2. numerical modeling (1).ppt

41
Elastic Theory of Fractures

Upload: ntuten88

Post on 02-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 1/41

Elastic Theory of

Fractures

Page 2: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 2/41

Idealization of fracture for

mechanical analysis

Infinite length in x3 direction

Shape is constant in x3 direction

Homogeneous, isotropic and linear elastic

Page 3: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 3/41

Stress tensor

Stress tensor at any point depends on

Position

Geometry of crack

Traction on crack faces

Remote state of stress

ij = f ij (x1, x2, a and boundary conditions)

Page 4: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 4/41

Displacements depend on

Position

Crack geometry

Traction on crack facesRemote stress

Elastic moduli for stress boundary-value

problemui=gi(x1,x2,a,m,n and boundary conditions)

E=2m (1+n)

Page 5: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 5/41

Definitions

 Boundary Value Problem

Stress, displacement and mixed

TractionForce per unit area on a surface

Cauchy’s formula 

Ti=ijn j 

Page 6: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 6/41

How to solve a BVP

Constitutive

Linear-elastic

EquilibriumQuasi-static

Compatibility

Can combine with constitutive relations to get

harmonic form for first stress invariant

Page 7: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 7/41

Solving the system in 2D

3 equations

2 equilibrium

1 compatibility

3 unknowns

Plane strain: 11, 12, 22 

Boundary conditions for cracks

 Stresses must match the far-field at x1 or x2 -> ∞ 

Stresses must match crack-face tractions tractions at

x1=0+, |x2|≤a

Page 8: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 8/41

Airy’s stress function 

U=U(x1, x2, a, r 11,

r 12,

r 22,

c11,

c12)

If U has the following relations, the equilibriumconditions are satisfied

Substitute these into

compatibility and getbiharmonic for U

 11   2U 

  x2

2   , 11    2U 

  x1  x2

, 22  2U 

  x12

4

U 0

Page 9: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 9/41

Making the Airy’s stress function

(even more) complex

Muskhelishvili: The Airy stress

function can be expressed as two

functions of the complex variable

Z ?

Re[ ] ? Im[ ] ?

Why? To make finding solutions

easier.

U ( z )   12Re[ z ( z )  ( z )]

Nikoloz

Muskhelishivili

Page 10: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 10/41

Using the complex Airy’s

functions

Take derivatives of the Airy’s stress functions to

get stresses

Use constitutive relations to get strainsThen find  and  to match boundary conditions

Page 11: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 11/41

Westergaard function

H. M. Westergaard

(1939): reduced the two

unknown functions to

one function, m , for a

crack using symmetry

Page 12: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 12/41

The stress function

m(z) = Am[(z2-a2)1/2-z] + BmzDI  (11

r -11c) 1/2(11

r +22r )

 Am= -iDII  = -i(12r -12

c ) Bm= 0

-iDIII  -i(13r -13

c) 23r -i13

r  

First part:crack contribution

Second part: remote loadcontribution

Page 13: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 13/41

 

Page 14: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 14/41

But aren’t there simpler equations

out there?

Simpler relations have been

developed for the stress fields near

crack tips.

The Westergaard function gives the

stress field everywhere including the

crack tips.

Page 15: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 15/41

Boundary Element

Method

•Becker 1992. The Boundary Element Method

in Engineering: A Complete course, Mc Graw

Hill

•Crouch and Starfield, 1990 Boundary Element

Method in Solid Mechanics with applications inrock mechanics and geological engineering,

Unwin Hyman

Page 16: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 16/41

Discretization

Deformation of each small bit within the

body is solved analytically

Putting the bits together relies on

computation power of modern processors

Consider influence of neighboring bits

Principle of superposition

Discretization introduces errorHow could you assess or minimize this error?

Page 17: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 17/41

Solving a BVP

Prescribe

Geometry

Boundary conditions (stress or displacement)

Constitutive properties

Solve for stress and displacement/strain

throughout the body

Solution must be true to prescribed conditions

Page 18: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 18/41

What are the different methods?

Finite Element Method

(FEM)

Boundary ElementMethod (BEM)

Discrete Element

Method (DEM)

Finite DiffferenceMethod (FDM)

 From Becker

Page 19: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 19/41

Finite element method

 Approximates the governing

differential equations by solving the

system of linear algebraic equations

Mesh the body into equantvolumetric or planar elements

Computationally expensive with fine

grids but has a sparse stiffness

matrix Handles heterogeneous materials

well

Page 20: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 20/41

Boundary element method

Governing differential equations are

transformed into integrals over

boundaries. These integrals are

expressed as a system of linearalgebraic equations.

Boundaries discretized into linear or

planar equal sized elements

Computationally cheaper than FEM(fewer elements) but has a full and

asymmetric matrix

Clunky for heterogeneous materials

Page 21: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 21/41

Discrete Element Method

Discretizes the body intoparticles in contact

 Analyzes the contactmechanics between eachparticle

Computationally expensivewith many elements

Handles heterogeneity very

well Useful for specific problems

e.g. fault gouge,deformation bands

Caveat: only use whencontact mechanicsdominate the deformation

Does not incorporate stress

singularity at crack tips

Page 22: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 22/41

Finite Difference Method

Solves governing differential equations bydifferencing method

Mesh the body -- solves at internal points

Computationally cheap and easy to program Cannot accurately incorporate irregular

geometries or regions of stress concentration

 Appropriate for contact problems,heat and fluidflow

Page 23: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 23/41

Which method best for fractures?

Capturing the 1/r 1/2 crack tip singularity

Fracture propagation

Page 24: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 24/41

Crack tip singularity

Finite Element?Special grid designed to

capture the 1/r 1/2 crack tipsingularity

awkward and expensive Boundary Element?Each element is a

dislocation

 A series of equal length

dislocations automaticallyincorporates the r -1/2 cracktip singularity

Page 25: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 25/41

Fracture Propagation

Finite Element?Fracture must be

remeshed and thespecial crack tip

elements moved to anew location

awkward

Boundary Element? Add another element to

the tip of the fracture

Page 26: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 26/41

Complicated fracture geometry

Boundary Element is hands down the best

Page 27: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 27/41

Poly3d

IGEOSS

3D

Complex fracturesLinear elastic homogeneous rheology

Frictional faults

Nice user interface

Page 28: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 28/41

Flamant’s solution 

Deformation within a

half space due to two

point loads

One normal

One shear

wikipedia

Page 29: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 29/41

Distributed load

Superpose Flamant’s

solution as you

integrate over the

distributed load

Page 30: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 30/41

Rigid Die problem

What are the tractions that couldproduce a uniform displacement?

Displacement along boundary

element i due to tractions on allother elements, j=1 to N

Bij is the matrix of influencecoefficients

Effects of discretization and

symmetry u y

i

( x

i

,0)   B

ij

T  y

i

 j1

 N 

Page 31: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 31/41

Fictitious Stress Method

Based on Kelvin’s problem 

 A point force within an infinite elastic solid

Similar to Flamant’s

Can be used for bodies of any shapeLeads to constant tractions along each element.

Page 32: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 32/41

Displacement discontinuity

method

Constant

displacements

along each element

Better for bodies

with cracks

incorporates the

singularity indisplacement across

the crack

Page 33: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 33/41

Displacement discontinuity

method

Displacement has a 1/r singularity

 A series of constant displacement elements

replicates the 1/r 

1/2

 stress singularity at thecrack tip.

Page 34: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 34/41

Numerical procedure

The stresses on

the ith element due

to deformation on

the jth element

 A is the boundary

influence

coefficient matrix

Page 35: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 35/41

Numerical procedure

Sum the effects for

all elements

Page 36: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 36/41

Numerical procedure

If you know

displacements

(displacement boundary

value problem) the

solution is found quickly.

If you have a mixed or

stress boundary value

problem, you need to

invert A to find the

displacements

Page 37: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 37/41

Numerical procedure

Once you know

displacements and stresses

on all elements, you can find

the displacements at anypoint within the body.

Flamant’s solution 

Page 38: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 38/41

Frictional slip

|t|=c-m

Inelastic deformation

Converge to solution

Penalty Method

Direct solver

 Apply a shear and normal stiffness to elements to

prevent interpenetration (e.g. Crouch and Starfield, 1990)Complementarity Method

 Apply inequalities

Implicit solver (e.g. Maerten, Maerten and Cooke, 2010)

Page 39: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 39/41

Convergence for frictional slip

Page 40: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 40/41

What about 3D elements

Cominou and Dundurs developed angular

dislocation.

Page 41: 2. numerical modeling (1).ppt

8/10/2019 2. numerical modeling (1).ppt

http://slidepdf.com/reader/full/2-numerical-modeling-1ppt 41/41

Boundary integral method

Uses reciprocal theorem (Sokolnikoff) to solve

for unknown boundary conditions.