1m material modelling at various length scales · m3. strain gradient crystal plasticity...

27
M nm 1 mm 1 plastic anisotropy and non-uniform loading paths (macro-scale) Choi, Y, Walter, M.E., Lee, J.K., and Han, C.-S., 2005. Int. J. Solids & Structures, in review. Choi, Y., Han, C.-S., Lee, J.K., and Wagoner, R.H., 2005. Int. J. Plasticity, in review. Han, C.-S., Lee, M.-G., Chung, K., Wagoner, R.H., 2003. Commu. Num. Meth. Engng., 19 (6), 473-490. Han, C.-S., Chung, K., Wagoner, R.H., and Oh, S.-I., 2003. Int. J. Plasticity, 19 (2), 197-211. Han, C.-S., Choi, Y., Lee, J.K., and Wagoner, R.H., 2002. Int. J. Solids & Structures, 39, 5123-5141. crystal plasticity and composites (meso-scale ~ micron and above) Han, C-S., Kim, J.-H., and Chung, K., 2005. Accepted in Int. J. Solids & Structures. Han, C.-S., Wagoner, R.H., and Barlat, F., 2004. Int. J. Plasticity, 20, 1441-1461. Han, C.-S., Wagoner, R.H., and Barlat, F., 2004. Int. J. Plasticity, 20, 477-494. strain gradients plasticity and size dependence (micron to submicron scale) Han, C.-S., Gao, H., Huang, Y., and Nix, W.D., 2005. J. Mech. Phys. Solids, 53, 1188-1203. Han, C.-S., Gao, H., Huang, Y., and Nix, W.D., 2005. J. Mech. Phys. Solids, 53, 1204-1222. Han, C.-S., Ma, A., Roters, F., and Raabe, D., 2005. In preparation. Han, C.-S., Roters, F., and Raabe, D., 2005. In preparation. Zaafarani, N., Han, C.-S., Nikolov, S. And Raabe, D., 2005. Work in progress. dislocation theory and boundary effects (submicron to nanometer scale) Han, C.-S., Hartmaier, A., Gao, H., and Huang, Y., 2005. Accepted in Materials Science and Engineering A. m 1 µ Material modelling at various length scales m 1

Upload: others

Post on 19-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

M

nm1

mm1

• plastic anisotropy and non-uniform loading paths (macro-scale)Choi, Y, Walter, M.E., Lee, J.K., and Han, C.-S., 2005. Int. J. Solids & Structures, in review. Choi, Y., Han, C.-S., Lee, J.K., and Wagoner, R.H., 2005. Int. J. Plasticity, in review.Han, C.-S., Lee, M.-G., Chung, K., Wagoner, R.H., 2003. Commu. Num. Meth. Engng., 19 (6), 473-490.Han, C.-S., Chung, K., Wagoner, R.H., and Oh, S.-I., 2003. Int. J. Plasticity, 19 (2), 197-211.Han, C.-S., Choi, Y., Lee, J.K., and Wagoner, R.H., 2002. Int. J. Solids & Structures, 39, 5123-5141.

• crystal plasticity and composites (meso-scale ~ micron and above)Han, C-S., Kim, J.-H., and Chung, K., 2005. Accepted in Int. J. Solids & Structures.Han, C.-S., Wagoner, R.H., and Barlat, F., 2004. Int. J. Plasticity, 20, 1441-1461. Han, C.-S., Wagoner, R.H., and Barlat, F., 2004. Int. J. Plasticity, 20, 477-494.

• strain gradients plasticity and size dependence (micron to submicron scale)Han, C.-S., Gao, H., Huang, Y., and Nix, W.D., 2005. J. Mech. Phys. Solids, 53, 1188-1203. Han, C.-S., Gao, H., Huang, Y., and Nix, W.D., 2005. J. Mech. Phys. Solids, 53, 1204-1222.Han, C.-S., Ma, A., Roters, F., and Raabe, D., 2005. In preparation.Han, C.-S., Roters, F., and Raabe, D., 2005. In preparation.Zaafarani, N., Han, C.-S., Nikolov, S. And Raabe, D., 2005. Work in progress.

• dislocation theory and boundary effects (submicron to nanometer scale)Han, C.-S., Hartmaier, A., Gao, H., and Huang, Y., 2005. Accepted in Materials Science and Engineering A.

m1µ

Material modelling at various length scalesm1

Page 2: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Plastic anisotropy evolution of rolled sheet metals determined by tensile tests

experimentsM1. Macro-plasticity

Page 3: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

150

200

250

300

350

400

450

- 45 0 45 90 135

0

0.06

0.14

0.220.36

ε

RD TD

new axis of symmetry

Orientation with respect to RD

Elas

tic li

mit

[MPa

]

θ

tensile testing

mild steel- Boehler & Koss (1991)- Kim & Yin (1997) - Choi/Walter/Lee/Han (2003)

stretch in 45 degrees from RD

testing orientation to RD

Yie

ld s

tress

[MP

a]

experimental observations

Rotation of symmetry axes observed by tensile tests and pole figures

M1. Macro-plasticity

Data from Boehler & Koss (1991)

Page 4: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Rotational Hardening / Rotation of Anisotropy Axes

anisotropic yield function

isotropic kinematic rotational

M1. Macro-plasticity modeling

Page 5: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Multiplicative decomposition & rotations

peFFF =peFFF =

pmp FRF = eV

peFVF =

B~

B

mRB

oB

φieφ

oie

φi

~e

φie

pxTxe FRRFF =

pFdecomposition is not unique

additional constitutive equation is necessary

pepeTee FVFRRFF ==

M1. Macro-plasticity modeling

Loret 1983, Dafalias 1985, 2000, Zbib & Aifantis 1988,Van der Giessen 1991, Bunge & Nielsen 1997, Levitas 1998,Hill 2001, Truong Qui & Lippmann 2001, Kowalczyka & Gambina 2004

plastic spin models:

Page 6: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Tensile stretch tests

0

10

20

30

40

0 2 4 6 8 10

30 Degree

Engineering Strain (%)

Experiment(Kim & Yin '97)

FEM

-50

-40

-30

-20

-10

0

0 2 4 6 8 10

45 Degree

Engieering Strain (%)

Experiment(Kim & Yin '97)

FEM

-40

-30

-20

-10

0

0 2 4 6 8 10

60 Degree

Engineering Strain (%)

Experiment(Kim & Yin '97)

FEM

)tan(c ϑ=µ τφ φ

ϑ min. angle between EV of

and symmetry axes

pd

Experimental data by Kim & Yin 1997 for mild steel

Young’s Modulus E = 206 GPaPoisson’s ratio 3.0=ν

Initial yield stress MPa06.1070 =τ

Hill’s [1950]yield function 3550.2

,0092.1,5837.0

66

2312

=β=β=β

Isotropichardening

25.0n,MPa544c isoiso ==

Plastic spinparameter 350c −=φ

( )τddτω ppp −µ= φ

,

M1. Macro-plasticity modeling

Han et al. 2002

Page 7: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

simulationM1. Macro-plasticity

Draw bead simulation with rotational hardening

orientation to rolling direction:

rotation angle (o)

o30Ψ =

Page 8: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Springback height and twisting mode

• Unexpected twisting for isotropic (ISO) and isotropic - kinematic hardening (ANK)

• Best springback height prediction with rotational hardening

0

10

20

30

40

50

60

70

80

-30 -20 -10 0 10 20 30 40 50Z

- coo

rdin

ate

(mm

)

Y - coordinate (mm)

ISO

RIK

ANK

EXP

M1. Macro-plasticity spring-back example

orientation to rolling direction: o30Ψ =

springback

x

z

Page 9: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Crystal plasticity

M2. Crystal plasticity (meso scale)

Slip systems of an FCC crystal

Page 10: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Incorporation of Elastic Inclusion Model

modeling

IM f)f1( τττ +−=

pIe εKε = I

eeI εΓτ =

pεε =

Brown/Stobbs 1971

Bate/Roberts/Wilson 1981

• hard precipitates not subjected toplastic deformation

• homogeneously distributed precipitates

• interaction between precipitates negligible

• Eshelby approach yields useful approximation for precipitate strain

ΛIK −=

∑= )p()p()p(

f1 f ΛΛ

∑ =⊗⊗⊗Λ= 3

1ijkl)p(

l)p(

k)p(

j)p(

i)p(

ijkl)p( eeeeΛ

)p(lkij

)p(klji

)p(klij Λ=Λ=Λ

accommodation tensor:

Eshelby tensor:

)p(ie

)p(

Ieε

M2. Crystal plasticity (meso scale)

Page 11: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

peFFF =

e** FRF =

1epe

1ee

1 −−− +== VLVVVFFl &&

∑ =αααα ⊗γ+=

n

1T**p msRRL &&∑ =α

ααα− ⊗γ==n

11

ppp~~~ msFFL &&

Kinematics αom

αos

αm

αs

αm~

αs~

αm

αsB~

B

*R

B

eV

oB

M2. Crystal plasticity (meso scale) kinematics

pF

Page 12: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Platelet precipitates Spherical precipitates

Tensile stresses

Tensile back stress

11ε

11ε

11ε

11ε

11τ

11x 11x

11τ

tensile stretch testM2. Crystal plasticity (meso scale)

Page 13: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Plane strain die channel compression

compression U1

load

F

)211(1 =x)011(3 =x

20

10

10

M2. Crystal plasticity (meso scale) numerical example

Page 14: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Von Mises stress

0.11 =u75.01 =u

5.01 =u25.01 =u

numerical exampleM2. Crystal plasticity (meso scale)

Page 15: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Indentation of Ag single crystals

data from Ma & Clarke 1995

Anisotropy of size effects in single crystals

)m(h1 1−µaging time / particle radius

yiel

d st

reng

th

θ′′ θ′ θGP zones

UAPA

OAr∝

r1

<100 >< 010>

Al-3%Cu crystal (Barlat & Liu 1998)

<010> <100>

M3. Strain gradient crystal plasticity (micron/submicron scale)

2

oHH ⎟

⎠⎞⎜

⎝⎛

h d

Page 16: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Micro and meso-scale deformation

α

α

γ∇

γ

plasticlattice distortion

pF

conventional crystal plasticity

strain gradient crystal plasticity

dislocation theory

++

M3. Strain gradient crystal plasticity (micron/submicron scale) modeling

==Geometrically Necessary

Dislocations

Acharya/Bassani 2000Aifantis 1987Evers et al. 2002,2004Groma 1997,2003 Gurtin 2002Menzel/Steinmann 2000Shizawa/Zbib 1999Shu/Fleck 1998

Page 17: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Beam bending in plane strain

)sin/(cos2 ωωκ±=γα x

=A03i =εplain strain:

012 =ε

211 xκ=εpure bending:

incompressibility :

Kirchhoff condition:

0ii =ε∑ 222 xκ−=ε

( )∑α

ααα ⊗γ= Smsε &&

⎥⎥⎥

⎢⎢⎢

κ− 00000000

M3. Strain gradient crystal plasticity (micron/submicron scale) example

)(f|| ω≠κ∝A

|cos|G ωκ=ηα

Page 18: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

oMM

o15=ω

5.0=β25.0=β125.0=β

0=β

hl

=β0.1=β

Beam bendingmaximal lattice distortion

0→ω

αs

maxG →ρα

decreasing size

o75=ω

oMM

minimal lattice distortiono90→ω

αs

minG →ρα

M3. Strain gradient crystal plasticity (micron/submicron scale) example

Page 19: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Depth dependent deformation via discrete dislocation dynamics

free surface

glide planes o45±

σ σ

time

σ

M4. Dislocation dynamics (submicron-nanometer scale) simulations

applieed stress

Page 20: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

0 surface dislocation sources free surface

0

- 200

- 400

- 600

Dislocation dynamics (submicron-nanometer scale)

depth in nmy

Discrete dislocation dynamics simulation

simulations

symm

etric boundary

sym

met

ric b

ound

ary

Double click on movie

Page 21: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

10 surface dislocation sources free surface

0

- 200

- 400

- 600

Dislocation dynamics (submicron-nanometer scale)

depth in nmy

Discrete dislocation dynamics simulation

simulations

symm

etric boundary

sym

met

ric b

ound

ary

Double click on movie

Page 22: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

0 surface sources 5 surface sources 10 surface sources

1t

2t

3t

4t5t

simulationsM4. Dislocation dynamics (submicron-nanometer scale)

Page 23: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

0 surface sources

Peach-Koehler force

dislocation speed

dislocation density

total toward surface into interior

source density in interior: 25*1/µm2

mmp vb ρ=ε&Orowan relation:

simulationsM4. Dislocation dynamics (submicron-nanometer scale)

Page 24: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

dislocation density

total toward surface into interior

source density in interior: 25*1/µm2

10 surface sources

Peach-Koehler force

dislocation speed

simulations

mmp vb ρ=ε&Orowan relation:

M4. Dislocation dynamics (submicron-nanometer scale)

Page 25: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

surface: number of sources: 3nucleation stress: 0.5

interior: number of sources: 50nucleation stress: 0.5

pεpε

y y

relation of plastic deformation between surface and interior materialis dependent on dislocation sources

surface: number of sources: 13nucleation stress: 0.1

interior: number of sources: 50nucleation stress: 0.5

Depth dependent straindepthdepth

M4. Dislocation dynamics (submicron-nanometer scale)

Page 26: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Tensile stress simulations for free standing thin film

τ

h1t2t

3t

4t

5t

6t

7t

8t

9t

free surfaces

nm1000=h

nm1000=hnm125=h

nm125=h

simulations

in agreement with thickness dependence of tensile stretch experiments

(Kalkmann et al. 2002, Espinosa et al. 2004)

M4. Dislocation dynamics (submicron-nanometer scale)

Page 27: 1m Material modelling at various length scales · M3. Strain gradient crystal plasticity (micron/submicron scale) modeling = Geometrically Necessary Dislocations Acharya/Bassani 2000

Case 1:

• many defects

• high dislocation source density

• higher flow stress near surface than in interior

• stronger nano-hardness for high defect density

Case 2:

• hardly any defects in interior

• low dislocation source density

•• lower flow stress near surface than in interior

• weaker nano-hardness for low defect density

bulknuc

surfacenuc τ≤τ

bulknuc

surfacenuc τ<<τ

free surface

free surface

Consequence for flow stress near surface

M4. Dislocation dynamics (submicron-nanometer scale)