1pp imm3031 mhc function reverse genetics (2016)

Upload: raveekumaravelu

Post on 06-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    1/52

    Studying MHC function by

    reverse genetics

    IMM 3031

    Friday April 15th 20162pm lect.

    Theatre M2 

    A/Prof Robyn Slatteryrob n.slatter monash.edu

    1

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    2/52

    Learning objectives

    •  Be able to describe the basics of geneticengineering approaches including: – Transgenic manipulation

     – Homologous recombination to generate knock-out, knock-in and tissue specific modifications

    • 

    Using ES cells, traditional gene targeting and cre-lox

    • 

    Using CRISPR technology

    • 

    Describe examples of each of thesemanipulations and how these have beenused in immunological research.

    2

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    3/52

    Methods of finding ormaking mutants

    3

    1.   Screen organism for naturally occurring and“

    interesting”

     mutations -phenotypes

    2. Treat organisms with (UV light, chemicals,

    transgenes) and then screen for interestingmutants -phenotypes

    3. Generate transgenics

    4. Target mutations to specific genes byhomologous recombination

    a) cre/lox technology (1993-2013)b) CRISPR technology (since 2013)

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    4/52

    Methods of finding ormaking mutants

    4

    1.   Screen organism for naturally occurring and“

    interesting”

     mutations -phenotypes

    2. Treat organisms with (UV light, chemicals,

    transgenes) and then screen for interestingmutants -phenotypes

    3. Generate transgenics

    4. Target mutations to specific genes byhomologous recombination

    a) cre/lox technology (1993-2013)b) CRISPR technology (since 2013)  

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    5/52

    Making transgenic mice

    5

    5

     

    regulatory region 

    promoter region)

     

    - “specificity”

     

    Coding region 

    - governs what the gene

     

    product will be

     

    IntronExon

    Gene

    or

    cDNA

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    6/52

    6

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    7/52

    7

    1-cell embryo 

    at pronuclear stage 

    holding pipette 

    Construct

    transgene

    oviduct transfer 

    Screen litters for transgenic 

    mice 

    X

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    8/52

    8

     jellyfishplant

    fish

    mice

    Adding fluorescent protein 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    9/52

    9

    Slattery et al Nature 345, 724 - 726 (1990);Prevention of diabetes in non-obese diabetic I-Ak transgenic mice

     

    Normal MHC class II 

    Diabetes  No diabetes 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    10/52

    In Summary

    • 

    Transgenic mice give us an extra gene i.e.gain of function

    • 

    How do we develop other mutants? – Complete loss of gene function (knock-outs)

     – Change of gene function (knock-ins)

     – regulated loss of gene function (tissue-specificknock-outs)

    10

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    11/52

    Methods of finding ormaking mutants

    11

    1.   Screen organism for naturally occurring and“

    interesting”

     mutations -phenotypes

    2. Treat organisms with (UV light, chemicals,

    transgenes) and then screen for interestingmutants -phenotypes

    3. Generate transgenics

    4. Target mutations to specific genes byhomologous recombination

    a) ES cells and cre/lox technology (1993-2013)  b) CRISPR technology (since 2013)  

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    12/52

    Using homologous recombination in

    ES cells to generate:

    •  Gene knock-outs

    • 

    Gene knock ins

    • 

    Tissue specific gene knock-outs

    12

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    13/52

    13

    oviduct transfer 

    Screen litters for transgenic 

    mice 

    transgene transfer by transfection

    Embryonic stem

    cellsBlastocyst

    Inner cell mass

    Select and transfer ES cellsTo blastocyst

    Look for chimeric mice

    Breed mice

    Genetically modified ES cells give rise to genetically

    modified mice

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    14/52

     homologous recombination to

    generate“knock-out” mice 

    14

    Gene to be targeted

     

    Targeting vector

     

    Process which basically replaces endogenous (functional) gene with “invitro” manipulated (non-functional) gene.

    selectable markers

     

    +-

    Gangcyclovir

    Neo R= Neomycin Resistance Gene

    HSV-TK= Herpes Simplex Virus Thymidine Kinase

    HSV-TK Neo R

    Toxic

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    15/52

    15

    Diabetes. 1994 Mar;43(3):500-4.

    ß2M-deficient NOD mice do not develop

    insulitis or diabetes. 

    Wicker LS, Leiter EH, Todd JA, Renjilian RJ, Peterson E,

    Fischer PA, Podolin PL, Zijlstra M, Jaenisch R, Peterson LB.

    Use of knock-out mice to prove that MHC

    class I is required for the generation of

    CD8 T cells and the development ofdiabetes

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    16/52

     homologous recombination to

    generate“knock-in

    ” mice 

    16

    Concept can be extended to introduce defined changes to test specificfeature or function.

    Gene targeting vector

     

    Altered nucleotide s)

     

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    17/52

    The use of“tissue-specific knock out mice”

    to determine the role to MHC molecules have in T1D

    -cell 

    CD8 

    CD4 CD8

     

    APC 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    18/52

    “tissue specific knockout” of MHC class I

    expression from Islet beta cells 

    -cell 

    CD8 

    CD4 CD8 

    APC 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    19/52

     “tissue-specific

    ” knock-out mice 

    Gene to be targeted

     

    Targeting vector

     

    Gene of interest

     

    Flanked by lox sites

     

    Endogenous gene flanked by lox sites 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    20/52

    Cre mediated recombination at lox sites 

    cre 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    21/52

    21

    In vivo  cre mediated recombination at

    lox sites

    #

    issue-specific knock-out mouse 

    Tissue specific cre 

    cre 

    Gene flanked by lox 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    22/52

    Islets from class-I- 

    -bald 

    NOD and controls

    CD4 

    CD8 

    2M+/- 

    Macrophage 

    2Mloxcre-  2Mloxcre+ 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    23/52

    Islets from class-I- 

    -bald 

    NOD and controls

    CD4 

    CD8 

    2M+/- 

    Macrophage 

    2Mloxcre-  2Mloxcre+ 

    NOTE:CD8 T cells are still

    present in the islet

    milieu despite the

    lack of MHC class I

    expression on isletbeta cells

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    24/52

    Reduced incidence of diabetes inclass I beta bald

     

    NOD mice 

       C  u

      m  u   l  a   t   i  v  e   d   i  a   b

      e   t  e  s

       I  n  c

       i   d  e  n  c  e   (   %   )

    Age (days) 

    20 

    15 

    10 

    0 100  120  140  160  180  200  220  240 

    floxed  2Ma 

    HIPcre+ n=39 

    2M-/- 

    HIPcre+ n=17 

    floxed  2Ma 

    HIPcre- N=27 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    25/52

    25

    Use of “tissue-specific” knock-out mice

    demonstrated MHC class I is required on

    the target beta cells for CD8 T cells to killthem and cause T1D

    Proc Natl Acad Sci U S A. 2003 May 27;100(11):6688-93. Epub2003 May 15.

    Beta cell MHC class I is a late requirement for diabetes. 

    Hamilton-Williams EE, Palmer SE, Charlton B, Slattery RM.

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    26/52

    Class I removed from APCs 

    -cell 

    CD8 

    CD4 

    CD8 

    APC 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    27/52

    Can remove class I from

    many different subsets

    beta-cell 

    CD8 

    CD8 

    CD4 

    B cell mø 

    dend 

    CD4 

    CD8 

    APC 

    CD8 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    28/52

    Can remove class I from

    many different subsets

    beta-cell 

    CD8 

    CD8 

    CD4 

    B cell mø 

    dend 

    CD4 

    CD8 

    APC 

    CD8 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    29/52

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    30/52

    Using CRISPR-Cas technology to makegenetic modifications in vitro and in

    vivo 

    30

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    31/52

    CRISPR-cas

    its origin and constituents

    • 

    CRISPR = clustered, regularly interspaced, shortpalindromic repeats

    • 

    CRISPR is a genomic locus in some bacteria andarchaea that funtions as an adaptive immune system

    against invading phage or plasmids – Encodes an endonuclease

     – Stores snippets of foreign sequence• 

    Transcribed into RNAs that guide the endonuclease by basecomplementarity to cleave foreign nucleic acids at specific sequences

     • 

    Type II CRISPR systems – Encodes endonuclease Cas9 – Has ‘guide RNA’ to direct Cas9 to virtually any desired

    genomic sequence

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    32/52

    CRISPR-cas how does this bacterialimmune system work?

    Sontheimer et al, 2010, Nature, 438: 45-46.Jenkins, J., Biotechniques, July 2012

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    33/52

    CRISPR-cas

    its origin and constituents

    • 

    CRISPR = clustered, regularly interspaced, shortpalindromic repeats

    • 

    CRISPR is a genomic locus in some bacteria andarchaea that funtions as an adaptive immune system

    against invading phage or plasmids – Encodes an endonuclease

     – Stores snippets of foreign sequence• 

    Transcribed into RNAs that guide the endonuclease by basecomplementarity to cleave foreign nucleic acids at specific sequences

     • 

    Type II CRISPR systems – Encodes endonuclease Cas9 – Has ‘guide RNA’ to direct Cas9 to virtually any desired

    genomic sequence

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    34/52

    Targeted genome editing

    Genomic DNA Site-specific dsDNA

    break

    Cleaving single-strandedRNA-guided Cas9 protein

     

    Genome specific

    crRNA sequence

    Matching genomicsequence

    Genome specific tracrRNA-crRNAchimera

     

    Modification of targeted genome

     

    Sontheimer et al, 2010, Nature, 438: 45-46. Jenkins, J., Biotechniques,July 2012

    CRISPR-casTargeted genome editing

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    35/52

    CRISPR-casa two component system

    (critical residues for specificity in red, “seed

    sequence”) linked to tracrRNA

    - interacts with Cas9 protein

    Schematic of a CRISPR/Cas-targeted double-strand break

    1.

    2. Plasmid encoding Cas9transfected into cell

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    36/52

    CRISPR-casgenome editing options

    Double stranded break

    noDonor template present?

    Gene knockout via non-

    homologous end joining

    Gene disruption(knockout)

    NHEJ:

    xError-prone Error-free

    Gene correctionor deletion

    DNA insertion

    yes yes

    HDR: HDR:

    Precise DNA modification via

    homology-directed repair 

    plasmid donor ssOligo donor 

      A or

    A

    T

    Precise DNA modification

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    37/52

    CRISPR-casgenome editing options

    Double stranded break

    noDonor template present?

    Gene knockout via non-

    homologous end joining

    Gene disruption(knockout)

    NHEJ:

    xError-prone Error-free

    Gene correctionor deletion

    DNA insertion

    yes yes

    HDR: HDR:

    Precise DNA modification via

    homology-directed repair 

    plasmid donor ssOligo donor 

      A or

    A

    T

    Precise DNA modification

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    38/52

    NHEJ

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    39/52

    CRISPR-casgenome editing options

    Double stranded break

    noDonor template present?

    Gene knockout via non-

    homologous end joining

    Gene disruption(knockout)

    NHEJ:

    xError-prone Error-free

    Gene correctionor deletion

    DNA insertion

    yes yes

    HDR: HDR:

    Precise DNA modification via

    homology-directed repair 

    plasmid donor ssOligo donor 

      A or

    A

    T

    Precise DNA modification

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    40/52

    HDR

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    41/52

    Repairing DSBs•  Non-homologous end-joining (NHEJ)

    •  Sticks ends back together

    •  Error-prone (can create knock out)

    •  Homology directed repair (HDR)

    •  >100X more efficient for making mutants than traditional gene targeting

    due to:

    •  DS breaks

    • 

    Direct zygote injection (no need for chimeras)

    •  High fidelity

    • 

    Requires longer regions of homology (usually >500 bp)

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    42/52

    CRISPR Cas9 can also be

    used to activate and repress

    genes

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    43/52

    (critical residues for specificity in red, “seed

    sequence”) linked to tracrRNA

    - interacts with Cas9 protein

    Schematic of a CRISPR/Cas-targeted double-strand break

    1.

    2. Plasmid encoding dCas9 transfected into cell

    Using a “catalytically dead”Cas9 CRISPR

    Cas9 can also be used to activate and

    repress genes

    dCas9 Binds but does not cut

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    44/52

    Activation of genes using

    CRISPR cas9

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    45/52

    Repression of genes usingCRISPR-cas9

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    46/52

    CRISPR-cas

    genome editing can be performed for either in

    vitro or in vivo studies

    Freezing

    reagents

    CRISPR Workflows

    ~ 12 weeks

    ~ 16 weeks

    Select and transfer CRISPRmodified embryos

    to foster mother

    Cryo vials

    Gene SynthesisWorkflow

    (eg gene knock-in or modification)

    Transfect cellsMutationdetection

    assay

    Serial dilution stable cellsSelect GFP+

    cells

    ECACC Cells

    Media & Supplements

    Escort TM transfection

    Plates, tips, buffers

    PCR reagents

    Oligonucleotides

    GenElute TM

       I  n   V   i   t  r  o  s   t  u   d   i  e  s

    Microinjectinto

    nucleus

    CRISPR mRNA Genotype founder pupsfor targeted gene manipulation

    Embryo culture mediaCryopreservant

    Extract-N-Amp

    Oligonucleotides

    TM

    PCR reagents

    Weeks 0.5 0.5 1.0 2.0 4.0 4.0

    Weeks 2.0 1.0 2.0 11.0

    Media & supplements

    Plates, tips, buffers

    Cel-1 assay

    Single cellproliferation

    Media &

    supplementsPlates, tips, buffers

    VALIDATION

    FACS

    Isolate One-cellembryo

       I  n   V   i  v  o  s   t  u   d   i  e  s

     

    CRISPR

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    47/52

    CRISPR-cas

    its potential over the next few years?

    • 

    Can be used for in vitro disease modeling incombination with differentiated tissue derivedfrom induced stem cells –

     

    to study the significance of specific genetic

    contributors to phenotypic features –

     

    to modify certain features of the tissue prior toreplacement therapy

    • e.g. beta cells (genetically engineered to be resistant torecurrent autoimmune attack) for transplantation into

    diabetic patients• Question…do you think beta cells would survive in

    transplanted recipients if engineered to lack MHC class I?

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    48/52

    CRISPR-cas

    •  Can achieve everything older gene targeting

    methods can

    •  Faster

    • 

    cheaper

    •  More efficient

    • 

    Can target multiple genomic sites at once

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    49/52

    CRISPR-cas

    applications in past 2 years

    MouseBacteria

    RatRice PlantsFish

    Drosophila

    C. elegans

    Yeast

     Arabidopsis

    Tobacco Plants

    AND

    non-human primates

    Human cells

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    50/52

    • 

    https://www.youtube.com/watch?

    v=2pp17E4E-O8 

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    51/52

    !"##$%& () *+,- ./0*"%/

    !  1/ 0$2 3/4/.(5 63,%/0*/37 #"*$2*- *+$* 0$"-/! 

    8(#5./*/ .(-- () 9/2/ )"20:(2 ; $23 C0%/=.(DE */0+2(.(9&

    ;FGGH=IJFH>

    !  !,20/ IJFH *+,- 0$2 $.-( A/ 3(2/ "-,29 8KL!MKN8$-*/0+2(.(9& "   @+/%/ $%/ #$2& $34$2*$9/- *( *+,- 2/O $55%($0+

    /-5/0,$..& ,*- $55.,0$:(2 *( %/9/2/%$:4/ #/3,0,2/

    51

  • 8/18/2019 1pp IMM3031 MHC Function Reverse Genetics (2016)

    52/52

    52

    See Janeway 8th ed (Immunologists toolbox)Hamilton Williams et al (2003) Beta cell MHC

    class I is a late requirement for diabetes PNAS

    Vol100(11):6688-6693

    deJersey et al (2006) Beta cells cannot directly

    prime diabetogenic CD8 T cells in NOD micePNAS Vol104(4):1295-300

    Gaj T et al (2013) ZFN, TALEN and CRISPR/Cas-

    based methods for genome engineering Trends in

    Biotchnology Vol 31(7): pp397-404

    Bondy-Donomy & Davidson (2014) To acquire or

    resist: the complex biological effects of CRISPR-

    Cas systems Trends in Microbiology  Vol 22(4):

    pp218-225

    Reading