca, and J. Kent. 2000. Biodiver-sity hotspots for conservation priorities. Nature

    403:853-858.Novoa, J. E., and D. Lpez. 2001. IV Regin: el es-cenario geogrfico fsico. Pginas 13-28.En: F.A.Squeo, G. Arancio y J.R. Gutirrez (eds.). LibroRojo de la Flora Nativa y de los Sitios Prioritar-ios para su Conservacin: Regin de Coquimbo.Ediciones Universidad de La Serena. La Serena,Chile.

    Pastor, M. R., J. Vilela, and C. Cabello. 1997. Espe-cies arbreas y arbustivas para las zonas ridas ysemiridas de Amrica latina. Serie: Zonas ridas

    y semiridas N 12. Oficina regional de la FAOpara Amrica Latina y el Caribe, Organizacinde las Naciones Unidas para la Agricultura y laAlimentacin. Santiago, Chile. 347 pp.

    Petrisor, I. G., S. Dobrota, K. Komnitsas, I. Lazar,J. M. Kuperberg, and M. Serban. 2004. Artificialinoculation-perspectives in tailings phytostabi-lization. International Journal of Phytoremedia-tion 6:1-15.

    Piha, M. I., H. W. Vallack, B. M. Reeler, and N. Mi-chael. 1995. A low input approach to vegetation

    establishment on mine and coal ash wastes insemi-arid regions. I. Tin mine tailings in Zimba-

    bwe. Journal of Applied Ecology 32:372-381.Prasad, M. N., and H. M. Freitas. 2003. Metal hyper-

    accumulation in plants biodiversity prospect-ing for phytoremediation technology. ElectronicJournal of Biotechnology 6:285-321.

    Primack, R., and F. Massardo. 2001. Restauracinecolgica. Pginas 559-582. En: R. Primack,R. Rozzi, P. Feinsinger, R. Dirzo y F. Massardo(eds.). Fundamentos de conservacin biolgica

    perspectivas latinoamericanas. Fondo de CulturaEconmica. Mxico, D. F., Mexico.

    Primack, R., R. Rozzi, P. Feinsinger, and F. Mas-sardo. 2001. Conservacin fuera de las reas

  • 8/12/2019 197-413-1-SM (1).pdf

    23/24

    351VOLUME 36 N3 SEPTEMBER - DECEMBER 2009

    protegidas. Pginas 521-557. En: R. Primack,R. Rozzi, P. Feinsinger, R. Dirzo y F. Massardo(eds.). Fundamentos de conservacin biolgica

    perspectivas latinoamericanas. Fondo de CulturaEconmica. Mxico, D. F.

    Riedemann, P., G. Aldunate, and S. Teillier. 2006.Flora Nativa de Valor Ornamental, Identificaciny Propagacin, Chile zona norte. 404 p.

    Romo, M., V. Castro, C. Villagrn, and C. Latorre.1999. La transicin entre las tradiciones de losoasis del desierto y de las quebradas altas delLoa superior: etnobotnica del Valle del RoGrande, II Regin, Chile. Chungara Revista deAntropologa Chilena 31:319-360.

    Rubio, J. 2007. Efluentes en la mira. Induambiente

    86:24-28.Snchez, L.E. 2002. Impactos sobre los ecosistemas.Pginas 322-331. En: F.L. Repetto y C.L. Karez(eds.). Notas de clases dictadas en el II cursointernacional de aspectos geolgicos de protec-cin ambiental. Oficina Regional de Ciencia dela UNESCO para Amrica Latina y el Caribe.Montevideo, Uruguay.

    Santibez, C.C. 2006. Uso de bioslidos de plantasde tratamiento de aguas servidas y ballica parala fitoestabilizacin de tranques de relaves. Tesis

    de Doctorado en Ciencias Silvoagropecuarias yVeterinarias. Facultad de Ciencias Agropecuar-ias y Forestales, Universidad de Chile, Santiago,Chile. 103 p.

    SERNAGEOMIN. 1990. Levantamiento catastral delos tranques de relave en Chile. Etapa B, regionesIV, V y VII. Servicio Nacional de Geologa yMinera, Santiago, Chile.

    Silva, M., and M. Bittner. 1992. Algunos compuestosde inters biolgico aislados de la flora chilena.Pginas 285305. En: O. Muoz (ed.). Qumica

    de la Flora de Chile. Direccin General Aca-dmica y Estudiantil, Universidad de Chile, San-tiago, Chile.

    SONAMI. 2006. En plena ejecucin fitoestabili-zacin de tranques de relave. Boletn Minero1199:18-21.

    Squeo, F.A., and M.T.K. Arroyo. 2001. Presentacincientfica del libro rojo de la flora nativa y de lossitios prioritarios para su conservacin: Regin

    de Coquimbo. Pginas 3-11. En: F.A. Squeo, G.Arancio y J. R. Gutirrez (eds.). Libro Rojo de laFlora Nativa y de los Sitios Prioritarios para suConservacin: Regin de Coquimbo. EdicionesUniversidad de La Serena. La Serena, Chile.

    Squeo, F. A., G. Arancio, C. Marticorena, M. Muoz,and J. R. Gutirrez. 2001a. Diversidad vegetal dela IV Regin de Coquimbo, Chile. Pginas149-158. En: F.A. Squeo, G. Arancio y J.R. Gutirrez(eds.). Libro Rojo de la Flora Nativa y de los Si-tios Prioritarios para su Conservacin: Regin deCoquimbo. Ediciones Universidad de La Serena.La Serena, Chile.

    Squeo, F. A., G. Arancio, L. Cavieres, J. R. Gutirrez,M. Muoz, and C. Marticorena. 2001b. Anlisis

    del estado de conservacin de lafl

    ora nativa dela IV Regin de Coquimbo. Pginas 53-62. En:F.A. Squeo, G. Arancio y J.R. Gutirrez (eds.).Libro Rojo de la Flora nativa y de los Sitios Pri-oritarios para su Conservacin: Regin de Co-quimbo. Ediciones Universidad de La Serena. LaSerena, Chile.

    Vega, A. 1999. Minera y medio ambiente. Ministe-rio de Educacin. Santiago, Chile. 44 p.

    Whiting, S.N., R.D. Reeves, D. Richards, M.S. John-son, J.A. Cooke, F. Malaisse, A. Paton, J.A.C.

    Smith, J.S. Angle, R.L. Chaney, R. Ginocchio,T. Jaffr , R. Johns, T. McIntyre, O.W. Purvis,D.E. Salt, H. Schat, F.J. Zhao, and A.J.M. Bak-er. 2004. Research priorities for conservationof metallophyte biodiversity and their potentialfor restoration and site remediation. RestorationEcology 12:106-116.

    Wilhelm de Msbach, E. 1992. Botnica indgena deChile. Editorial Andrs Bello, Santiago, Chile.140 p.

    Yazbek, O. 2002. Recuperacin de reas degrada-

    das por la minera en regiones urbanas. En: F.L.Repetto, and C.L. Karez. Pginas 332-345 (eds.).

    Notas de Clases Dictadas en el II Curso Inter-nacional de Aspectos Geolgicos de ProteccinAmbiental. Oficina Regional de Ciencia de laUNESCO para Amrica Latina y el Caribe. Mon-tevideo, Uruguay.

    Young, T.P. 2000. Restoration ecology and conserva-tion biology. Biological Conservation 92:73-83.

  • 8/12/2019 197-413-1-SM (1).pdf

    24/24

    CIENCIA E INVESTIGACIN AGRARIA352