^2 flex cpu piggyback board - delta tau data systems, inc. cpu.pdf · flex cpu design. • due to...

21
^1 HARDWARE REFERENCE MANUAL ^2 Flex CPU Piggyback Board ^3 CPU ^4 3xx-603605-xHxx ^5 December 8 2003 Single Source Machine Control Power // Flexibility // Ease of Use 21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Upload: others

Post on 25-Mar-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

^1 HARDWARE REFERENCE MANUAL

^2 Flex CPU Piggyback Board

^3 CPU

^4 3xx-603605-xHxx

^5 December 8 2003

Single Source Machine Control Power // Flexibility // Ease of Use 21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Page 2: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Copyright Information © 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained in this manual may be updated from time-to-time due to product improvements, etc., and may not conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support Phone: (818) 717-5656 Fax: (818) 998-7807 Email: [email protected] Website: http://www.deltatau.com

Operating Conditions All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain static sensitive components that can be damaged by incorrect handling. When installing or handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials. Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or conductive materials and/or environments that could cause harm to the controller by damaging components or causing electrical shorts. When our products are used in an industrial environment, install them into an industrial electrical cabinet or industrial PC to protect them from excessive or corrosive moisture, abnormal ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc. products are directly exposed to hazardous or conductive materials and/or environments, we cannot guarantee their operation.

Page 3: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

Table of Contents i

Table of Contents INTRODUCTION .......................................................................................................................................................1 BOARD CONFIGURATION.....................................................................................................................................3

Non-Turbo CPU Base Configuration ...................................................................................................................3 Non-Turbo CPU Further Options.........................................................................................................................3 Turbo CPU Base Configuration ...........................................................................................................................3 Turbo CPU Further Options.................................................................................................................................3

HARDWARE SETUP .................................................................................................................................................5 Flex CPU Board Jumper Configuration...............................................................................................................5 Watchdog Timer Jumper.......................................................................................................................................5 Dual-Ported RAM Source Jumper ........................................................................................................................5 Power-Up State Jumpers ......................................................................................................................................5 Firmware Load Jumper ........................................................................................................................................5 Flash Memory Bank Select Jumpers.....................................................................................................................5 Installation............................................................................................................................................................5

OPERATION OF THE FLEX CPU ..........................................................................................................................7 Operation as Non-Turbo CPU..............................................................................................................................7 Operation as a Turbo CPU...................................................................................................................................9

FLEX CPU BOARD JUMPER DESCRIPTIONS..................................................................................................11 E1: Watchdog Disable Jumper ...........................................................................................................................11 E2: Dual-Ported RAM Port Select......................................................................................................................11 E4 – E6: Power-Up/Reset Load Source..............................................................................................................11 E7: Firmware Reload Enable .............................................................................................................................11 E10A, B, C: Flash Memory Bank Select .............................................................................................................12

CONNECTOR SUMMARY.....................................................................................................................................13 CONNECTOR PINOUTS.........................................................................................................................................15

J8 JRS232 (10-Pin Connector) ...........................................................................................................................15 SCHEMATICS

Page 4: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

ii Table of Contents

Page 5: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

Introduction 1

INTRODUCTION The Flex CPU piggyback board (Part # 300-603605-10x) for the PMAC/PMAC2 and Turbo PMAC/PMAC2 families of boards provides new high-end capabilities for these controllers and uses newer components with longer product lifetimes. It can be manufactured in a wide variety of configurations, and can be used in the following products:

• PMAC(1)-PC • PMAC(1)-PCI • PMAC(1)-VME • PMAC2-PC • PMAC2-PCI • PMAC2-VME • Turbo PMAC(1)-PC • Turbo PMAC(1)-PCI • Turbo PMAC(1)-VME • Turbo PMAC2-PC • Turbo PMAC2-PCI • Turbo PMAC2-VME

On the regular (non-Turbo) PMAC(1) and PMAC2 boards, the Flex CPU is provided automatically when any of the following CPU options are ordered:

• Option 5AF: 40 MHz CPU with 128k x 24 internal SRAM • Option 5CF: 80 MHz CPU with 128k x 24 internal SRAM • Option 5EF: 160 MHz CPU with 128k x 24 internal SRAM

The Flex CPU board is not provided if Option 4x or 5x is not ordered, or if Option 4A, 5A, 5B, or 5C is ordered.

On Turbo PMAC(1) and Turbo PMAC2 boards, the Flex CPU may be provided when any of the following CPU options is ordered:

• Option 5C0: 80 MHz DSP56303 CPU with 8k x 24 internal SRAM, 256k x 24 external SRAM • Option 5C3: 80 MHz DSP56303 CPU with 8k x 24 internal SRAM, 1M x 24 external SRAM • Option 5D0: 100 MHz DSP56309 CPU with 34k x 24 internal SRAM, 256k x 24 external SRAM • Option 5D3: 100 MHz DSP56309 CPU with 34k x 24 internal SRAM, 1M x 24 external SRAM

In these cases, however, the older Turbo only CPU piggyback board may also be provided.

On Turbo PMAC(1) and Turbo PMAC2 boards, the Flex CPU will be provided automatically when either of the following CPU options is ordered:

• Option 5E0: 160 MHz DSP56309 CPU with 128k x 24 internal SRAM, 256k x 24 external SRAM • Option 5E3: 160 MHz DSP56309 CPU with 128k x 24 internal SRAM, 1M x 24 external SRAM

Page 6: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

2 Introduction

Page 7: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

Board Configuration 3

BOARD CONFIGURATION Non-Turbo CPU Base Configuration When assembled for a non-Turbo CPU, the DSP IC in U1 of the Flex CPU board contains all of the memory required for operation. Therefore, there are no ICs installed in the locations for external RAM: U11, U12, U13, U14, U15, and U16.

The CPU is available in several speed options: 40 MHz (Option 5AF), 80 MHz (Option 5CF), and 160 MHz (Option 5EF). The maximum frequency of operation is indicated with a sticker on the CPU in U1.

When the Flex CPU is built for ISA-bus or VME-bus baseboards, the P3 connector consists of a 36-pin header on the solder side for direct connection to the baseboard, and a 10-pin header on the component side for cable connection of the extra signals required for dual-ported RAM interface. When the Flex CPU is built for PCI-bus baseboards the P3 connector consists only of a 56-pin header on the solder side for direct connection of all signals to the baseboard.

Non-Turbo CPU Further Options The Option 16 battery-backed parameter RAM provides a bank of non-volatile memory for the controller. Its key components are RAM ICs in U17, U18, and U19, and a battery in BT1

Turbo CPU Base Configuration When assembled for a Turbo CPU section, the Flex CPU board contains external RAM ICs in locations U11, U12, U13, U14, U15, U16. With the standard memory configuration (Option 5x0), these ICs fill the smaller footprint in these locations, leaving an open pin on the board on each end of each side.

When the Flex CPU is built for ISA-bus or VME-bus baseboards, the P3 connector consists of a 36-pin header on the solder side for direct connection to the baseboard, and a 10-pin header on the component side for cable connection of the extra signals required for dual-ported RAM interface. When the Flex CPU is built for PCI-bus baseboards the P3 connector consists only of a 56-pin header on the solder side for direct connection of all signals to the baseboard.

Turbo CPU Further Options If an expanded memory configuration (Option 5x3) is ordered, larger RAM ICs are installed in locations U11, U12, U13, U14, U15, U16, occupying the full footprints in these locations

If the Option 9T auxiliary serial port is ordered for the Turbo PMAC controller, an RS-232 serial port is provided on the CPU board to supplement the serial port on the baseboard. The key components are ICs in U28 and U29, and the connector J8.

The Option 16A battery-backed parameter RAM provides a bank of non-volatile memory for the controller. Its key components are RAM ICs in U17, U18, and U19, and a battery in BT1

Page 8: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

4 Board Configuration

Page 9: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

Hardware Setup 5

HARDWARE SETUP Flex CPU Board Jumper Configuration Watchdog Timer Jumper Jumper E1 on the Turbo CPU board must be OFF for the watchdog timer to operate. This is a very important safety feature, so it is vital that this jumper be OFF in normal operation. E1 should be put ON only to debug problems with the watchdog timer circuit.

Dual-Ported RAM Source Jumper Jumper E2 must connect pins 1 and 2 to access dual-ported RAM (non-Turbo addresses $Dxxx, Turbo addresses $06xxxx) from the baseboard. If it is desired to use the Option 2 DPRAM on the baseboard, jumper E2 must be in this setting. All Delta Tau base boards except the PMAC(1)-PC board have the option for installing DPRAM on the base board.

Jumper E2 must connect pins 2 and 3 to access dual-ported RAM (non-Turbo addresses $Dxxx, Turbo addresses $06xxxx) through the JEXP expansion port. If it is desired to use DPRAM on an external accessory board, jumper E2 must be in this setting. The PMAC(1)-PC base board (part # 602191-10x) does not have the option for installing on-board DPRAM; it requires the external Option 2 DPRAM board (part #602240-10x) for this functionality. Use of this DPRAM board, interfacing through the JEXP port, requires E2 to connect pins 2 and 3.

Power-Up State Jumpers Jumper E4 on the Turbo CPU board must be OFF, jumper E5 must be ON, and jumper E6 must be ON, in order for the CPU to copy the firmware from flash memory into active RAM on power-up/reset. This is necessary for normal operation of the card. (Other settings are for factory use only.)

Firmware Load Jumper If jumper E7 on the CPU board is ON during power-up/reset, the board comes up in “bootstrap mode,” which permits loading new firmware into the flash-memory IC on the board. When the PMAC Executive program tries to establish communications with a board in this mode, it will automatically detect that the board is in bootstrap mode and ask you what file you want to download as the new firmware.

Jumper E7 must be OFF during power-up/reset for the board to come up in normal “operational mode.”

Flash Memory Bank Select Jumpers The flash-memory IC in location U10 on the Flex CPU board has the capacity for eight separate banks of firmware, only one of which can be used at any given time. The eight combinations of settings for jumpers E10A, E10B, and E10C select which bank of the flash memory is used. In the factory production process, firmware is loaded only into Bank 0, which is selected by having all of these jumpers OFF.

Installation The Flex CPU board installs on the base controller board using the P1 and P3 stack connectors on the solder side of the CPU board. The CPU board can be further secured to the base board with a standoff and screw through the central hole. When a complete PMAC or Turbo PMAC controller is purchased, this assembly is done at the factory. In the case of retrofits or updates to existing controllers, this assembly is easy to do in the field.

ESD Warning: The Flex CPU board and PMAC controller boards contain static-sensitive components. Make sure proper ESD protection is employed.

Page 10: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

6 Hardware Setup

Page 11: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

Operation of the Flex CPU 7

OPERATION OF THE FLEX CPU Operation as Non-Turbo CPU When used as a non-Turbo CPU, the Flex CPU board operates in a manner that is fundamentally compatible with older CPU designs. However, there are a few issues to note:

• The Flex CPU requires the use of V1.17 or newer firmware. There are few differences between the previous V1.16H firmware and the V1.17 firmware other than the addition of internal support for the Flex CPU design.

• Due to more advanced processor logic and the internal integration of all memory, the Flex CPU will operate significantly faster than older non-Turbo CPU designs, even for equivalent CPU frequencies. The Flex CPU in a non-Turbo configuration will generally operate more than twice as fast as older non-Turbo CPUs running at the same frequency.

This will result in significantly faster cycle times for background tasks such as PLC programs (the frequency of interrupt-driven foreground tasks is not affected, although the increased computational speeds permit higher frequencies for these tasks). Generally, this will not be a problem, but if existing programs controlled timing by computational delay (e.g. number of loops waiting), operational differences may occur.

• The operational frequency of the CPU can now be set in software by new variable I46. If this variable is set to 0, PMAC firmware looks at the jumpers (E48 on a PMAC(1), E2 and E4 on a PMAC2) to set the operational frequency, retaining backward compatibility for 40, 60, and 80 MHz operation.. If I46 is set to a value greater than 0, the operational frequency is set to 10MHz * (I46 + 1), regardless of the jumper setting. If the desired operational frequency is higher than the maximum rated frequency for that CPU, the operational frequency will be reduced to the rated maximum. It is always possible to operate the Flex CPU board at a frequency below its rated maximum. On a Flex CPU board configured for Option 5AF with 40 MHz maximum frequency, I46 should be set to 3 to operate the CPU at its maximum rated frequency. On a Flex CPU board configured for Option 5CF with 80 MHz maximum frequency, I46 should be set to 7 to operate the CPU at its maximum rated frequency. On a Flex CPU board configured for Option 5EF with 160 MHz maximum frequency, I46 should be set to 15 to operate the CPU at its maximum rated frequency. I46 is only used at power-up/reset, so to change the operational frequency, set a new value of I46, issue a SAVE command to store this value in non-volatile flash memory, then issue a $$$ command to reset the controller. To determine the frequency at which the CPU is actually operating, issue the TYPE command to the PMAC. The PMAC will respond with five data items, the last of which is CLK Xn, where n is the multiplication factor from the 20 MHz crystal frequency (not 10 MHz). n should be equivalent to (I46+1)/2 if I46 is not requesting a frequency greater than the maximum rated for that CPU board. n will be “2” for 40 MHz operation, 4 for 80 MHz operation, and 8 for 160 MHz operation.

• If the CPU’s operational frequency has been determined by (a non-zero setting of) I46, the serial communications baud rate is determined at power-up/reset by variable I54 alone according to the following table:

Page 12: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

8 Operation of the Flex CPU

I54 Baud Rate I54 Baud Rate

0 600 8 9600 1 900 9 14,400 2 1200 10 19,200 3 1800 11 28,800 4 2400 12 38,400 5 3600 13 57,600 6 4800 14 76,800 7 7200 15 115,200

Note that these values can be different from those used on PMAC2 boards with jumper-set CPU frequencies (see below).

• If the saved value of I46 is 0, so the CPU’s operational frequency is determined by jumper settings, then the serial baud rate is determined by a combination of the setting of jumpers E44-E47 and the CPU frequency on a PMAC(1) board, as shown in the following table. These settings maintain backward compatibility.

E44 E45 E46 E47 Baud Rate for

20MHz

Baud Rate for

40MHz

Baud Rate for

60MHz

N ON ON ON Disabled Disabled Disabled OFF ON ON ON 300 600 900 ON OFF ON ON 400* 800* 1200 OFF OFF ON ON 600 1200 1800 ON ON OFF ON 800* 1600* 2400 OFF ON OFF ON 1200 2400 3600 ON OFF OFF ON 1600* 3200* 4800 OFF OFF OFF ON 2400 4800 7200 ON ON ON OFF 3200* 6400* 9600 OFF ON ON OFF 4800 9600 14400 ON OFF ON OFF 6400* 12800* 19200 OFF OFF ON OFF 9600 19200 28800 ON ON OFF OFF 12800* 25600* 38400 OFF ON OFF OFF 19200 38400 57600 ON OFF OFF OFF 25600* 51200* 76800 OFF OFF OFF OFF 38400 76800 115200 * Not an exact baud rate

Page 13: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

Operation of the Flex CPU 9

For a PMAC2 board with a saved value of 0 for I46, the serial baud rate is determined by the combination of I54 and the CPU frequency on a PMAC2 board as shown in the following table. These settings maintain backward compatibility.

I54 Baud Rate for 40 MHz CPU

Baud Rate for 60 MHz CPU

Baud Rate for 80 MHz CPU

0 600 Disabled 1200 1 900* (-0.05%) 900 1800* (-0.1%) 2 1200 1200 2400 3 1800* (-0.1%) 1800 3600* (-0.19%) 4 2400 2400 4800 5 3600* (-0.19%) 3600 7200* (-0.38%) 6 4800 4800 9600 7 7200* (-0.38%) 7200 14,400*(-0.75%) 8 9600 9600 19,200 9 14,400*(-0.75%) 14,400 28,800*(-1.5%)

10 19,200 19,200 38,400 11 28,800*(-1.5%) 28,800 57,600*(-3.0%) 12 38,400 38,400 76,800 13 57,600*(-3.0%) 57,600 115,200*(-6.0%) 14 76,800 76,800 153,600 15 Disabled 115,200 DISABLED

* Not an exact baud rate

• With the Flex CPU, the card number (0 – 15) for serial addressing of multiple cards on a daisy-chain serial cable is determined by variable I0, even on PMAC(1) boards. This has always been the case for PMAC2 boards, but with other CPU boards, the card number on PMAC(1) boards has been determined by the settings of jumpers E40 – E43. Jumpers E40 – E43 on a PMAC(1) board with the Flex CPU still determine the “direction” of the phase and servo clocks: all of these jumpers must be ON for the card to use its internally generated clock signals and to output these on the serial port connector; if any of these jumpers is OFF, the card will expect to input these clock signals from the serial port connector, and its watchdog timer will trip immediately if it does not receive these signals.

Operation as a Turbo CPU When used as a Turbo CPU, the Flex CPU is fully compatible with older CPU designs. It does permit higher-speed configurations (Option 5Ex at 160 MHz), which offer significantly higher performance both due to increased operation frequency and added internal memory.

Variable I52 determines the actual operating frequency of the Turbo CPU. The operational frequency is set to 10MHz * (I52 + 1). I52 should be set to 7 to operate an Option 5Cx board at its maximum rated frequency of 80 MHz; it should be set to 9 to operate an Option 5Dx board at its maximum rated frequency of 100 MHz; it should be set to 15 to operate an Option 5Ex board at is maximum rated frequency of 160 MHz.

I52 is used only at power-up/reset, so to change the operational frequency, set a new value of I52, issue a SAVE command to store this value in non-volatile flash memory, then issue a $$$ command to reset the controller.

Page 14: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

10 Operation of the Flex CPU

Page 15: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

Flex CPU Board Jumper Descriptions 11

FLEX CPU BOARD JUMPER DESCRIPTIONS E1: Watchdog Disable Jumper

E Point and Physical Layout

Description Default

E1

Jump pin 1 to 2 to disable Watchdog timer (for test purposes only). Remove jumper to enable Watchdog timer.

No jumper installed

E2: Dual-Ported RAM Port Select E Point and

Physical Layout Description Default

E2

Jump pin 1 to 2 to access DPRAM from baseboard. Jump pin 2 to 3 to access DPRAM through JEXP expansion port (PMAC(1)-PC with Option 2 DPRAM board).

Pins 2 and 3 jumpered (with PMAC(1)-PC base board only) Pins 1 and 2 jumpered (when used on all other base boards)

E4 – E6: Power-Up/Reset Load Source E Point and

Physical Layout Description Default

E6

E4

Remove jumper E4; jump E5 pin 1 to 2; jump E6 pin 2 to 3; to read flash IC on power-up/reset Other combinations are for factory use only; the board will not operate in any other configuration.

No E4 jumper installed; E5 and E6 jump pin 1 to 2

E7: Firmware Reload Enable E Point and

Physical Layout Description Default

E7

Jump pin 1 to 2 to reload firmware through serial or bus port. Remove jumper for normal operation.

No jumper installed

Page 16: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

12 Flex CPU Board Jumper Descriptions

E10A, B, C: Flash Memory Bank Select E Point and

Physical Layout Description Default

E10A

E10C

Remove all 3 jumpers to select flash memory bank with factory-installed firmware. Use other configuration to select one of the 7 other flash memory banks

No jumpers installed

Page 17: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

Connector Summary 13

CONNECTOR SUMMARY J2: JEXP Expansion Port (50-pin IDC header for Delta Tau accessory boards)

J5: JTAG/OnCE Port (for factory use only)

J6: JSIO Port (for factory use only)

J7: JISP Port (for factory use only)

J8: Auxiliary Serial Port (10-pin IDC header)*

P1: Stack Connector (Internal connections to main PMAC board)

P3: Stack Connector (Internal connections to main PMAC board)

*Pinout shown in next section

Page 18: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

14 Connector Summary

Page 19: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

Flex CPU Piggyback Board Hardware Reference

Connector Pinouts 15

CONNECTOR PINOUTS

J8 JRS232 (10-Pin Connector)

Front View Pin # Symbol Function Description Notes

1 N.C. No Connect 2 DTR Bidirect Data Terminal Ready Tied to DSR 3 TXD/ Input Receive Data Host transmit data 4 CTS Input Clear to Send Host ready bit 5 RXD/ Output Send Data Host receive data 6 RTS Output Request to Send PMAC ready bit 7 DSR Bidirect Data Set Ready Tied to DTR 8 N.C. No Connect 9 GND Common PMAC Common

10 +5V Output +5VDC Supply Power supply out The JRS232 connector provided with Option 9T on a Turbo PMAC is an auxiliary serial port that can be used independently of the standard main serial port and other communications ports. It can be connected with a straight-across flat cable to a DB-9 connector with the standard RS-232 pinout.

Page 20: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

THIS DOCUMENT IS THE CONFIDENTIAL PROPERTY OF DELTA TAUDATA SYSTEMS INC. AND IS LOANED SUBJECT TO RETURN UPONDEMAND. TITLE TO THIS DOCUMENT IS NEVER SOLD OR TRANSFERRED FOR ANY REASON. THIS DOCUMENT IS TO BE USEDONLY PURSUANT TO WRITTEN LICENSE OR WRITTEN INSTRUCTIONSOF DELTA TAU DATA SYSTEMS INC. ALL RIGHTS TO DESIGNS ANDINVENTIONS ARE RESERVED BY DELTA TAU DATA SYSTEMS INC.POSSESSION OF THIS DOCUMENT INDICATES ACCEPTANCE OF THEABOVE AGREEMENT.

THIS DOCUMENT IS THE CONFIDENTIAL PROPERTY OF DELTA TAUDATA SYSTEMS INC. AND IS LOANED SUBJECT TO RETURN UPONDEMAND. TITLE TO THIS DOCUMENT IS NEVER SOLD OR TRANSFERRED FOR ANY REASON. THIS DOCUMENT IS TO BE USEDONLY PURSUANT TO WRITTEN LICENSE OR WRITTEN INSTRUCTIONSOF DELTA TAU DATA SYSTEMS INC. ALL RIGHTS TO DESIGNS ANDINVENTIONS ARE RESERVED BY DELTA TAU DATA SYSTEMS INC.POSSESSION OF THIS DOCUMENT INDICATES ACCEPTANCE OF THEABOVE AGREEMENT.

(JTAG/OnCE)

TSIGND

GND

GNDN.C.

N.C.

TSO

TCK

RST-TMS

DE-TRST-

+3.3V

WDPWR

J5

+

GND

(jisp)

(jsio)

+5VTXDRXD

CTS-

INIT-GND

(.100 MOLEX)

+3.3V

N.C.

P1

J6

J7

JUMP `J6' PIN 6 TO 7TO LOAD `isp' PART

E4E5E6

E1

RTS-

E7

|Link|605-1sh2.sch

X/Y:$000000-$0107FF STANDARD MEMORY OPTION (64K)P:$000000-$0FFFFF

X/Y:$000000-$03FFFF EXTENDED MEMORY OPTION (256K)

PRAM MEMORY P:

$040000-$0403FF User Written Phase (1K)$000000-$00FFFF Firmware (64K)

$040400-$040BFF User Written Servo (2K)$050000-$05FFFF Plcc Standard Memory Option (64K)$050000-$0BFFFF Plcc Extended Memory Option (448K)

GUARD BANDING REQ'D

GND+5V

TXD-

RXD-CTS

RTSDSR

DTR

(JRS232)

NOTE:

OF THE `RS232' INPUT SECTION. TO PROVIDE `ESD' PROTECTION

N.C.

N.C.

J8

PWR WD

**POLY CAP**

GUARD BANDGUARD BAND

GUARD BAND

GUARD BAND

*DUAL FOOTPRINT*

OR

THIS PART MUST BE `MAX3232ECWE'

GUARD BAND

GUARD BANDING REQ'DE2 1-to-2 is for DPR on base board E2 2-to-3 is for DPR on expansion board

GUARD BAND

GUARD BAND

FOR `DSP56303PW80'DO NOT INSTALL

FOR `DSP56303PW80'

INSTALL `F2' ONLY

FOR `DSP56309PW80'

INSTALL

DO NOT INSTALL `F2'

NOTE1:

NOTE2:

* `VR1,C89,C90,R11,R12'

`VR1,C89,C90,R11,R12'

X/Y:$078000-$0780FFX/Y:$078100-$0781FF

X/Y:$078200-$0782FFX/Y:$078300-$0783FF

X/Y:$078800-$0789FF

X/Y:$078A00-$078AFFX/Y:$078B00-$078BFFX/Y:$078C00-$078CFFX/Y:$078D00-$078DFF

X/Y:$078E00-$078EFFX/Y:$078F00-$078FFF

X/Y:$078400-$0787FF

TDOTDI

BSCAN-

TMS

TCK

X/Y:$078F00-$078FFF

X/Y:$070000-$077FFF

X/Y:$060000-$060FFF STANDARD MEMORY OPTION (4K)X/Y:$060000-$063FFF EXTENDED MEMORY OPTION (16K)X/Y:$060000-$06FFFF EXTENDED MEMORY OPTION (64K)

X/Y:$050000-$053FFF STANDARD MEMORY OPTION (16K)P:$D00000-$D3FFFF (MAXIMUM OF 16 BANKS)

X/Y:$050000-$05FFFF EXTENDED MEMORY OPTION (64K)

Memory Range

AND `DSP56311GC150'

NOTE1:NOTE2:

OR

(Request 6pf load capacitance)(See layout instructions)

*NETLIST CHANGE*********

*********NETLIST CHANGE*

*NETLIST CHANGE*

*NETLIST CHANGE*********

*NETLIST CHANGE**NETLIST CHANGE*

603605-322P -

DSP563XX CPU Piggyback Board

Delta Tau Data Systems, Inc.

D

1 2Thursday, September 19, 2002

Title

Size Document Number Rev

Date: Sheet of

A0A1A2A3A4

RESET- A5A6

TRST- A7MODD/IRQD- A8MODC/IRQC- A9MODB/IRQB- A10MODA/IRQA- A11DE- A12TA- A13TMS A14TCK A15TDO A16TDI A17BSC12 A19X/YPBSC11 WR-BSTD1 RD-BSRD1SC02 STD0SC01 SRD0

Vbat D0 SCK0RP1_9 D1 SC02

D2PRDY D3 SIRQ-

D4D5D6D7

BH0 D0 D8BH1 D1 D9BH2 D2 D10BH3 D3 D11

SC02 BH4 D4 D12A0 BA00 BHREQ- BH5 D5 D13A1 BA01 DE- BH6 D6 D14

BH7 D7 D15TMS A2 BA02 SRD0 BHA0 D8 D16

A3 BA03 STD0 BHA1 D9 D17SCK0 BHA2 D10 D18

DE- A4 BA04 BB- MODD/IRQD- D11 D19A5 BA05 BHDS- D12 D20

BHR/W D13 D21A6 BA06 BHACK- D14 D22A7 BA07 BRTS- BHREQ- D15 D23A8 BA08 TMS BRXD D16A9 BA09 BG- BTXD D17

T/R- SRD0 D18A10 BA10 BSTD1 STD0 D19A11 BA11 BSRD1 BOOTEN- D20

BSCK1 BRTS- D21A12 BA12 BSC12 SCK0 D22

TXD A13 BA13 BSCK1 D23RXD BRCLK A0CTS- A14 BA14 PHA_A A1RTS- A15 BA15 SER_A A2

INIT- BCTS- A3BG- A4A19X/YP A5FLASHCS- A6DRAMCS- A7 INIT-PRAMCS- A8

CPUCLK EXTAL A9HACK- BHACK- A10

EXTAL A11A19X/YP BX/Y A12

WR- BWR- A13A14

RD- BRD- A15BA05 BA05_A A16 WDTC

A17RD- BA06 BA06_A RD-FLASHCS- BA07 BA07_A WR-

BA08 BA08_ABA09 BA09_A BB-

PRAMCS-BA10 BA10_A

WR- BA11 BA11_A

BA12 BA12_ABA13 BA13_A

BA14 BA14_ABA15 BA15_A

MODA/IRQA-MODB/IRQB-MODC/IRQC-BOOTEN-

H0 BH0 SC01H1 BH1 SIRQ-H2 BH2 BTXDH3 BH3 BSC11H4 BH4H5 BH5 VbatH6 BH6H7 BH7HR/W BHR/WHDS- BHDS-A3 LA12A4 LA13 VoutA5 PA16A6 PA17A7 PA18A8 PA19A9 PA20A10 PA21A11A12 BBRCS-A13 BBRAMCS-A14 IOCS_A- BBRAMCS-A15 IOCS_B-A16 TRST-A17RD- 19.6608MhzWR-PRAMCS- CS0-DRAMCS- CS1-FLASHCS-CPUCLK CS2-SEL CS3-RESET- BSTD1 STD1BSCAN- CS4- BSRD1 SRD1

CS00- BSCK1 SCK1BSC12 SC12

CS04- BSC11 SC11CS06- WAIT1- BTXD TXDCS10- TA- BRTS- RTS-CS12- WAIT2- BHREQ- HREQ-

CS14-CS16-

BRCLKVMECS-DPRCS-

WDTCRP1_9

INIT- 19.6608MhzRESET- RESET_A WDO

HA2HA1HA0 TXDHR/WHDS- STD1HREQ- SRD1H7 SCK1

IOCS_A- H6 SC12BWR_A- H5 SC11

BWR- H4H3H2H1H0

WAIT2-BRD_A-

BRD-BRXD RXD BPHABCTS- CTS-SER_A BSERPHA_A BPHABHA2 HA2

IOCS_B- BHA1 HA1BWR_B- BHA0 HA0

BWR- MODD/IRQD- IRQB-BSER

T/R-RESET

BRD_B-BRD-

RESET_B

TDI

TDO

TCK

RESET-

TRST-

RESET

BSCAN-

WDO

CPUCLK

RESET-

HACK-RXD

CTS-

IRQB-

CS4-WAIT1-

PINIT

BA00

BA10BA11

BA12BA13

BA14BA15

BA01

BA02BA03

BA04BA05

BA06BA07BA08BA09

BX/YBWR-

BRD-BA05_A

BA06_ABA07_ABA08_ABA09_A

BA10_ABA11_A

BBRCS-

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17

A19X/YPWR-RD-

PRAMCS-DRAMCS-FLASHCS-

PA18PA19PA20

D0D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17D18D19D20D21D22D23

PRDY

Vout

RESET-PA21

BA15_ABA14_A

19.6608Mhz

IOCS_B-IOCS_A-

BA13_ABA12_A

RESET_B

BPHA

BSER

WAIT2-

BRD_A-

BWR_A-

BRD_B-

BWR_B-

PA16PA17

CS0-CS1-

CS2-CS3-

CS4-CS00-

CS04-CS06-CS10-CS12-

CS14-CS16-

DPRCS-VMECS-

LA13LA12

+5V +3P3V

+3P3V

+5V

+3P3V

+5V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+5V

+5V

+5V

+3P3V

+3P3V

+3P3V

VCCQL

+3P3V

+5V VCCQL

+5V

+3P3V

+5V

+5V

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GNDGND

GND

GND

GND

GND

GNDGND

GND

GND

GND

+5V

GND

GND

VCCQL

+3P3V

GND

+5V

+5VGND

C35

.01UF

RP4

3.3KSIP10C

12 3 4 5 6 7 8 9

10

+C3710UF

16V(TANT)

+C90

10UF16V

(TANT)

5 6

C21.01UF

R2

10K

3 4

E42 1

E62 1

D1ALEDRED

J6

HEA_SIP 8

12345678

D2LEDGRN

RP5C1KSIP6I

56

R3

1K

P1

VSP01VT18A01

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 36

R6A1K

R51K

VR1LM1117MPX-3.3MC33269ST-3.3

(SOT-223)

3

1

2IN

GN

D

OUT

C15.1UFC17.01FARAD

FM0H103ZNEC

U27

74LCX245(TSSOP20)

23456789

119

1817161514131211

2010

A0A1A2A3A4A5A6A7

T/ROE

B0B1B2B3B4B5B6B7

VCCGND

U24A

74ACT32(SO14)

1

23

C16.1UF

U4A

74ACT14(SO14)

1 2

U24B

74ACT32(SO14)

4

56

U24C

74ACT32(SO14)

9

108

U5

DS2415P(TSOC)

1234

56 GND

DATAVDDVBAT

X1X2

U2

MAX795SCSA(SO8)

2 7

1

3

4 5

6

8

VCC RST

VOUT

ON

GND CEI

CEO

BATT

U24D

74ACT32(SO14)

12

1311

C20

.1UF

C70

22pf

U4B

74ACT14(SO14)

3 4

C5

.1UF

D5

MMBD301LT1

1 3

C88.1UF

U6

ISPLSI2064E_DECODE(TSOP100)

8617293355465770593180563

717384

79906

849

8278543960372016117

15146687656210261

24527527492

132538 51

637488

41424845475832

936750

6176778922192840

99

1264

100

43

303572346997969594989192583812144531823366885H0

H1H2H3H4H5H6H7HRWHDS-A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17RD-/TDOWR-/TCKPRAMCS-/TMSDRAMCS-PROMCS-/TDICPUCLK/Y0SELRESET-BSCAN-GOE0GOE1Y1Y2N.C.N.C.VCCIOVCCIOVCCIOVCCION.C.N.C.GNDGNDGNDGND GND

GNDGNDGND

CS16-CS14-CS12-CS10-CS06-CS04-CS00-

BRCLKWDTC

N.C.

N.C.N.C.N.C.N.C.CS4-CS3-CS2-CS1-

N.C.

VCCVCC

N.C.

CS0-

IOCS1-IOCS0-

BBRCS-DPRCS-VMECS-

PA21PA20PA19PA18PA17PA16LA13LA12

BHDS-BHRW

BH7BH6BH5BH4BH3BH2BH1BH0

C28

.1UF

RP5A

1KSIP6I1 2

VR2LM1117MPX-1.8MC33269ST-1.8

(SOT-223)

3

1

2IN

GN

D

OUT

U30

PI74FCT245TL(TSSOP20)

23456789

119

1817161514131211

2010

A0A1A2A3A4A5A6A7

T/ROE

B0B1B2B3B4B5B6B7

VCCGND

J7

HSIP8NO5

1234

678

RP73.3KSIP10C

123456789

10

BT1

3.6V BAT

12

U26B

74ACT14(SO14)

3 4

C85

.1UF

U29

MAX3232ECWE(SOL16)

2

1

3

11

12

10

9

16

6

4

5

14

13

7

8

15

+V

C1+

C1-

TXD

RXD

RTS

CTS

VCC

V-

C2+

C2-

TXD

RXD

RTS

CTS

VSS

U8

74LCX16245(TSSOP48)

23

56

89

1112

46

4443

4140

383736

1

4

7

10

4748

13141516171819202122232425

26272829303132333435

39

42

45

B0B1

B2B3

B4B5

B6B7

A1

A2A3

A4A5

A6A7A8

T/R1

GND

VCC

GND

A0OE1

B8B9

GNDB10B11

VCCB12B13

GNDB14B15

T/R2OE2A15A14GNDA13A12VCCA11A10GNDA9

GND

VCC

GND

TP2

SIRQ-

U26C

74ACT14(SO14)

5 6

C86

.1UF

U26E

74ACT14(SO14)

11 10

E52 1

U26D

74ACT14(SO14)

9 8

RP5B

1KSIP6I3 4

RP83.3KSIP10C

12 3 4 5 6 7 8 9

10

D2ALEDGRN

U26A

74ACT14(SO14)

1 2

R5A1K

U26F

74ACT14(SO14)

13 12

U9

NC7SZ00(SOT23-5)

1

24

53

C40

.1UF

U7

74LCX16245(TSSOP48)

23

56

89

1112

46

4443

4140

383736

1

4

7

10

4748

13141516171819202122232425

26272829303132333435

39

42

45

B0B1

B2B3

B4B5

B6B7

A1

A2A3

A4A5

A6A7A8

T/R1

GND

VCC

GND

A0OE1

B8B9

GNDB10B11

VCCB12B13

GNDB14B15

T/R2OE2A15A14GNDA13A12VCCA11A10GNDA9

GND

VCC

GND

C27

.1UF

D3

MMBD301LT1

1 3

+ C341UF35Vtant

D4

MMBD301LT1

1 3

C26

.1UF

C4

.1UF

Q1MMBT3906LT1

(SOT23)

1

23

C83

.1UF

SOT23

Q22N7002

(SOT23)3

12

C84

.1UF

C10

.1UF

C101

.1UF

C102

.1UF

J5

HEADER14_NO8

1234567

91011121314

C76.1UF

C82

.1UF

C87

.1UF

C105

.1UF

C100

.1UF

Y3C-002RX

32.768Khz

TP1GND

C103

.1UF

U4C

74ACT14(SO14)

5 6

C72

.1UF

E2 23

1

RP6

10KSIP10C

1 2345678910

E72 1

C73

.1UF

U25

PI74FCT16245ATA(TSSOP48)

23

56

89

1112

46

4443

4140

383736

1

4

7

10

4748

13141516171819202122232425

26272829303132333435

39

42

45

B0B1

B2B3

B4B5

B6B7

A1

A2A3

A4A5

A6A7A8

T/R1

GND

VCC

GND

A0OE1

B8B9

GNDB10B11

VCCB12B13

GNDB14B15

T/R2OE2A15A14GNDA13A12VCCA11A10GNDA9

GND

VCC

GND

C32.1UF

C74

.1UFC75

.1UF

J8

HEADER 10(BOX)

12345678910

C12

.1UF

C8

.1UF

C14

.1UF

U4D

74ACT14(SO14)

9 8

C11

.1UF

U3

DS1231S(SOL16)

12345678

161514131211109

N.C.INN.C.MODEN.C.TOLN.C.GND

N.C.VCCN.C.NMIN.C.RSTN.C.RST

R7100

C41

.1UF

Y2

ECS-36-20-5P3.6864Mhz

C43.001

(0805)POLY

C3

.1UF

F1

55FZ103N

C42

.47UF

U1

DSP56311GC150

D4D5

E4

D11D10D9D8D7D6

E5 E6 E7 E8 E9 E10

E11

F4 F5 F6 F7 F8 F9 F10

F11

G4

G5

G6

G7

G8

G9

G10

G11

H4

H5

H6

H7

H8

H9

H10

H11

J4 J5 J6 J7 J8 J9 J10

J11

K4 K5 K6 K7 K8 K9 K10

K11

L4 L5 L6

L7L8L9L10L11

E14D12D13C13C14B13C12A13B12A12B11A11C10B10A10B9A9B8C8A8B7B6C6A6N14M13M14L13L14K13K14J13J12J14H13H14G14G12F13F14E13E12M12M11N11P11

M5P4N4P3N3P2N1N2M3M1M2L1J3J2J1K2

P6N6P5M6

M10N10M9M8P8N8N7P7

P12N13P13K3L2L3

G1G2

H3

F1G3

F3F2

E3E1

D2

C1

B1 C2

A2 B2 B3 A4 C3

P10

A3 D3

C4

A5 C5

B5 N9

H2

G13

C7

P14

P9N12

L12

K12

H12

D14

C11

C9

A7N5

D1

B4 B14

M7

H1

F12

A14

K1E2P1A1 M4

GNDGND

GN

D

GNDGNDGNDGNDGNDGND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GNDGNDGNDGNDGND

D0D1D2D3D4D5D6D7D8D9

D10D11D12D13D14D15D16D17D18D19D20D21D22D23

A0A1A2A3A4A5A6A7A8A9

A10A11A12A13A14A15A16A17RD-

WR-BR-BB-

H0H1H2H3H4H5H6H7HA0HA1HA2HCS-HDS-HRWHACK-HREQ-

GNDP1GNDPPCAPVCCPBCLK-BCLKCLKOUTEXTALXTALCAS-AA3AA2AA1AA0BG-TIO2TIO1TIO0

SCK1SCLK

SCK0

RXDTXD

SC00SC10

SRD0STD0

SC01

SC02

SRD

1ST

D1

SC11

SC12 TD

ITD

OTC

K TATM

S

DE

IRQ

AIR

QB

IRQ

CIR

QD

VCC

QL

VCC

QL

VCC

QL

VCC

QL

N.C

.VC

CC

VCC

CVC

CA

VCC

AVC

CA

VCC

DVC

CD

VCC

DVC

CD

RES

ETPI

NT

TRST

N.C

.VC

CQ

HVC

CQ

HVC

CQ

HN

.C.

VCC

SVC

CS

N.C

.N

.C.

VCC

H

C13

.1UF

RP1

3.3KSIP10C

12 3 4 5 6 7 8 9

10

C71

22pf

Q3

MMBT3906LT1

(SOT23)

1

23

C22

.1UF

D1LEDRED

C23

.1UF

R61K

U4E

74ACT14(SO14)

11 10

C24

.1UF

C7

.1UF

U28

MAX3100CEE(QSOP)

12345678 9

10111213141516DIN

DOUTSCLKCSN.C.IRQSHDNGND X2

X1CTSN.C.RTS

RXTX

VCC

C25

.1UF

D7

1SMC5.0AT3

RP2

3.3KSIP10C

123456789 10

SOT23

Q4

2N7002(SOT23)

3

12

D6

MMBD301LT1

1 3

C6

.1UF

Y1A

MHR13FAJ19.6608(4 PIN SMT)

1

2 3

4N.C.

GND CLK

VCC

U4F

74ACT14(SO14)

13 12

C9

.1UF

+C3810UF16V

(TANT)

R1

10

R4100K

C33

.1UF

F2

55FZ103N

C29

.1UF

SOT23

Q52N7002(SOT23)

3

12

C1.1UF

E1

21

Y1B

19.6608MHz(DIP14WIDE)

1

4

7 8

11

14N.C.

GND

GND CLK

CLK

VCC

+C89

10UF16V

(TANT)

R8

330

C2

.1UF

C104

.1UF

RP9A330SIP8I1 2

C36

.1UF

RP3

10KSIP10C

1 2345678910

7 8

Page 21: ^2 Flex CPU Piggyback Board - Delta Tau Data Systems, Inc. CPU.pdf · Flex CPU design. • Due to more advanced processor logic and the internal integration of all memory, the Flex

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

THIS DOCUMENT IS THE CONFIDENTIAL PROPERTY OF DELTA TAUDATA SYSTEMS INC. AND IS LOANED SUBJECT TO RETURN UPONDEMAND. TITLE TO THIS DOCUMENT IS NEVER SOLD OR TRANSFERRED FOR ANY REASON. THIS DOCUMENT IS TO BE USEDONLY PURSUANT TO WRITTEN LICENSE OR WRITTEN INSTRUCTIONSOF DELTA TAU DATA SYSTEMS INC. ALL RIGHTS TO DESIGNS ANDINVENTIONS ARE RESERVED BY DELTA TAU DATA SYSTEMS INC.POSSESSION OF THIS DOCUMENT INDICATES ACCEPTANCE OF THEABOVE AGREEMENT.

THIS DOCUMENT IS THE CONFIDENTIAL PROPERTY OF DELTA TAUDATA SYSTEMS INC. AND IS LOANED SUBJECT TO RETURN UPONDEMAND. TITLE TO THIS DOCUMENT IS NEVER SOLD OR TRANSFERRED FOR ANY REASON. THIS DOCUMENT IS TO BE USEDONLY PURSUANT TO WRITTEN LICENSE OR WRITTEN INSTRUCTIONSOF DELTA TAU DATA SYSTEMS INC. ALL RIGHTS TO DESIGNS ANDINVENTIONS ARE RESERVED BY DELTA TAU DATA SYSTEMS INC.POSSESSION OF THIS DOCUMENT INDICATES ACCEPTANCE OF THEABOVE AGREEMENT.

(JEXP)J2

|605-1sh2.sch

P3ON SOLDER SIDE

W1

`W1'= 1 TO 2 FOR 28F320J3A`W1'= 2 TO 3 FOR 28F320J5A

"E10" FLASH BANK SELECT

*NETLIST CHANGE*

*NETLIST CHANGE*

JUMPER 2-3 for Standard PMAC1 and PMAC2

JUMPER 1-2 for TURBO

W2 JUMPER SELECTION

603605-322P -

DSP563XX CPU, MEMORY,I/O SECTION

Delta Tau Data Systems, Inc.

C

2 2Thursday, September 19, 2002

Title

Size Document Number Rev

Date: Sheet of

RD- RD-WR- WR-A17 A19X/YPA16 A17A15 A16 BA15

A0 A14 A15 BA14 BBRCS-A1 A13 A14 BA13 BRD-A2 A12 A13 BA12 BWR-A3 A11 A12 BA11A4 A10 A11 BA10A5 A9 A10 BA09A6 A8 A9 BA08A7 A7 A8 BA07A8 A6 D23 A7 D23 BA06 D23A9 A5 D22 A6 D22 BA05 D22A10 A4 D21 A5 D21 BA04 D21A11 A3 D20 A4 D20 BA03 D20A12 A2 D19 A3 D19 BA02 D19A13 A1 D18 A2 D18 BA01 D18A14 A0 D17 A1 D17 BA00 D17A15 A19X/YP D16 A0 D16 BX/Y D16A16A17

A19X/YP

D0D1 RD- RD-D2 WR- WR-D3 A17 A19X/YPD4 A16 A17D5 A15 A16 BA15D6 A14 A15 BA14 BBRCS-D7 A13 A14 BA13 BRD-D8 A12 A13 BA12 BWR-D9 A11 A12 BA11D10 A10 A11 BA10D11 A9 A10 BA09D12 A8 A9 BA08D13 A7 A8 BA07D14 A6 D15 A7 D15 BA06 D15D15 A5 D14 A6 D14 BA05 D14D16 A4 D13 A5 D13 BA04 D13D17 A3 D12 A4 D12 BA03 D12D18 A2 D11 A3 D11 BA02 D11D19 A1 D10 A2 D10 BA01 D10D20 A0 D9 A1 D9 BA00 D9

FLASHCS- BWR- D21 A19X/YP D8 A0 D8 BX/Y D8PA21 BRD- D22PA20 PRDY D23PA19PA18 D7PA17PA16 D6 BA00 RD- RD-

+3P3V/+5V BA01 WR- WR-BA15 BA02 A17 A19X/YPBA14 D5 BA03 A16 A17BA13 BA04 A15 A16 BA15BA12 D4 BA05 A14 A15 BA14 BBRCS-

BA06 A13 A14 BA13 BRD-BA07 A12 A13 BA12 BWR-

RESET- BA08 A11 A12 BA11BA11 D3 BA09 A10 A11 BA10BA10 BA10 A9 A10 BA09BA09 D2 BA11 A8 A9 BA08BA08 +3P3V/+5V BA12 A7 A8 BA07

BA13 A6 D7 A7 D7 BA06 D7BA07 D1 BA14 A5 D6 A6 D6 BA05 D6BA06 BA15 A4 D5 A5 D5 BA04 D5BA05 D0 BX/Y A3 D4 A4 D4 BA03 D4BA04 BA00 A2 D3 A3 D3 BA02 D3BA03 A1 D2 A2 D2 BA01 D2BA02 A0 D1 A1 D1 BA00 D1BA01 A19X/YP D0 A0 D0 BX/Y D0

IOCS_A- BRD- IOCS_B- BRD-D0 BD00_A D0 BD00_BD1 BD01_A D1 BD01_B

D2 BD02_A D2 BD02_BD3 BD03_A D3 BD03_B

D4 BD04_A D4 BD04_BD5 BD05_A D5 BD05_B

D6 BD06_A D6 BD06_B BD00_A BD01_AD7 BD07_A D7 BD07_B BD02_A BD03_AD8 BD08_A D8 BD08_B BD04_A BD05_AD9 BD09_A D9 BD09_B BD06_A BD07_A

BD08_A BD09_AD10 BD10_A D10 BD10_B BD10_A BD11_AD11 BD11_A D11 BD11_B BD12_A BD13_A

BD14_A BD15_AD12 BD12_A D12 BD12_B BD16_A BD17_AD13 BD13_A D13 BD13_B BD18_A BD19_A

BD20_A BD21_AD14 BD14_A D14 BD14_B BD22_A BD23_AD15 BD15_A D15 BD15_B

BRD- BRD- BD00_B BD01_B BA00_A BA01_ABD02_B BD03_B BA02_A BA03_ABD04_B BD05_B CS00- BX/Y_ABD06_B BD07_B CS0- CS1-BD08_B BD09_B BWR_A- BRD_A-

BRD- BRD- BD10_B BD11_B BA13_AD16 BD16_A D16 BD16_B BD12_B BD13_B BA14_A BA15_AD17 BD17_A D17 BD17_B BD14_B BD15_B BA04_A BA05_A

BD16_B BD17_B BA06_A BA07_AD18 BD18_A D18 BD18_B BD18_B BD19_B BA08_A BA09_AD19 BD19_A D19 BD19_B BD20_B BD21_B BA10_A BA11_A

BD22_B BD23_B DPRCS- VMECS-D20 BD20_A D20 BD20_BD21 BD21_A D21 BD21_B BA00_B BA01_B

BA02_B BA03_BD22 BD22_A D22 BD22_B BA04_B BX/Y_BD23 BD23_A D23 BD23_B CS2- CS3-BA00 BA00_A BA00 BA00_B CS04- CS06-BA01 BA01_A BA01 BA01_B CS10- CS12-

CS14- CS16-BA02 BA02_A BA02 BA02_B BA12_B BA13_BBA03 BA03_A BA03 BA03_B BWR_B- BRD_B-

BA04 BA04_A BA04 BA04_B RESET_B WAIT2-BX/Y BX/Y_A BX/Y BX/Y_B SER_B PHA_B

LA12 BA12_B BPHA PHA_BLA13 BA13_B BSER SER_B

Vout

Vout

Vout

BA12_A

CS2- CS3-CS04- CS06-CS10- CS12-CS14- CS16-

BA00

BA10BA11BA12BA13BA14BA15

BA01BA02BA03BA04BA05BA06BA07BA08BA09

BX/Y

D0D1D2D3D4D5D6D7D8D9

D10D11D12D13D14D15D16D17D18D19D20D21D22D23

WR-RD-

A0A1A2A3A4A5A6A7A8A9

A10A11A12A13A14A15A16A17

A19X/YP

BBRCS-

Vout

WAIT2-

CS0-CS00-

CS1-

DPRCS-

BA06_ABA08_ABA10_A

VMECS-

BA05_ABA07_ABA09_ABA11_A

BA14_ABA13_ABA15_A

IOCS_A- IOCS_B-

BPHABSER

RESET_B

BWR_B- BRD_B-

BWR_A- BRD_A-

RESET-

FLASHCS-

PA18PA19PA20 PRDYPA21

BWR-BRD-

LA13LA12

PA16PA17

BA12_A

GND

GND

GND

GND

GND

GND

+3P3V

+3P3V

+3P3V

+3P3V

GND

GND

GND

GND

GND

GND

+5V

+5V

+5V

+5V

+5V

+3P3V +5V

+3p3V

GND GND

GNDGND

GND

GND

GND

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

+3P3V

GND GND

GNDGND

GND GND

+5V

GND

C50

.1UF

C51

.1UF

C52

.1UF

P3

VSP01VT28A01

1 23 45 67 89 10

11 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 52

5553 54

56

SPARE SPARESPARE SPARESPARE SPAREP3-01 P3-02P3-03 P3-04P3-05 P3-06P3-07 P3-08P3-09 P3-10P3-11 P3-12P3-13 P3-14P3-15 P3-16P3-17 P3-18P3-19 P3-20P3-21 P3-22P3-23 P3-24P3-25 P3-26P3-27 P3-28P3-29 P3-30P3-31 P3-32P3-33 P3-34P3-35 P3-36BA12A BA13ABA14A BA15AJ4-01 J4-02J4-03 J4-04J4-05 J4-06

J4-09J4-07 J4-08

J4-10

C53

.1UF

U19

KM68V1000BL-70(SOJ/SOP32)

121110

98765

27262325

428

331

1314151718192021

21 16

3022242932

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15

DQ0DQ1DQ2DQ3DQ4DQ5DQ6DQ7

A16N.C. VSS

CECEOEWE

VDD

C54

.1UF

W2SOLDERJUMPER

23

1

C55

.1UF

C58

.1UF

C59

.1UF

C60

.1UF

W1

SOLDERJUMPER

23

1

C78

.1UF

C61

.1UF

C79

.1UF

C77

.1UF

C62

.1UF

U10

E28F320J3A(TSOP56)

123456789

10111213141516171819202122232425262728 29

303132333435363738394041424344454647484950515253545556A22

CE1-A21A20A19A18A17A16VCCA15A14A13A12CE0VPENRP-A11A10A09A08GNDA07A06A05A04A03A02A01 CE2

A23BYTE-

A00DQ0DQ8DQ1DQ9VCCDQ2

DQ10DQ3

DQ11GND

VCCQDQ4

DQ12DQ5

DQ13GNDDQ6

DQ14DQ7

DQ15STSOE-WE-

A24_WP

U17

KM68V1000BL-70(SOJ/SOP32)

121110

98765

27262325

428

331

1314151718192021

21 16

3022242932

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15

DQ0DQ1DQ2DQ3DQ4DQ5DQ6DQ7

A16N.C. VSS

CECEOEWE

VDD

E10A 21

C63

.1UF

E10B 21E10C 21

C64

.1UF

R153.3K

R163.3K

J2

HEADER 25X2

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 50

C65

.1UF

R173.3K

C66

.1UF

C67

.1UF

C68

.1UF

C69

.1UF

U11

KM68V4002(SOJ36)

(400MIL)

2345

141516172021222324323334

78111225262930

35

316

9

28

13

10

27

118

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15

D0D1D2D3D4D5D6D7

A16

OECE

VCC

VSS

WE

VSS

VCC

A17A18

U12

KM68V4002(SOJ36)

(400MIL)

2345

141516172021222324323334

78111225262930

35

316

9

28

13

10

27

118

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15

D0D1D2D3D4D5D6D7

A16

OECE

VCC

VSS

WE

VSS

VCC

A17A18

U13

KM68V4002(SOJ36)

(400MIL)

2345

141516172021222324323334

78111225262930

35

316

9

28

13

10

27

118

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15

D0D1D2D3D4D5D6D7

A16

OECE

VCC

VSS

WE

VSS

VCC

A17A18

U14

KM68V4002(SOJ36)

(400MIL)

2345

141516172021222324323334

78111225262930

35

316

9

28

13

10

27

118

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15

D0D1D2D3D4D5D6D7

A16

OECE

VCC

VSS

WE

VSS

VCC

A17A18

U15

KM68V4002(SOJ36)

(400MIL)

2345

141516172021222324323334

78111225262930

35

316

9

28

13

10

27

118

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15

D0D1D2D3D4D5D6D7

A16

OECE

VCC

VSS

WE

VSS

VCC

A17A18

U16

KM68V4002(SOJ36)

(400MIL)

2345

141516172021222324323334

78111225262930

35

316

9

28

13

10

27

118

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15

D0D1D2D3D4D5D6D7

A16

OECE

VCC

VSS

WE

VSS

VCC

A17A18

U20

IDT74FCT164245TPA(TSSOP48)

23

56

89

1112

46

4443

4140

383736

1

4

7

10

4748

13141516171819202122232425

26272829303132333435

39

42

45

B0B1

B2B3

B4B5

B6B7

A1

A2A3

A4A5

A6A7A8

T/R1

GND

VCCB

GND

A0OE1

B8B9

GNDB10B11

VCCBB12B13

GNDB14B15

T/R2OE2A15A14GNDA13A12VCCAA11A10GNDA9

GND

VCCA

GND

U18

KM68V1000BL-70(SOJ/SOP32)

121110

98765

27262325

428

331

1314151718192021

21 16

3022242932

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15

DQ0DQ1DQ2DQ3DQ4DQ5DQ6DQ7

A16N.C. VSS

CECEOEWE

VDD

U21

IDT74FCT164245TPA(TSSOP48)

23

56

89

1112

46

4443

4140

383736

1

4

7

10

4748

13141516171819202122232425

26272829303132333435

39

42

45

B0B1

B2B3

B4B5

B6B7

A1

A2A3

A4A5

A6A7A8

T/R1

GND

VCCB

GND

A0OE1

B8B9

GNDB10B11

VCCBB12B13

GNDB14B15

T/R2OE2A15A14GNDA13A12VCCAA11A10GNDA9

GND

VCCA

GND

C45

.1UF

U22

IDT74FCT164245TPA(TSSOP48)

23

56

89

1112

46

4443

4140

383736

1

4

7

10

4748

13141516171819202122232425

26272829303132333435

39

42

45

B0B1

B2B3

B4B5

B6B7

A1

A2A3

A4A5

A6A7A8

T/R1

GND

VCCB

GND

A0OE1

B8B9

GNDB10B11

VCCBB12B13

GNDB14B15

T/R2OE2A15A14GNDA13A12VCCAA11A10GNDA9

GND

VCCA

GND

C46

.1UF

C47

.1UF

U23

IDT74FCT164245TPA(TSSOP48)

23

56

89

1112

46

4443

4140

383736

1

4

7

10

4748

13141516171819202122232425

26272829303132333435

39

42

45

B0B1

B2B3

B4B5

B6B7

A1

A2A3

A4A5

A6A7A8

T/R1

GND

VCCB

GND

A0OE1

B8B9

GNDB10B11

VCCBB12B13

GNDB14B15

T/R2OE2A15A14GNDA13A12VCCAA11A10GNDA9

GND

VCCA

GND

C48

.1UF

C49

.1UF