1.l. j. andrews, chem. rev. 1954, 54, 713-776. 2.r. e. rundle, j. h. goring, j. am. chem. soc. 1950,...

1
1. L. J. Andrews, Chem. Rev. 1954, 54, 713-776. 2. R. E. Rundle, J. H. Goring, J. Am. Chem. Soc. 1950, 72, 5337. 3. M. B.Dines, J. Organomet. Chem. 1974, 67, C55-58. 4. G. W. Hunt, T. C. Lee, E. L. Amma, Inorg. Nucl. Chem. Lett. 1974, 10, 909-913. 5. M. Linder, A. Hohener, and R.R. Ernst, J. Magn. Reson. 1979, 35, 379-386. 6. H. Strub, A. J. Beeler, D. M. Grant, J. Michl, P. W. Cutts, and K. W. Zilm, J. Am. Chem. Soc., 1983, 105, 3333- 3334. 7. A. Pines, M. G. Gibby, J. S. Waugh, Chem. Phys. Lett., 1972, 15, 373-376. A A 109 109 Ag and Ag and 13 13 C NMR and Quantum Chemical Study of Solid C NMR and Quantum Chemical Study of Solid Organosilver Complexes Organosilver Complexes Xiaolong Liu* and Glenn H. Penner Xiaolong Liu* and Glenn H. Penner Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 3. 3. Discussion Discussion We would like to thank NSERC for We would like to thank NSERC for funding funding • Charge –transfer complexes, their stabilities, spectra and electronic structures have been of considerable theoretical and experimental interest. 1 Until now, no solid state NMR of Ag (I) complexes with benzene derivatives have been reported. 1. 1. Introduction Introduction 2. 2. Experimental Experimental • Crystals of the Ag (I) complexes with benzene derivatives are obtained by dissolving anhydrous silver salt in liquid benzene and allowing the benzene to evaporate slowly. 2-4 Figure 1: Structure of [Ag (benzene) ] n chains in a crystal of [Ag(C 6 H 6 )]ClO 4 2 4. 4. References References Figure 2: (a) 13 C Solid State NMR spectrum of [Ag(C 6 H 6 )]ClO 4 ; (b) The simulated 13 C MAS NMR spectrum. Figure 3: (a) 109 Ag Solid State NMR spectrum of [Ag(C 6 H 6 )]ClO 4 ; (b) The simulated 109 Ag MAS NMR spectrum. Figure 5: (a) 13 C Solid State NMR spectrum of [Ag(CF 3 SO 3 )] 2 (C 6 H 6 ); (b) The simulated 13 C MAS NMR spectrum. Figure 6: (a) 109 Ag Solid State NMR spectrum of [Ag(CF 3 SO 3 )] 2 (C 6 H 6 ); (b) The simulated 109 Ag MAS NMR spectrum. Figure 7: Coordination of on silver atoms in [Ag(CF 3 COO)] 2 (C 6 H 6 ) 4 Figure 4: Coordination of silver atoms in [Ag(CF 3 SO 3 )] 2 (C 6 H 6 ) 3 Figure 8: (a) 13 C Solid State NMR Spectrum of [Ag(CF 3 COO)] 2 (C 6 H 6 ) ; (b) The simulated 13 C MAS NMR spectrum. Figure 9: (a) 109 Ag Solid State NMR spectrum of [Ag(CF 3 COO)] 2 (C 6 H 6 ) ; (b) The simulated 109 Ag MAS NMR spectrum. (b ) (a ) (b ) (a ) (b ) (a ) (b ) (a ) (b ) (a ) (a ) (b ) δ 11 (ppm) δ 22 (ppm) δ 33 (ppm) δ iso (ppm) Ω (ppm) κ 13 C 196 184 3 127.7 193 0.876 109 Ag 470 344 -240 191 710 0.645 Table 1:The parameters of Table 1:The parameters of simulated spectra simulated spectra δ 11 (ppm) δ 22 (ppm) δ 33 (ppm) δ iso (ppm) Ω (ppm) κ 13 C 193 180 8 127 185 0.859 194 166 16 125 178 0.685 109 Ag 210 106 - 190 42 400 0.480 150 - 70 - 250 - 56.7 400 - 0.100 δ 11 (ppm) δ 22 (ppm) δ 33 (ppm) δ iso (ppm) Ω (ppm) κ 13 C 202 180 0 127 202 0.782 199 166 4 123 195 0.662 109 Ag 630 596 -32 398 662 0.897 440 250 - 130 186.7 570 0.333 Table 2:The Table 2:The parameters of simulated spectra parameters of simulated spectra Table 3:The parameters Table 3:The parameters of simulated spectra of simulated spectra I) II ) II I ) 1. The 109 Ag spectra are consistent with 13 C spectra; 2. The 13 C isotropic chemical shifts of Ag (I) complexes and benzene derivatives are same or very close, which means that the interaction between carbon and silver is not strong; 3. In all cases the benzene ring is rapidly rotating. We can compare our results for the coordination compounds with those for pure solid benzene (Table 4). Table 4: The Chemical shifts Table 4: The Chemical shifts parameters of benzene parameters of benzene Compoun d Temp. (K) δ 11 δ 22 δ 33 δ iso Ω κ Ref. Benzene (C6H6) 14 217 141 1 120 219 0.296 5 20 234 146 9 130 225 0.218 6 223 192 192 12 132 180 1.000 7

Post on 21-Dec-2015

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1.L. J. Andrews, Chem. Rev. 1954, 54, 713-776. 2.R. E. Rundle, J. H. Goring, J. Am. Chem. Soc. 1950, 72, 5337. 3.M. B.Dines, J. Organomet. Chem. 1974,

1. L. J. Andrews, Chem. Rev. 1954, 54, 713-776.

2. R. E. Rundle, J. H. Goring, J. Am. Chem. Soc. 1950, 72, 5337.

3. M. B.Dines, J. Organomet. Chem. 1974, 67, C55-58.

4. G. W. Hunt, T. C. Lee, E. L. Amma, Inorg. Nucl. Chem. Lett. 1974, 10, 909-913.

5. M. Linder, A. Hohener, and R.R. Ernst, J. Magn. Reson. 1979, 35, 379-386.

6. H. Strub, A. J. Beeler, D. M. Grant, J. Michl, P. W. Cutts, and K. W. Zilm, J. Am. Chem. Soc., 1983, 105, 3333-3334.

7. A. Pines, M. G. Gibby, J. S. Waugh, Chem. Phys. Lett., 1972, 15, 373-376.

A A 109109Ag and Ag and 1313C NMR and Quantum Chemical Study of Solid C NMR and Quantum Chemical Study of Solid Organosilver ComplexesOrganosilver Complexes

Xiaolong Liu* and Glenn H. PennerXiaolong Liu* and Glenn H. Penner

Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1

3. 3. DiscussionDiscussion

We would like to thank NSERC for fundingWe would like to thank NSERC for funding

• Charge –transfer complexes, their stabilities, spectra and electronic structures have been of considerable theoretical and experimental interest.1

• Until now, no solid state NMR of Ag (I) complexes with benzene derivatives have been reported.

1.1. IntroductionIntroduction

2. 2. ExperimentalExperimental

• Crystals of the Ag (I) complexes with benzene derivatives are obtained by dissolving anhydrous silver salt in liquid benzene and allowing the benzene to evaporate slowly.2-4

Figure 1: Structure of [Ag (benzene) ]n

chains in a crystal of [Ag(C6H6)]ClO42

4. 4. ReferencesReferences

Figure 2:(a)13C Solid State NMR spectrum of [Ag(C6H6)]ClO4;(b) The simulated 13C MAS NMR spectrum.

Figure 3:(a) 109Ag Solid State NMR spectrum of [Ag(C6H6)]ClO4;(b) The simulated 109Ag MAS NMR

spectrum.

Figure 5:(a)13C Solid State NMR spectrum of [Ag(CF3SO3)]2(C6H6);(b) The simulated 13C MAS NMR

spectrum.

Figure 6: (a)109Ag Solid State NMR spectrum of [Ag(CF3SO3)]2(C6H6);(b) The simulated 109Ag MAS NMR spectrum.

Figure 7: Coordination of on silver atoms in [Ag(CF3COO)]2(C6H6) 4

Figure 4: Coordination of silver atoms in [Ag(CF3SO3)]2(C6H6) 3

Figure 8: (a)13C Solid State NMR Spectrum of [Ag(CF3COO)]2(C6H6) ;(b) The simulated 13C MAS NMR spectrum.

Figure 9: (a) 109Ag Solid State NMR spectrum of [Ag(CF3COO)]2(C6H6) ;(b) The simulated 109Ag MAS NMR

spectrum.

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a) (a)

(b)

δ11(ppm) δ22 (ppm) δ33 (ppm) δiso (ppm) Ω (ppm) κ

13C 196 184 3 127.7 193 0.876

109Ag 470 344 -240 191 710 0.645

Table 1:The parameters of simulated spectra Table 1:The parameters of simulated spectra

δ11 (ppm) δ22 (ppm) δ33 (ppm) δiso (ppm) Ω (ppm) κ

13C 193 180 8 127 185 0.859

194 166 16 125 178 0.685

109Ag 210 106 -190 42 400 0.480

150 -70 -250 -56.7 400 -0.100

δ11 (ppm) δ22 (ppm) δ33 (ppm) δiso (ppm) Ω (ppm) κ

13C 202 180 0 127 202 0.782

199 166 4 123 195 0.662

109Ag 630 596 -32 398 662 0.897

440 250 -130 186.7 570 0.333

Table 2:The parameters of simulated Table 2:The parameters of simulated spectra spectra

Table 3:The parameters of simulated spectraTable 3:The parameters of simulated spectra

I) II) III)

1. The 109Ag spectra are consistent with 13C spectra;

2. The 13C isotropic chemical shifts of Ag (I) complexes and benzene derivatives are same or very close, which means that the interaction between carbon and silver is not strong;

3. In all cases the benzene ring is rapidly rotating. We can compare our results for the coordination compounds with those for pure solid benzene (Table 4).

Table 4: The Chemical shifts parameters of benzeneTable 4: The Chemical shifts parameters of benzene

Compound Temp.(K) δ11 δ22 δ33 δiso Ω κ Ref.

Benzene (C6H6)

14 217 141 1 120 219 0.296 5

20 234 146 9 130 225 0.218 6

223 192 192 12 132 180 1.000 7